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Section 0. INTRODUCTION 

These notes are intended to accompany lectures for Econometrics 461:  Introduction 
to Economic Data Analysis.  Economic Data Analysis concerns data (numeric and 
categorical), statistics, and statistical inference.  My approach to these topics is 
decidedly applied in nature.  Statistics necessarily involves a certain amount of 
mathematics.  This course will cover the formal mathematical models of statistics 
and statistical inference.  However, the focus will not be on derivations and proofs, 
but rather how these models and methods are used in practice.  Throughout these 
notes you will find “how-to” examples for using Microsoft Excel®.  For better or 
worse, Excel has become the ubiquitous standard software tool for many types of 
data analysis, simulations, and data reporting in business and applied economics.  
There are certainly more powerful software tools available (e.g., SAS, Stata, SQL 
based software, SAP, R, Python, etc.) but many entry level jobs open to Economics 
majors will require the use of Excel in some form, which is why I emphasize its use. 
You should find in these notes all the essential concepts and mathematical formulas 
that will be covered during the semester.  In addition, I have included example 
problems and solutions in each substantive section like what you will see in your 
homework sets and on exams. 
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Section 1.  DATA AND DATA DESCRIPTIONS 

“In God we trust.  All others must use data.” 
A. Variables and Values in Lists 

Economic data analysis is fundamentally about data.  Webster defines data as 
follows: 

Data:  Information, especially information organized for analysis or used as 
the basis for decision making.1 

This definition is obviously quite broad as data/information can take many forms:  
Sales levels measured as quantities or in dollar terms, the price of a share of a 
company’s stock, responses to a questionnaire regarding voting preferences or 
satisfaction levels, and simple categorizations of items such as the make of an 
automobile are all examples of data that can be used for analysis or as a basis for 
decision making.  How such data is organized can greatly simplify the process of 
analysis.  Shown below is an example of county level labor force data organized in an 
Excel workbook from the U.S. Department of Labor. 

 
These data are organized as variables in columns (such as ‘County Name/State 
Abbreviation’) with the values following in rows as a list.  Data could also be 
organized with variables in rows and values in successive columns such as the 
following extract of annual balance sheet information for Wal-Mart Stores. 

 
1 Webster’s II New Riverside University Dictionary, Houghton Mifflin Company, 1984. 
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B. Random Variables, Populations and Random Samples 

The labor force and Wal-Mart balance sheet data shown above help introduce the 
notion of random variables, populations, and samples.  Consider the labor force data.  
The number of people in the labor force, the number employed, unemployed and the 
unemployment rate are each variables that might be analyzed.  A random variable 
takes on different values with certain probabilities.  For any particular variable, the 
population is the collection of all possible outcomes for that variable.  A sample is 
a subset of observations of a particular variable taken from the population.  A 
random sample is a sample such that each observation in the population is equally 
likely of being selected, the selection of any one observation does not influence the 
selection of any other, and every possible sample of a particular size is equally likely 
of being selected.  Because populations are usually quite large and there are costs 
associated with data collection and analysis, we usually deal with samples.  The 
purpose of using random samples is to try to prevent drawing incorrect inferences 
about the nature of a population based on the sample being analyzed. 
A numerical measure that describes some aspect of a population is called a 
parameter.  A numerical measure that describes some aspect of a sample is called a 
statistic or sample statistic. 
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C. Scales of Measurement – Data Types 
As illustrated by the labor force data example, data can take on different types.  The 
first four columns of the labor force data contain what are called Category 
Variables that merely represent mutually exclusive groups.  While the values of the 
State and County “FIPS” code in these data are numeric, the actual values are 
arbitrarily assigned and have no meaning beyond identifying the specific group to 
which the data belong.  Another example is the following sample of exam scores with 
a category variable for the Gender of the student. 
Also shown in this example is 
an Excel “Column” chart of 
the average score by gender.  
The category variable is 
arranged on the horizontal 
axis and the numerical values 
for the average are shown on 
the vertical axis.  By way of 
contrast, in an Excel “Bar” 
chart, categories are displayed 
on the vertical axis and the 
numerical values are shown 
on the horizontal axis. 
 

D. Numeric Scales 
While there is only one type of scale for category variables, there are three types of 
numeric scales: 
Ordinal Scales:  A variable measured as an ordinal scale are often rankings that 
convey the order of what value comes first (smallest or largest), second, third, and so 
on.  For example, in a race involving 6 runners, a list of which runners came in first, 
second, third, etc. would be ordered from the smallest (fastest) time to the largest.  
However, the order of the finish (the ranking) would not tell you how much faster 
first place was compared to second, for that you would need to compare the actual 
finish times.  Responses to satisfaction surveys are another example of an ordinal 
variable. 
Interval Scales:  Variables measured on an interval scale provide information on 
the rank and difference between measurements from an arbitrary zero point on the 
scale.  Temperature measured in °F is a classic example.  If you are told that the 
temperature in Dallas is 90°F and that the temperature in Chicago is 30°F, you 
know that the difference is 60°F.   However, that does not mean that is 3 times 
warmer in Dallas than it is in Chicago because the zero point on °F is an arbitrary 
designation. 
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Ratio Scales:  Variables measured on a ratio scale provide information on the rank 
and distance from a natural zero point, with the ratio of two values having meaning.  
A person that is 50 years old is twice the age of someone who is 25.  If per capita 
personal income in Mississippi is $35,000 and in Texas it is $47,000 personal income 
in Texas is about 34% higher than that in Mississippi. 

E. Graphs to Describe Data 
Categorical variables can be described with frequency tables and graphs such as bar 
charts and pie charts.  These types of graphs are quite simple to construct and can 
provide a very powerful visual description of the underlying data. 
A frequency distribution tabulates counts (or the number of observations) of all 
the possible outcomes for the variable being studied.  For example, a distribution of 
student grades could be shown as in the following table and bar chart: 
The first column shows the possible outcomes – 
grades – called classes or groups.  The second 
column shows the number of students (count) that 
earned each grade.  And the third column shows the 
relative frequency expresses as a percentage of 
the total number of outcomes. 
A bar chart of the distribution shows either the 
frequency counts or the relative frequency 
percentage with the classes (grades) displayed on the horizontal axis. 

 

13.5%

31.5%
36.0%

14.6%

4.5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

A B C D F

Pe
rc

en
t

Grade

Grade Distribution Percent

Grade Students Percent 
A 12 13.5% 
B 28 31.5% 
C 32 36.0% 
D 13 14.6% 
F 4 4.5% 

Totals 89 100.0% 

12

28
32

13

4

0

5

10

15

20

25

30

35

A B C D F

C
ou

nt

Grade

Grade Distribution Count



ECONOMETRICS 461 | LECTURE OUTLINE  SECTION 1 
 

CRAIG SCHULMAN  |  TEXAS A&M UNIVERSITY  |  DEPARTMENT OF ECONOMICS   
 

6 

Quite often, we wish to describe relationships among multiple dimensions of 
categorical variables.  Voting patterns by income categories, education level, gender, 
and race, for example.  A contingency table (also known as a cross table or 
crosstab) can be used to summarize outcomes for two or more categorical variables.  
Using the grade distribution example from above, we can show differences in how 
grades are distributed by gender: 

 
  
 
 
Converting the grade frequency counts in the table above to percentages, we can also 
present these data as relative frequencies to make direct comparisons easier: 
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If we want to describe the proportion of frequencies in each category, a pie chart is 
a useful and visually appealing tool for this purpose.  The following chart shows the 
global market share in December 2016 for different internet browsing software as 
reported by http://gs.statcounter.com/  
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Time Series Data 
The labor force and grades data shown above are known as cross-sectional data.  
There is no natural order to the data, or any particular sub-sample taken from these 
data.  Another type of data that is very common in economics and business is time-
series data where variables are observed at different intervals in time and thus 
naturally ordered.  In the Wal-Mart balance sheet data shown above, the value for 
the variable “Cash and cash equivalents” in 2002 naturally precedes the value for 
2003.  We can illustrate how such variables move over time in a time-series plot 
(also known as a line chart).  The following chart shows monthly crude oil prices 
measured in dollars per barrel from January 2001 through November 2022 as 
reported by the Energy Information Administration (www.eia.gov).  

 
We can show how two or more variables move together over time by adding 
additional series to the chart.  However, if the series are measured in different 
scales, it may help to use a secondary vertical axis to illustrate a more meaningful 
association.  The following two charts show crude oil prices measured in dollars per 
barrel and gasoline prices measured in dollars per gallon.  The first chart has both 
variables measured on the left-hand vertical axis.  The second chart measures crude 
oil prices in dollars per barrel on the left-hand axis and gasoline prices in dollars per 
gallon on the right-hand axis. 
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Some of the special features of time series data and its uses are introduced in 
Section 8. 
X-Y Graphs and Co-movement among Variables 
While the foregoing time-series plot clearly shows how gasoline and crude oil prices 
move together over time, it does not illustrate the association (or co-movement) 
between the levels of the two variables.  To show co-movement in levels, we would 
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want to use an X-Y graph that plots one of the two variables on the vertical axis (the 
“Y” variable) and the other on the horizontal axis (the “X” variable) such as in the 
following chart of the gasoline and crude oil prices: 

 
Each “dot” in this chart represents one monthly X-Y pair of the gasoline-crude oil 
data.  The dashed line represents the linear association (a “trend line”) between the 
two variables. 
Note regarding Date Values in Excel:  Excel stores date values, such as 
8/30/2016, as an integer serial number representing the number of days beginning 
January 1, 1900 (1/1/1900 is stored as the integer value of 1).  So 8/30/2016 is stored 
as the integer 42,612. 

F. Frequency Distributions for Numerical Data 
A frequency distribution is effectively a count of the number of observations from a 
particular sample that fall in different ranges.  For a given sample of values of a 
numeric variable, we can identify to following values: 

Minimum:  Smallest value in the sample 
Maximum:  Largest value in the sample 
Range:  Maximum minus the Minimum 
Sample Size (usually denoted n):  the number of individual observations in 
the sample. 
 

To construct a frequency distribution, you first decide how many equally wide 
“classes” to break the range of data into.  For some variables, there may be 
somewhat standard break points to sub-divide the data.  For example, with grades 
from a 100 point scale, standard break points might be 60, 70, 80, and 90.  For 
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measures of dollar income, you might want to use increments of $10,000 starting 
with the first multiple of $10,000 observed in the sample and including enough 
classes to encompass all the values in the sample.  If there are no natural break 
points, a rough guide is determined by the number of observations in the sample as 
shown in the following table: 

Sample Size Number of Classes 
Fewer than 50 5 – 7 
50 to 100 7 – 8 
101 to 500 8 – 10 
501 to 1,000 10 – 11 
1,000 to 5,000 11 – 14 
More than 5,000 14 – 20 

 
Given the number of classes, next determine the class width: 
Eq. 1:1 

𝑤𝑤 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ =  
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 −𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

 

Be sure to round the class width up to the next significant digit.  For example, if 
your data are integer values such as 23, 46, 57, and the calculation above results in a 
class width of 7.2 (or any other decimal value), round it up to 8.  If your data has a 
single decimal point, round up the class width to the next tenth (for example, 10.72 
to 10.77 is rounded up to 10.8).  The class break points are then given by: 

Class Value 
1 Minimum + Class Width 
2 Class 1 + Class Width 
3 Class 2 + Class Width 
… … 

 
The next step is then to count the number of observations in the sample that fall 
within each class.  There are a number of ways to simplify this task in Excel.  If you 
want to control exactly how the class break points are treated, use the COUNTIFS 
function.  Whether you are using standardized or calculated break points for the 
various classes, you must take care that classes completely cover the range of the 
data and that there is no overlap in classes.  This involves a choice in how you treat 
the class break points.  For example, when counting the number of grades from a 100 
point scale, you would want to include in the first class the count of the number of 
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grades up to but less than 60, the second class would be the count of grades from 60 
up to but less than 70, etc.  The following example shows how the “>=” and “<” 
operators in the COUNTIFS function allow you to control whether the break points 
are or are not included in the class: 

 
The Percent Frequency is simply the frequency count divided by the sample size.  
The Cumulative Percent Frequency sums up the individual class Percent 
Frequencies.  In the example above, 56.1% of the grades were less than 80. 
As an alternative example where the break points are calculated, I downloaded State 
per capita personal income data for 2015 from the Bureau of Economic Analysis 
(www.bea.gov) that includes the fifty U.S. States plus the District of Columbia for 51 
total observations.  

 
With 51 total observations I choose to use 7 classes.  The calculated class width of 
5,504.4286 was rounded up to 5,600.  Starting from a ‘floor’ of 34,500, the first class 

http://www.bea.gov/
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counts the number of States with per capita personal income up to and including 
40,100.  The second class includes those states with incomes greater than 40,100 and 
up to and including 45,700, etc.  The following bar chart – also known as a 
histogram – shows the Percent Frequency and the Cumulative Percent Frequency 
as a line scaled on the right-hand axis: 

 
Additional features of the frequency distribution that help to describe the data relate 
to the mode of the distribution – the mode is the class with the largest frequency.  
Note that there may be more than one mode – called a multi-modal distribution.  If 
observations are roughly equally distributed on each side of a single mode, the 
distribution is called symmetric, like the following: 
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The distribution of personal incomes is skewed right – because it has a ‘long right 
tail.’  An example of a distribution that is skewed left is as follows: 

 
 

The method described above for constructing frequency distributions works well 
when the data sample under consideration does not contain “extreme” values – 
observations widely skewed (at the lower and/or the upper end of the distribution) 
from the bulk of the remaining observations.  However, it is very common where 
these types of extreme values are an issue.  For example, consider the following 
summary statistics for the ERA (a measure of performance) of a sample of 519 Major 
League Baseball pitchers: 

1 2 3 4 5 6 7 8 9 10 11

Symetric Distribution

1 2 3 4 5 6 7 8 9 10

Skewed Left Distribution
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Using the procedure for determining class widths 
presented above would result in the following frequency 
distribution: 

 
Which is not particularly 
informative as over 80% of 
the observations fall in 
the first two classes. 

A slightly amended 
procedure “trims” the 
distribution by forcing the roughly 5% of “extreme” observations at the upper end of 
the range into a final class.  (See the discussion of quartile and percentile statistics 
in Section 2.B and the Excel function discussion in Section 10 below.)  For this 
particular sample, roughly 5% of the observation have an ERA value of 12 or more.  
Setting the class width at 1.2 and letting the final class include all observations with 
an ERA of 12 or more results in the following frequency distribution chart: 

 

This view is much more informative in showing the breakdown of the sample 
distributed between and ERA of 0 and 4.8.  
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G. Example Problems 
Using the following 22 data points: 
 

-2.1 -5.5 14.2 -1.2 -36.1 10.6 6.4 1.0 -2.6 20.2 -11.0 
21.2 9.5 6.7 19.9 -21.0 30.6 -1.6 -13.3 -3.0 21.6 40.2 

 
Construct a frequency distribution table including the cumulative frequency 
distribution of the data. 
 
Sketch a histogram based on your frequency analysis. 
 
Does this distribution appear to by symmetric, or skewed to the right, or skewed to 
the left? 
 
Solution:  Since there are 22 observations, you should use 5 to 7 classes.  I have 
chosen 6.  The minimum is -36.1 and the maximum is 40.2, so the class width is: 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ =
40.2 − (−36.1)

6
≈ 12.72 

Rounded up to 12.8.  This results in frequency counts as follows: 
 
Class At Least Less Than Freq Percent Cum 

1 -36.1 -23.3 1 4.5% 4.5% 
2 -23.3 -10.5 3 13.6% 18.2% 
3 -10.5 2.3 7 31.8% 50.0% 
4 2.3 15.1 5 22.7% 72.7% 
5 15.1 27.9 4 18.2% 90.9% 
6 27.9 40.7 2 9.1% 100.0% 

Total   22   
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The distribution is roughly symmetric to slightly skewed right. 
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Section 2.  MEASURES OF CENTRAL TENDENCY, VARIABILITY AND CO-MOVEMENT 

In analyzing any numerical variable, the frequency distributions we explored in 
Section1 help illustrate that with many economic variables, certain values (or ranges 
of values) are observed more frequently than others.  Ultimately, we want to be able 
to make statements in probability about the likelihood of a particular variable taking 
on either a specific value or a value in specific range.  For a single variable, this will 
require constructing measures that help indicate whether observations are centered 
or clustered around a particular value and the degree to which observations deviate 
around that central value.  These are called measures of central tendency and 
variability.  When two or more variables are the focus of the analysis, we will 
examine measures of co-movement that provide an indication of how observations 
my cluster together. 

A. Measures of Central Tendency 
For a sample of a single random variable, measures of central tendency provide a 
single value for the “center” of the data.  We will examine three different measures of 
central tendency:  the mean, median and mode.  In addition, we will examine 
three different types of measures of the mean:  the arithmetic mean, the weighted 
mean, and the geometric mean. 
For a random variable X, the population mean is a parameter that we will denote 
with the Greek letter µ.  For a given sample of the variable X with n observations, 
the arithmetic mean (or simply mean) will be denoted 𝑋𝑋 and is defined as: 
Eq. 2:1 

𝑋𝑋� =
𝑋𝑋1 + 𝑋𝑋2 + ⋯+ 𝑋𝑋𝑛𝑛

𝑛𝑛
= �

1
𝑛𝑛
��𝑋𝑋𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

The mean minimizes the sum of squared errors, denoted SSE, in the data sample.  
Again, for a given sample of the variable X with n observations, SSE measures how 
the data vary around some constant value, say a.  If you minimize that function with 
respect to a, you get the following: 
Eq. 2:2 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎

𝑆𝑆𝑆𝑆𝑆𝑆 = �(𝑋𝑋𝑖𝑖 − 𝑎𝑎)2
𝑛𝑛

𝑖𝑖=1

 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡 𝑎𝑎, 𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎 
Eq. 2:3 

−2�(𝑋𝑋𝑖𝑖 − 𝑎𝑎)
𝑛𝑛

𝑖𝑖=1

= 0 

𝑛𝑛𝑛𝑛 = �𝑋𝑋𝑖𝑖

𝑛𝑛

𝑖𝑖=1
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𝑎𝑎 = �
1
𝑛𝑛
��𝑋𝑋𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= 𝑋𝑋� 

Note:  You will not be required to derive the minimum SSE result above.  However, 
we will see the notion of minimum SSE statistics throughout the semester and you 
will see this concept again in detail in your Econometrics 463 course. 

While the Eq. 2.1 for the sample mean 𝑋𝑋 looks a bit messy with the summation 
operator ∑ in practice, functions built into Excel make these calculations quite 
simple.  The Excel function for the arithmetic mean is =AVERAGE(data range).  
Consider a sample from the labor force data in Section 1 of twenty Texas counties 
around Houston (Harris County).  As shown in below, you can calculate the mean 
Unemployment Rate for this sample using the AVERAGE function with reference to 
the values in cells E2:E21 

 
Note how the formula for the mean in cell B24 shows up in the ‘formula bar.’ 
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Effect of changing scale on the Sample Mean:  If you rescale a variable – by 
multiplying and/or adding a constant – this will affect the calculated value of the 
sample mean.  For example, suppose an instructor gives an exam worth a total of 60 
points and the mean score is 43.  If scores are rescaled to a 100 point basis by 
multiplying by 10/6, and the instructor then applies a curve by adding 4 points, what 
is the new mean score?  To see the solution, let the original set of scores be 
represented by the variable X, let a and b be constants, and let the rescaled scores be 
represented by the variable Y with:  Y= 𝑎𝑎 + 𝑏𝑏𝑏𝑏.  Then, 
Eq. 2:4 

𝑌𝑌 = �
(𝑎𝑎 + 𝑏𝑏𝑋𝑋𝑖𝑖)

𝑛𝑛
 

=
𝑛𝑛𝑛𝑛
𝑛𝑛

+ 𝑏𝑏�
𝑋𝑋𝑖𝑖
𝑛𝑛

 

= 𝑎𝑎 + 𝑏𝑏𝑋𝑋 
Applying this formula to the exam example, the new mean score is about 75.67. 
Another measure of central tendency is the Median:  For a sample of the variable X 
with n observations, the median is loosely defined as the middle observation when 
the data is sorted in order from smallest to largest.  That definition is technically 
true when the number of observations n is an odd number.  For example, with a 
sample size of 7, when the data are sorted from smallest to largest, the 4th 
observation in the sorted sample is the median: 

 
So if the sample size n is an odd number, when the sample is sorted from smallest to 
largest, the observation number of the median will be: �𝑛𝑛−1

2
� + 1. 

However, with a sample size that is an even number, there is no single “middle” 
observation in the sorted sample.  There are a number of different ways to define the 
median in this case, the most expedient and the one used in Excel, is to average the 
two numbers that fall in the middle of the sorted sample.  For example, for a sample 
of 10 observations, the median is the average of the 5th and 6th observations in the 
sorted sample: 
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If the sample size n is an even number, when the sample is sorted from smallest to 
largest, the median will be average of observation numbers:  �𝑛𝑛

2
�  𝑎𝑎𝑎𝑎𝑎𝑎 �𝑛𝑛

2
� + 1. 

If the sample has a symmetric distribution, the mean and median will be very close 
to one another.  If the sample has a distribution that is skewed to the right, the mean 
will be greater than the median, and if it is skewed to the left, the mean will be less 
than the median. 

The Mode:  The Mode is simply the most frequently observed value within a 
particular sample.  Note, however, that variables can exhibit multiple modes where 
observations cluster around several different values.  The concept of the mode is 
often applied to the classes in a frequency distribution so that the class with the 
largest frequency count, or equivalently the largest percentage frequency, is 
described as the mode.  However, you must be careful to recognize that this can 
depend on how the distribution classes (the break points) are defined.  In addition, 
when a variable exhibits multiple modes, it may be because two or more different 
types of measures are included in the sample.  For example, the heights of students 
in a sample of 100, 50 men and 50 women, will quite likely have two modes (it is 
bimodal) one for the males and one for the females. 

Weighted Mean:  There are many situations in business and economics where a 
simple mean provides an inaccurate measure of the population mean when there are 
substantially different sub-groups within a sample.  In such cases a weighted mean 
may be more appropriate.  In a simple mean, each observation Xi from a sample of 
size n on the variable X is weighted by 1/n.  With a weighted mean, each observation 
is associated with a weight wi and the weighted mean, denoted 𝑋𝑋𝑤𝑤, is calculated as: 
Eq. 2:5 

𝑋𝑋𝑤𝑤 =
∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1
∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=1
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An example where a weighted mean would be appropriate is when you have 
summary measures on a number of groups (for example, unemployment rates for 
different counties) and the groups are different sizes (counties have different sized 
labor forces).  For example, in the 20 county sample of labor force data shown above, 
the simple mean of the unemployment rate is 5.07.  When rates are weighted by the 
size of the labor force, the weighted mean is 4.65.  In this example, the weighted 
mean is less than the simple mean because the counties with the largest labor force 
tend to have unemployment rates less than that of the simple mean.  It is 
straightforward to calculate a weighted mean in Excel using a combination of the 
SUMPRODUCT and SUM functions via: =SUMPRODUCT(range for weights, range 
for X values)/SUM(range for weights) such as the following: 

 
 
Another specialize measure of central tendency is the Geometric Mean.  The 
Geometric Mean, denoted 𝑋𝑋𝑔𝑔, is a specialized average used in business and 
economics with growth rates and rates of return.  Instead of adding the values in a 
sample and dividing by the sample size, the values are multiplied together (you take 
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the product of the series) and the nth root is applied to the result.  The geometric 
mean of X for a sample of size n is given by: 
Eq. 2:6 

𝑋𝑋𝑔𝑔 = �𝑋𝑋1 × 𝑋𝑋2 × … × 𝑋𝑋𝑛𝑛
𝑛𝑛 = ��𝑋𝑋𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�

1
𝑛𝑛

 

Where the Greek letter Π is used to denote the product of the values.   If Xi is the 
periodic gross rate of growth between period i-1 and i:  𝑋𝑋𝑖𝑖 = ( 𝑃𝑃𝑖𝑖

𝑃𝑃𝑖𝑖−1
), then the geometric 

mean measures the Average Compound Periodic Return, and the calculation 
simplifies to:   
Eq. 2:7 

𝑋𝑋𝑔𝑔 = �
𝑃𝑃𝑛𝑛
𝑃𝑃0
�
1
𝑛𝑛
 

You can calculate a geometric mean in Excel using the GEOMEAN(data range) 
function. 
Before delving into measures of variability, it is important to reiterate the 
distinction between population parameters and sample statistics.  Population 
parameters of either central tendency, such as the mean, or of variability such as the 
variance or standard deviation, are usually unknown.  However, assumptions about 
the basic distribution of a variable allows us to make probability based inferences 
about a variable based on sample statistics that we can calculate from observed data.  
The key population and sample statistics and notation that we will use to 
distinguish them are as follows: 

Statistic 
Population Parameter 

Notation 
Sample Statistic Notation 

Mean 𝜇𝜇 𝑋𝑋� 
Variance 𝜎𝜎2 𝑠𝑠2 
Standard Deviation �𝜎𝜎2 = 𝜎𝜎 �𝑠𝑠2 = 𝑠𝑠 
Covariance (between X and Y) 𝜎𝜎𝑋𝑋𝑋𝑋 𝑠𝑠𝑋𝑋𝑋𝑋 
Correlation (between X and Y) 𝜌𝜌𝑋𝑋𝑋𝑋 𝑟𝑟𝑋𝑋𝑋𝑋 

 
B. Distance Measures of Variability 

The Range:  The range in a sample is simply the difference between the maximum 
observed value and the minimum observed value.  The greater the spread of data 
from the center of the distribution, the larger the range will be.  However, the range 
can be a misleading measure of variability if there are a few extreme observations 
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(either very large or very small), called outliers.  To control for this possibility, it is 
helpful to look at the range of the middle 50% of the data:  the interquartile range. 
Interquartile Range:  The first quartile, denoted Q1, is the value below which 25% 
of the observations fall.  The first quartile is also known as the 25th percentile.  The 
third quartile, Q3, is the value below which 75% of the observations fall (a.k.a., the 
75th percentile).  The interquartile range is then:  𝑄𝑄3 − 𝑄𝑄1.  Note that the second 
quartile, a.k.a. the 50th percentile, is the median.  In practice, there are several 
different methods for calculating quartiles, none of which are definitive.  Excel 
includes two different functions for calculating quartiles:  QUARTILE.INC and 
QUARTILE.EXC (Excel also includes a ‘legacy’ function QUARTILE that is the same 
as QUARTILE.INC).  For several reasons, I would suggest using the 
QUARTILE.EXC function.  For more information on calculating quartiles see the 
blog post: http://datapigtechnologies.com/blog/index.php/why-excel-has-multiple-
quartile-functions-and-how-to-replicate-the-quartiles-from-r-and-other-statistical-
packages/ . 
The PERCENTILE.EXC function is similar to the QUARTILE.EXC function.  It 
returns the value in a data array below which any percentage between 0 and 1 of the 
sample fall.  For example, PERCENTILE.EXC(array,0.9) returns the value in array 
below which 90% of the observations fall. 
Box-and-Whisker Plots:  A graphical representation of the range, interquartile 
range, and median that is useful to identify skewed distributions and outliers is a 
Box-and-Whisker plot, such as the following:  

 

http://datapigtechnologies.com/blog/index.php/why-excel-has-multiple-quartile-functions-and-how-to-replicate-the-quartiles-from-r-and-other-statistical-packages/
http://datapigtechnologies.com/blog/index.php/why-excel-has-multiple-quartile-functions-and-how-to-replicate-the-quartiles-from-r-and-other-statistical-packages/
http://datapigtechnologies.com/blog/index.php/why-excel-has-multiple-quartile-functions-and-how-to-replicate-the-quartiles-from-r-and-other-statistical-packages/


SECTION 2 ECONOMETRICS 461 | LECTURE OUTLINE
  

CRAIG SCHULMAN  |  TEXAS A&M UNIVERSITY  |  DEPARTMENT OF ECONOMICS   
 

 

25 

The “Box” for each of the two illustrated series, shows the 1st Quartile (bottom of the 
Box), the Median (solid line in the middle of the Box), and the 3rd Quartile (top of the 
Box).  The Mean for each series is shown as an × on the chart. 
As shown on the Box for Series 2, the Interquartile Range is illustrated by the hieght 
of the Box. 
The Lower Whisker shows one of two things – either the Minimum value of the 
series or the smallest value than is not less than 𝑄𝑄1 − 1.5 × 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅. 
The Upper Whisker is defined similar to the Lower Whisker – either the Maximum 
value of the series or the largest value that is not greater than 𝑄𝑄3 + 1.5 ×
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅. 
Any data points outside the Lower of Upper Whiskers are defined to be “Outliers” or 
extreme values. 
If the Median is close to the middle of the range between the 1st and 3rd quartiles, 
and the Mean is very close to the Median, (as with Series 2, above) the distribution 
will tend to be symmetric. 
If the Median it is closer to the first quartile, and the Mean is greater than the 
Median, (as with Series 1 above) the distribution will tend to be skewed right. 
If the Median it is closer to third quartile, and the Mean is less than the Median, the 
distribution will tend to be skewed left. 
Alternative distance measures of variability may be based on the range between 
certain percentiles of a data sample.  For example, the range between the 90th 
percentile and the 10th percentile.   

C. Variance and Standard Deviation 
The preceding distance measures of variability all measure ranges based in specific 
pairs of observations in a sample.  Variance and standard deviation statistics are 
averages of variability across all observations either in the population or in a 
particular sample.  The population variance, 𝜎𝜎2, is the sum of the squared 
differences between each observation and the population mean, µ, divided by the 
population size N: 
Eq. 2:8 

𝜎𝜎2 =
∑ (𝑋𝑋𝑖𝑖 − 𝜇𝜇)2𝑛𝑛
𝑖𝑖=1

𝑁𝑁
 

The sample variance, s2, is the sum of the squared differences between each 
observation and the sample mean, 𝑋𝑋�, divided by the sample size n, minus 1: 
Eq. 2:9 

𝑠𝑠2 =
∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋�)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛 − 1
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The (n – 1) in the denominator is called the degrees of freedom, and is used instead 
of simply the sample size to make the sample variance s2 an unbiased estimator of 
the population variance:  that is, on average, s2 will equal the population variance.  
A computational shortcut that is handy if you are calculating a sample variance 
manually is as follows: 
Eq. 2:10 

𝑠𝑠2 =
(∑ 𝑋𝑋𝑖𝑖2𝑛𝑛

𝑖𝑖=1 ) − 𝑛𝑛𝑋𝑋�2

𝑛𝑛 − 1
 

Standard deviation, for either the population or the sample, is the square root of 
the variance.  Thus, the population standard deviation is: 
Eq. 2:11 

𝜎𝜎 = �𝜎𝜎2 = �∑ (𝑋𝑋𝑖𝑖 − 𝜇𝜇)2𝑛𝑛
𝑖𝑖=1

𝑁𝑁
 

And the sample standard deviation is: 
Eq. 2:12 

𝑠𝑠 = �𝑠𝑠2 = �∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋�)2𝑛𝑛
𝑖𝑖=1
𝑛𝑛 − 1

 

The Excel functions for variance and standard deviation are summarized in the 
following table. 
Function Result 
VAR.P Population variance – uses N in the denominator 
VAR.S Sample variance – using n-1 in the denominator 
STDEV.P Population standard deviation – the square root of VAR.P 
STDEV.S Sample standard deviation – the square root of VAR.S 

   
Changing Scales:  If you add (or subtract) a constant from a variable X, there is 
NO effect on the variance or standard deviation since the mean will change by the 
same constant.  However, if you multiply by a constant k, the resulting variance will 
be 𝑘𝑘2 times the original variance, and the standard deviation will be k times the 
original standard deviation. 
The importance of the standard deviation is illustrated by the Empirical Rule:  for 
any variable that has approximately a normal bell-shaped distribution, 
approximately 68% if the observations will lie within the interval 𝜇𝜇 ± 𝜎𝜎, 
approximately 96% of the observations will lie within the interval 𝜇𝜇 ± 2𝜎𝜎, and almost 
all the observations will lie within the interval 𝜇𝜇 ± 3𝜎𝜎. 
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Coefficient of Variation:  With measures of the standard deviation on different 
variables, it may be tempting to make a direct comparison among the standard 
deviation statistics to address the question of which variable exhibits more or less 
variability about its mean.  However, if the variables have different means, such a 
comparison does not have much meaning.  To remove these scale effects, we can 
compare the coefficient of variation, denoted CV, which is the ratio of a variable’s 
standard deviation to its mean (either population of sample measures) provided the 
means are positive, and is usually expressed as a percentage.  Thus, the population 
coefficient of variation is: 
Eq. 2:13 

𝐶𝐶𝐶𝐶 =
𝜎𝜎
𝜇𝜇

 

And the sample coefficient of variation is: 
Eq. 2:14 

𝐶𝐶𝐶𝐶 =
𝑠𝑠
𝑋𝑋�

 

Z-Score:  A z-score is a standardized value that indicates the number of standard 
deviations a specific data value is from the mean.  It can be positive (value is greater 
than the mean) negative (value is less than the mean) or zero (equal to the mean): 
Eq. 2:15 

𝑧𝑧 =
𝑋𝑋𝑖𝑖 − 𝜇𝜇
𝜎𝜎

 

The z-score can also be calculated based on the sample measures of the mean and 
standard deviation: 
Eq. 2:16 

𝑧𝑧𝑠𝑠 =
𝑋𝑋𝑖𝑖 − 𝑋𝑋�
𝑠𝑠

 

For a given sample, if all the observations are converted to z-scores, it is 
straightforward to show that the sample mean of the z-scores is zero and its 
standard deviation is one. 

D. Measures of Co-Movement 
The measures of central tendency discussed above help us understand how the 
observations of a random variance will cluster around a central point while 
measures of variability help us understand the extent of variation.  We now turn to 
how two random variables tend to move together – or co-movement.  The base 
measure of co-movement in a pair of random variables X and Y, is their covariance.  
The sample measure of the covariance between X and Y is: 
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Eq. 2:17 

𝑆𝑆𝑋𝑋𝑋𝑋 =
∑(𝑋𝑋 − 𝑋𝑋�)(𝑌𝑌 − 𝑌𝑌�)

𝑛𝑛 − 1
 

The covariance provides a measure of the tendency of the variable X to move 
together with the variable Y.  If the variable Y tends to increase while the variable X 
increases, the covariance will be positive.  If Y tends to decrease as X increases, the 
covariance will be negative.  Beyond the sign or direction of the relationship, 
however, the covariance is not very informative because it is subject to scale effects.  
If the variable X is multiplied by a constant kX, then the covariance will change by 
kX.  Similarly for a change in the scale of Y.  To eliminate scale effects, we use the 
correlation between X and Y – the covariance of X and Y divided by their standard 
errors: 
Eq. 2:18 

𝑟𝑟𝑋𝑋𝑋𝑋 =
𝑆𝑆𝑋𝑋𝑋𝑋
𝑆𝑆𝑋𝑋𝑆𝑆𝑌𝑌

 

Since changing the scale of X and/or Y will change both the covariance and the 
standard deviations by the same scale, the correlation eliminates any scale effects.  
Moreover, by the nature of its definition, the correlation coefficient is bound on the 
interval [-1, 1].  If observations of X and Y fall exactly on a downward sloping 
straight line, then the correlation will be -1.  If the line is upward sloping, the 
correlation will be 1. 
The Excel functions for calculating a covariance are CONVARIANCE.P (population 
covariance that uses N in the denominator) and COVARIANCE.S (the sample 
covariance that uses n-1 in the denominator as in Eq. 2:17).  To calculate 
correlations in Excel, you can use of combination of the COVARIANCE.S and 
STDEV.S functions to replicate Eq. 2:18, or use the CORREL function. 
Consider two variables X and Y with a positive correlation such as that shown in the 
chart below.  The slope and intercept of a straight line of “best fit” between X and Y 
will depend on the scale of measurement of the two variables.  However, the 
correlation coefficient has a scale free relation to the line of “best fit” through the z-
scores of X and Y.  For a given value of X, Xi, the z-score is: 
Eq. 2:19 

𝑧𝑧𝑥𝑥 =
(𝑋𝑋𝑖𝑖 − 𝑋𝑋�)

𝑠𝑠𝑥𝑥
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For that particular value of X, the predicted z-score for Y that falls along the straight 
line of “best fit” is: 
Eq. 2:20 

𝑧̂𝑧𝑦𝑦 = 𝑟𝑟𝑥𝑥𝑥𝑥𝑧𝑧𝑥𝑥 

Where the “hat” denotes a predicted value.  Given the sample correlation coefficient 
rxy, and the calculated z-score for Xi, we 
can solve for a predicted Yi with: 
Eq. 2:21 

𝑌𝑌�𝑖𝑖 = �𝑧̂𝑧𝑦𝑦𝑠𝑠𝑦𝑦� +  𝑌𝑌� = �𝑟𝑟𝑥𝑥𝑥𝑥𝑧𝑧𝑥𝑥𝑠𝑠𝑦𝑦� + 𝑌𝑌� 
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E. Example Problems 
The following data represent a sample of 12 test scores (out of a total of 50 possible 
points) ordered from lowest to highest:  
Obs. 1 2 3 4 5 6 7 8 9 10 11 12 
Grade 21 25 26 27 29 31 35 36 38 39 40 41 

 
Calculate the sample mean, median, and standard deviation of this data. 

mean  32.33 
median 33.00 
stddev 6.71 

Suppose the instructor wants to rescale the scores to be out of 100 by multiplying by 
2, and then adds a curve of 8 points.  Calculate the sample mean and standard 
deviation for the rescaled and curved grades.  How does these relate to the original 
mean and standard deviation? 

New Mean 72.67 
New stddev 13.41 
New Mean = (Old Mean * 2) + 8 
New Std. Dev. = Old Std. Dev *2 

 

An investor buys shares in company CTS at a purchase price of 63.25 and observes 
the end of month prices in each of twelve months as shown in the table below: 
Purchase Price 63.25  
End of Month Price Gross Return 

Jan 66.73 1.055 
Feb 65.66 0.984 
Mar 66.91 1.019 
Apr 69.59 1.040 
May 71.26 1.024 
Jun 73.61 1.033 
Jul 72.80 0.989 
Aug 73.96 1.016 
Sep 73.22 0.990 
Oct 72.12 0.985 
Nov 75.15 1.042 
Dec 76.20 1.014 
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Calculate the geometric mean of the Gross Return data to get the Average 
Compound Monthly (Gross) Return. 
 

𝑋𝑋�𝑔𝑔 = √1.055 × 0.984 × 1.019 × … × 1.01412 = 1.0156 

 
OR 
 

𝑋𝑋�𝑔𝑔 = �
76.20
63.25

�
1
12

= 1.0156 

 

 

An investor purchases stock in two different companies, ABC and XYZ.  Over a 
period of time, the following summary statistics of the two company’s stock prices 
are observed: 

 ABC XYZ 
Mean Price 11.34 33.66 
Std. Dev. Price 3.107 6.811 
Covariance -16.129 

 
Which of the two company’s stock prices exhibits more variability?  Explain the basis 
for your answer. 

Coefficient of Variation:  𝑆𝑆
𝑋𝑋�
 

ABC = 0.27 
XYZ = 0.20 
So ABC is more variable relative to the mean. 

Calculate the correlation coefficient for the two company’s stock prices. 

𝑟𝑟𝑥𝑥𝑥𝑥 =
𝑆𝑆𝑥𝑥𝑥𝑥
𝑆𝑆𝑥𝑥𝑆𝑆𝑦𝑦

=
−16.129

11.34 × 33.66
= −0.762 

Suppose the stock prices are rescaled to account for number of shares purchased.  
ABC’s prices are rescaled by multiplying by 100 and XYZ’s prices are rescaled by 
multiplying by 150. 
What happens to the covariance of the stock prices from this rescaling? 
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𝑆𝑆𝑥𝑥𝑥𝑥 =
∑(100𝑋𝑋𝑖𝑖 − 100𝑋𝑋�)(150𝑌𝑌𝑖𝑖 − 150𝑌𝑌�)

𝑛𝑛 − 1
= 100 × 150 × 𝑂𝑂𝑂𝑂𝑂𝑂 𝐶𝐶𝐶𝐶𝐶𝐶 

Covariance is scaled by a factor of 15,000 
 

Would this rescaling change your answer to part (a) above?  Explain why or why not. 
No because both Std. Dev. and Mean are scaled by the same factor in this 
case. 

Suppose the stock price for company ABC goes up by 1.5 standard deviations.  Based 
on your calculated correlation coefficient from part (b), what is expected to happen to 
XYZ’s stock price? 

Expect XYZ’s stock price to go down based on the negative correlation by: 
𝑍𝑍𝑋𝑋𝑋𝑋𝑋𝑋 = 𝑟𝑟𝑥𝑥𝑥𝑥 × 𝑍𝑍𝐴𝐴𝐴𝐴𝐴𝐴 = −0.762 ∗ 1.5 = −1.14 

Standard deviations. 
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Section 3.  PROBABILITY AND THE NORMAL PROBABILITY DISTRIBUTION 

A. Probability and Probability Distribution Functions 
The first two sections dealt with various measures of central tendency, variability, 
and co-movement.  We now turn to the methods by which we can make statements in 
probability about random variables.  A random variable X is a variable that takes on 
values out of a defined set of possibilities. We learned that a key measure of central 
tendency for X is the population mean, denoted µ.  Our sample measure of the mean 
is the (arithmetic) mean, denoted 𝑿𝑿�.  The key measures of variability were the 
population variance (σ2) and standard deviation (σ) with sample measures denoted 
as s2 and s.  These measures give us an indication of how values of X may cluster 
around a particular point (the mean) and the degree to which values of X vary 
around that point (the standard deviation).  What we need is a means of linking 
specific values of X to the probability of observing that value – this is the 
Probability Distribution Function or PDF, denoted f(X).  The PDF maps specific 
values of the random variable X to the probability of that value being observed.  
Thus, for a specific value of X, say X0, the PDF f(X0) is such that 
Eq. 3:1 

𝑓𝑓(𝑋𝑋0) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[𝑋𝑋 = 𝑋𝑋0] 𝑜𝑜𝑜𝑜 𝑃𝑃[𝑋𝑋 = 𝑋𝑋0] 
By definition, all probabilities are bound on the interval [0, 1].  A 
probability of 1 means an event is certain to occur while a probability of 
zero means it is certain not to occur, and any value in between zero and 
one indicates the likelihood of observing a particular value.  The 
probability function, f(X) is therefore also bound on the interval [0, 1].   
The specific form of f(X) will depend on the nature of the random variable X.  
Random variables can be either discrete (X takes on a set of countable values, 
usually integers) or continuous (X can take on any value in an interval).  Note that a 
discrete random variable could involve an infinite number of possibilities (any 
positive integer, for example) and that a continuous random variable could involve a 
very narrow range (any fractional value between 1 and 2, for example). 
An example of a discrete random variable is the roll of a pair of six-sided dice with 
the faces numbered 1 to 6 and the outcome is the sum of the two die.  As shown in 
the following table, there are 36 possible combinations of 11 discrete outcomes in the 
set {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.  Assuming the dice are “fair” so that the chances 
of any given number being rolled on one of the individual dies is equally likely, the 
probabilities of each outcome – the PDF, f(X) – is as shown in the following table: 
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 Die 2      Outcomes: X Frequency PDF: f(X) CDF: F(x) 
Die 1 1 2 3 4 5 6  2 1   1/36   1/36 

1 2 3 4 5 6 7  3 2   2/36   3/36 
2 3 4 5 6 7 8  4 3   3/36   6/36 
3 4 5 6 7 8 9  5 4   4/36  10/36 
4 5 6 7 8 9 10  6 5   5/36  15/36 
5 6 7 8 9 10 11  7 6   6/36  21/36 
6 7 8 9 10 11 12  8 5   5/36  26/36 
        9 4   4/36  30/36 
        10 3   3/36  33/36 
        11 2   2/36  35/36 
        12 1   1/36 1       

        Total 36 1  

 
Since there is only one combination that results in X=2, the PDF f(2)=1/36 (similarly 
for X=12), while there are 6 combinations that result in X=7 so f(7)=6/36.  For a 
discrete random variable X, the properties of the PDF f(X) are as follows (Xi is any 
single outcome in the set of possibilities): 
Eq. 3:2 

𝑓𝑓(𝑋𝑋𝑖𝑖) = 𝑃𝑃[𝑋𝑋 = 𝑋𝑋𝑖𝑖] 
0 ≤ 𝑓𝑓(𝑋𝑋𝑖𝑖) ≤ 1 
�𝑓𝑓(𝑋𝑋𝑖𝑖)
𝑋𝑋𝑖𝑖

= 1 

In words, 𝑓𝑓(𝑋𝑋𝑖𝑖) is the probability that X takes on the specific value Xi; the 
probabilities are, by definition, bound between zero and one; the sum of probabilities 
over all possible outcomes of X is equal to one.  The population measures of the mean 
µ and variance σ2 are defined using expected values as functions of the PDF.  The 
expected value of a discrete random variable X, denoted E(X), is defined as: 
Eq. 3:3 

𝐸𝐸(𝑋𝑋) = �𝑋𝑋𝑖𝑖𝑓𝑓(𝑋𝑋𝑖𝑖)
𝑋𝑋𝑖𝑖

= 𝜇𝜇 

So the population mean µ is the probability weighted sum of all possible values of X.  
If you apply this definition to the dice example above, multiplying each outcome of X 
by its probability and adding them all together, you will find that the expected value 
(the mean) is equal to seven.  The population variance, σ2 is defined as: 
Eq. 3:4 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) = 𝐸𝐸[𝑋𝑋 − 𝐸𝐸(𝑋𝑋)]2 = 𝐸𝐸[𝑋𝑋 − 𝜇𝜇]2 = �(𝑋𝑋𝑖𝑖 − 𝜇𝜇)2𝑓𝑓(𝑋𝑋𝑖𝑖)
𝑋𝑋𝑖𝑖

= 𝜎𝜎2 
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The standard deviation of X is simply the square root of the variance.  While the 
PDF gives the probability that X will take on a particular value, the Cumulative 
Distribution Function, or CDF, is denoted F(X) and is the probability that X is 
less than or equal to a particular value.  For a discrete random variable, the CDF 
has the following properties: 
Eq. 3:5 

𝐹𝐹(𝑋𝑋𝑖𝑖) = 𝑃𝑃[𝑋𝑋 ≤ 𝑋𝑋𝑖𝑖] 
𝐹𝐹(𝑋𝑋𝑖𝑖) = � 𝑓𝑓(𝑋𝑋)

𝑋𝑋≤𝑋𝑋𝑖𝑖

 

0 ≤ 𝐹𝐹(𝑋𝑋𝑖𝑖) ≤ 1 
𝑖𝑖𝑖𝑖 𝑋𝑋0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑋𝑋0 < 𝑋𝑋1 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝐹𝐹(𝑋𝑋0) ≤ 𝐹𝐹(𝑋𝑋1) 

Given the definition of the CDF and since the PDF must sum to 1, if we know the 
probability P[X ≤ Xi] = F(Xi) then P[X > Xi] = 1 – F(Xi).  In the dice example above, 
for example, we know that the probability that X ≤ 5 from the CDF is 10/36 so the 
probability that X > 5 is 1 – 10/36 = 26/36.  We can also use these properties to find 
the probability that X falls in a particular range.  For example: 
Eq. 3:6 

𝑖𝑖𝑖𝑖 𝑋𝑋0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑋𝑋0 < 𝑋𝑋1 𝑡𝑡ℎ𝑒𝑒𝑛𝑛 𝑃𝑃[𝑋𝑋0 < 𝑋𝑋 ≤ 𝑋𝑋1] = 𝐹𝐹(𝑋𝑋1) − 𝐹𝐹(𝑋𝑋0) 
For discrete probability distributions, the distinction between strict inequalities, for 
example, 𝑋𝑋 < 5, versus weak inequalities, for example, 𝑋𝑋 ≤ 5, is important.  A 
problem that asks for a probability that X is less than 7, does not include 7, it is 6 or 
less: 

 
Other examples include: 
 At least 2 but less than 7:  Includes 2, 3, 4, 5, and 6, but does not include 7 
 More than 6:  Includes 7 or more 
For continuous random variables, the same basic properties of the PDF and CDF 
remain but the summations in the definitions above are replaced with integrals to 
measure the area under a continuous function.  For example: 
Eq. 3:7 

𝐸𝐸(𝑋𝑋) = �𝑋𝑋𝑋𝑋(𝑋𝑋)𝑑𝑑𝑑𝑑 = 𝜇𝜇 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) = 𝐸𝐸(𝑋𝑋 − 𝜇𝜇)2 = �(𝑋𝑋 − 𝜇𝜇)2𝑓𝑓(𝑋𝑋)𝑑𝑑𝑑𝑑 = 𝜎𝜎2 
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With a continuous random variable, the probability that the variable takes on any 
specific value technically devolves to zero: it is impossible to know whether a 
variable is arbitrarily close to some specific value or equal to that value.  As a result, 
there is no real distinction between strict and weak inequalities with continuous 
random variables. 
The results related to rescaling a random variable by applying a linear function 
adding a constant “a” and multiplying by a constant “b” that we covered previously, 
continue to hold in this context.  For the random variable X and constants, a and b, 
for example: 
Eq. 3:8 

𝐸𝐸(𝑎𝑎 + 𝑏𝑏𝑏𝑏) = 𝑎𝑎 + 𝑏𝑏𝑏𝑏(𝑋𝑋) = 𝑎𝑎 + 𝑏𝑏𝑏𝑏 
𝑉𝑉𝑉𝑉𝑉𝑉(𝑎𝑎 + 𝑏𝑏𝑏𝑏) = 𝑏𝑏2𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) = 𝑏𝑏2𝜎𝜎2 

B. Binomial Distribution 
A Binomial random variable is one that can take on one of only two values:  a 
“success” or a “failure.”  The properties of such a random variable are as follows: 

A fixed number of observations, n; for example, 13 tosses of a coin; 11 cell 
phones taken from a production line. 
Two mutually exclusive and collectively exhaustive categories; “Heads” or 
“tails” on the toss of a coin; “Defective” or “not defective” for a given cell phone; 
Constant probability of “success” for each observation; 
Observations are independent:  the outcome of one observation does not affect 
the outcome of another. 

The form of the Binomial Distribution is derived from the number of possible 
successes that are possible in n independent experiments.  The number of sequences 
with x successes in n independent experiments is given by: 
Eq. 3:9 

𝐶𝐶𝑥𝑥𝑛𝑛 =
𝑛𝑛!

𝑥𝑥! (𝑛𝑛 − 𝑥𝑥)!
 

  Where 𝑛𝑛! = 𝑛𝑛(𝑛𝑛 − 1)(𝑛𝑛 − 2) … ,𝑎𝑎𝑎𝑎𝑎𝑎 0! = 1 
 
Let P be the probability of a success for any single observation.  Then the Probability 
Distribution Function, or PDF, P(x) – the probability of x successes in n trials – for 
the Binomial Distribution is: 
Eq. 3:10 

𝑃𝑃(𝑥𝑥) =
𝑛𝑛!

𝑥𝑥! (𝑛𝑛 − 𝑥𝑥)!
𝑃𝑃𝑥𝑥(1 − 𝑃𝑃)𝑛𝑛−𝑥𝑥 

 
The PDF is also often denoted as f(x). 
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The Cumulative Distribution Function, F(x), is 
Eq. 3:11 

𝐹𝐹(𝑥𝑥0) = 𝑃𝑃[𝑥𝑥 ≤ 𝑥𝑥0] = �
𝑛𝑛!

𝑥𝑥! (𝑛𝑛 − 𝑥𝑥)!
𝑃𝑃𝑥𝑥(1 − 𝑃𝑃)𝑛𝑛−𝑥𝑥

𝑥𝑥0

𝑥𝑥=0

 

 
In Excel, we can use the BINOM.DIST function to handle these calculations: 
 
 =BINOM.DIST(number_s,trials,probability_s,cumulative)   
 
Where “number_s” corresponds to x, “trials” to n, “probability_s” to P, and 
“cumulative” is a True/False so 0 results in the PDF and 1 results in the CDF. 
 
Example Problem: 
Based on Fall 2015 enrollment statistics, 59% of A&M students in the College of 
Liberal Arts are female. 

a. Suppose you select a random sample of 6 Liberal Arts students.  What is the 
probability that 4 of those chosen are female? 

Here the probability of “success” is given as 0.59 
Eq. 3:12 

𝑃𝑃[𝑥𝑥 = 4] =
6!

4! (6 − 4)!
(0.59)4(1− 0.59)(6−4) ≅ 0.3055 

In Excel: =BINOM.DIST(4,6,0.59,0) 
b. Suppose you again select a random sample of 6 Liberal Arts students.  What is 

the probability that 3 or less of those chosen are female? 
Eq. 3:13 

𝑃𝑃[𝑥𝑥 ≤ 3] = �
6!

𝑥𝑥! (6 − 𝑥𝑥)!

3

𝑥𝑥=0

(0.59)𝑥𝑥(1 − 0.59)(6−𝑥𝑥) ≅ 0.4764 

In Excel: =BINOM.DIST(3,6,0.59,1) 
c. Suppose you again select a random sample of 6 Liberal Arts students.  What is 

the probability that 2 or more of those chosen are female? 
 
Eq. 3:14 

𝑃𝑃[𝑥𝑥 ≥ 2] = 1 − 𝑃𝑃[𝑥𝑥 ≤ 1] = 1 −�
6!

𝑥𝑥! (6 − 𝑥𝑥)!

1

𝑥𝑥=0

(0.59)𝑥𝑥(1 − 0.59)(6−𝑥𝑥) ≅ 0.9542 

In Excel: =1-BINOM.DIST(1,6,0.59,1) 
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C. Poisson Distribution 
The Poisson probability distribution can be used the model the number of 
occurrences (or successes) of a certain event in a given continuous interval such as 
time, spatial area, or length. 
 The number of trucks arriving at a warehouse in a given week. 
 The number of failures in a computer system in a given day. 
 The number of defects in a large roll of sheet metal. 
 The number of customers to arrive at a coffee bar in a given time interval. 
The assumptions of the Poisson distribution are as follows: 

Assume that an interval is divided into a large number of equal subintervals 
so that the probability of the occurrence of an event in any subinterval is 
small. 
The probability of the occurrence of an event is constant for all subintervals. 
There can be no more than one occurrence in each subinterval. 
Occurrences are independent – an occurrence in one subinterval does not have 
an effect on the probability of an occurrence in another subinterval. 

The random variable X follows the Poisson distribution if it has the following 
probability distribution: 
Error! Bookmark not defined. Eq. 3:15 

𝑃𝑃(𝑥𝑥) =
𝑒𝑒−𝜆𝜆𝜆𝜆𝑥𝑥

𝑥𝑥!
 𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 = 0, 1, 2, … 

Where: 
 P(x) = the probability of x successes over a given time or space given λ. 
 λ = the mean (or expected) number of successes per time or space unit, λ>0. 
 e = 2.71828 (the base for natural logarithms). 
In Excel, we can use the POISSON.DIST function: 
 
 =POISSON.DIST(x,mean,cumulative) 
 
Where “x” is as used above, “mean” is for λ, and “cumulative” is a True/False so 0 
gives the PDF and 1 gives the CDF. 
 

Example Problem: 
Suppose customers arrive at the Evan’s Library Starbucks® at an average of 4 every 
five minutes.  Assume that arrivals are independent with a constant arrival rate, 
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and that arrivals follow the Poisson distribution, with X denoting the number of 
arrivals in a given five-minute period and mean λ = 4. 

a) Find the probability that 2 or fewer customers arrive in a five minute period. 
The probability that X is 2 or less, P(X≤2) = P(X=0) + P(X=1) + P(X=2).  With λ = 4, 
then 

𝑃𝑃(𝑋𝑋 = 0) =
𝑒𝑒−440

0!
≅ 0.0183 

𝑃𝑃(𝑋𝑋 = 1) =
𝑒𝑒−441

1!
≅ 0.0733 

𝑃𝑃(𝑋𝑋 = 2) =
𝑒𝑒−442

2!
≅ 0.1465 

So P(X≤2) = 0.0183 + 0.0733 + 0.1465 = 0.2381 
In Excel: =POISSON.DIST(2,4,1) 

b) Find the probability that more than 3 customers arrive in a five minute 
period. 

The probability that X is more than 3, P(X>3) = 1 – P(X≤3).  We found P(X≤2) in part 
a, above, and 

𝑃𝑃(𝑋𝑋 = 3) =
𝑒𝑒−443

3!
≅ 0.1954 

So P(X>3) = 1 – P(X≤3) = 1 – (0.0183 + 0.0733 + 0.1465 + 0.1954) = 0.5665 
In Excel: =1 – POISSON.DIST(3,4,1) 
 

D. Hypergeometric Distribution 
The Binomial distribution discussed above assumes that items are drawn 
independently with the probability of selecting any item being constant.  In practice, 
these assumptions can be met if a small sample is drawn from a large population.  
There are many applied problems, however, that posit the selection of a group of 
items from a relatively small population.  Drawing from a small population is a 
situation of sampling without replacement.  This implies that the probability of 
selection changes after each succeeding selection. 
Suppose as random sample of n objects is drawn from a group of N objects, S of 
which are successes.  The distribution of the number of successes, X, in the sample 
follows the Hypergeometric distribution if its probability distribution is given by: 
Eq. 3:16 



ECONOMETRICS 461 | LECTURE OUTLINE  SECTION 3 
 

CRAIG SCHULMAN  |  TEXAS A&M UNIVERSITY  |  DEPARTMENT OF ECONOMICS   
 

40 

𝑃𝑃(𝑥𝑥) =
𝐶𝐶𝑥𝑥𝑆𝑆𝐶𝐶𝑛𝑛−𝑥𝑥𝑁𝑁−𝑆𝑆

𝐶𝐶𝑛𝑛𝑁𝑁
=

𝑆𝑆!
𝑥𝑥! (𝑆𝑆 − 𝑥𝑥)! × (𝑁𝑁 − 𝑆𝑆)!

(𝑛𝑛 − 𝑥𝑥)! (𝑁𝑁 − 𝑆𝑆 − 𝑛𝑛 + 𝑥𝑥)!
𝑁𝑁!

𝑛𝑛! (𝑁𝑁 − 𝑛𝑛)!

 

Where x can take on integer values from the larger of 0 and [n – (N – S)] and the 
smaller of n and S. 
In Excel, we can use HYPGEOM.DIST(x,n,S,N,cumulative) 
 

Example problem: 
A financial analyst is given a list of 14 corporate bonds.  Out of this list, 5 of the 
bonds would subsequently be downgraded.  Suppose the analyst randomly selected 3 
bonds from the list.  What is the probability that at least 2 of the bonds chosen by 
the analyst were among those to be downgraded? 
 Here, the population size N=14, the number of success in the population S=5, and 
the sample size n=3.  We want P(X≥2) = 1 – P(X≤1) = 1 – P(X=0) – P(X=1): 

𝑃𝑃(𝑥𝑥 = 0) =

5!
0! (5 − 0)! × (14 − 5)!

(3 − 0)! (14 − 5 − 3 + 0)!
14!

3! (14 − 3)!

≅ 0.2308 

𝑃𝑃(𝑥𝑥 = 1) =

5!
1! (5 − 1)! × (14 − 5)!

(3 − 1)! (14 − 5 − 3 + 1)!
14!

3! (14 − 3)!

≅ 0.4945 

So, P(X≥2) = 1 – 0.2308 – 0.4945 = 0.2747 
In Excel: =1 – HYPGEOM.DIST(1,3,4,14,1) 
 

E. Exponential Distribution 
The Binomial, Poisson, and Hypergeometric distributions are discrete distributions 
in that outcomes are countable (even though they by infinitely countable such as the 
number of grains of sand in a beach). The Exponential Distribution Function is a 
continuous distribution in that outcomes can take on any value greater than zero.  It 
can be used to model the length of time between occurrences of an event. 

Time between trucks arriving at a warehouse. 
Time between customers calling a helpline. 

 
An Exponential random variable T (t>0) has a probability distribution function, f(t) 
as follows: 
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Eq. 3:17 

𝑓𝑓(𝑡𝑡) = 𝜆𝜆𝑒𝑒−𝜆𝜆𝜆𝜆 
Where: 

λ is the mean number of occurrences per unit t (a time dimension or space 
dimension) 

t is the number of units (time or space) 
e is the nature number = 2.71828 … 
The mean number of units per occurrence is given by 1/λ 

Recall from above that with continuous random variables, the probability that the 
variable takes on any specific value devolves to zero.  Thus, in terms of statements of 
probability for a continuous random variable, we are only interested in ranges.  For 
example, the probability the 𝑡𝑡 < 5 or the probability that 3 < 𝑡𝑡 < 5.  Moreover, 
because t is continuous, we can ignore the distinction between strict and weak 
inequalities: 𝑃𝑃[𝑡𝑡 < 5] is the same as 𝑃𝑃[𝑡𝑡 ≤ 5].  Probabilities related to ranges of a 
random variable are addressed with the Cumulative Distribution Function (CDF). 
The Cumulative Distribution Function F(t) for the exponential distribution is given 
by: 
Eq. 3:18 

𝐹𝐹(𝑡𝑡0) = 𝑃𝑃[𝑡𝑡 ≤ 𝑡𝑡0] = 1 − 𝑒𝑒−𝜆𝜆𝑡𝑡0 , 𝑡𝑡 > 0 
 

Example Problem: 
For Cheryl’s Burger-Max restaurant, assume customer arrivals during the “lunch 
rush” follow the exponential distribution and that, on average, there are 45 customer 
arrivals per hour. 

a) What is the probability that more than 2 minutes will elapse between 
customer arrivals? 

Here λ=45 and t is measured in hours, so 2 minutes is (2/60) hours. 

𝑃𝑃[𝑡𝑡 > 2] = 1 − 𝑃𝑃[𝑡𝑡 ≤ 2] = 1 − �1 − 𝑒𝑒−(45)� 260�� = 1 − 0.7779 = 0.2231 

In Excel: =1 – EXPON.DIST((2/60),45,1) 
b) What is the probability that 3 minutes or less will elapse between customer 

arrivals? 
𝑃𝑃[𝑡𝑡 ≤ 3] = 1 − 𝑒𝑒(−45)� 360� = 0.8946 

In Excel: =EXPON.DIST((3/60),45,1) 
c) What is the probability that between 1.5 minutes and 2.5 minutes will elapse 

between customer arrivals? 
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𝑃𝑃[𝑡𝑡 ≤ 2.5] − 𝑃𝑃[𝑡𝑡 ≤ 1.5] = �1 − 𝑒𝑒−(45)�2.5
60�� − �1 − 𝑒𝑒−(45)�1.5

60�� = 

𝑃𝑃[𝑡𝑡 ≤ 2.5] − 𝑃𝑃[𝑡𝑡 ≤ 1.5] = 𝑒𝑒−(45)(1.5
60) − 𝑒𝑒−(45)�2.5

60� = 0.1713 
In Excel:  =EXPON.DIST((2.5/60),45,1) – EXPON.DIST((1.5/60),45,1) 
 

F. The Normal Distribution 
The Normal Probability distribution is a symmetric bell-shaped distribution that is 
widely observed in nature and economics.  A continuous random variable X with 
mean (expected value) µ and variance σ2 follows the normal probability distribution 
if the PDF of X has the following mathematical form: 
Eq. 3:19 

𝑓𝑓(𝑋𝑋) =
1

√2𝜋𝜋𝜎𝜎2
𝑒𝑒−

(𝑋𝑋−𝜇𝜇)2
2𝜎𝜎2  

And is denoted X~N(µ, σ2).  Because of the mathematical form of the distribution, 
the integration required to derive the mean and variance cannot be directly solved, it 
must be computed numerically for different specific values of µ and σ2.  However, 
because of the properties of linear functions of a random variable, any Normal 
random variable X can be standardized as its Z-score to get a Normal variable with 
a mean of zero and a standard deviation of 1.  Thus, if X~N(µ, σ2), then: 
Eq. 3:20 

𝑍𝑍 =
𝑋𝑋 − 𝜇𝜇
𝜎𝜎

~𝑁𝑁(0, 1) 

(Apply the formulas in Eq. 3.8 above with a=−µ/σ and b=1/σ to show this.)  So instead 
of having to compute probabilities for every value of µ and σ2, we can transform 
values of X into Z-scores and get the same probabilities from this standardized 
distribution.  The PDF of the Standard Normal has the familiar symmetric bell-
shaped distribution as shown in the following chart.  The CDF is the area under the 
curve. 
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The probabilities for the Standard Normal CDF have been tabulated and are 
attached at the end of these notes.  However, one of the benefits of modern 
computing is that almost all statistics software, including Excel, has algorithms for 
computing probabilities for the Normal Distribution.   
Given the properties of the PDF and CDF above, for a given value of X, X0, we 
calculate 𝑍𝑍0 = 𝑋𝑋0−𝜇𝜇

𝜎𝜎
, and: 

Eq. 3:21 

𝑃𝑃[𝑋𝑋 ≤ 𝑋𝑋0] = 𝑃𝑃[𝑍𝑍 ≤ 𝑍𝑍0] = 𝐹𝐹(𝑍𝑍0) 
𝑃𝑃[𝑋𝑋0 ≤ 𝑋𝑋 ≤ 𝑋𝑋1] = 𝑃𝑃[𝑍𝑍0 ≤ 𝑍𝑍 ≤ 𝑍𝑍1] = 𝐹𝐹(𝑍𝑍1) − 𝐹𝐹(𝑍𝑍0) 

 
In Excel, we can use =NORM.S.DIST(Z,1) to calculate probabilities for a given value 
of Z (again, the “1” tells Excel to use the cumulative distribution or CDF). 
In addition, we can use =NORM.S.INV(P) in Excel to calculate Z for a given 
probability P. 

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

Standard Normal PDF
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-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

Standard Normal Probability Plot

For a given value of Z = Z0, the probability that 
Z ≤ Z0 is the area under the Standard Normal 
probability curve to the left of Z0

Z0

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

Z

Standard Normal Probability Plot

Z1

Z0
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Additionally, because the Normal distribution is symmetric: 
Eq. 3:22 

𝑃𝑃[𝑍𝑍 ≤ −𝑍𝑍0] = 𝐹𝐹(−𝑍𝑍0) = 1 − 𝐹𝐹(𝑍𝑍0) = 1 − 𝑃𝑃[𝑍𝑍 ≤ 𝑍𝑍0] 
𝑃𝑃[𝑍𝑍 ≥ 𝑍𝑍0] = 1 − 𝑃𝑃[𝑍𝑍 ≤ 𝑍𝑍0] 

 
For example, suppose X is distributed as a Normal random variable with µ = 10 and 
σ2 = 4 so σ = 2;  X~N(10, 4).  Then to get the probability P[X ≤ 13.06]: 
Eq. 3:23 

𝑍𝑍13 =
13.06 − 10

2
= 1.53 

In the attached table of Standard Normal probabilities, the first column is the value 
of Z to one decimal place and the body of the table shows the probabilities for 
successive values of the second decimal place of Z.  For this example, go down to the 
Z value of 1.5 and the 0.03 column tells us that P[X ≤ 13.06] = P[Z ≤ 1.53] = 0.9370.  
Alternatively, in Excel: =NORM.S.DIST(1.53,1) would give the same result. 
Because of symmetry, this also tells us that: 
Eq. 3:24 

P[X ≥  13.06] = P[Z ≥ 1.53] = 1 –  P[Z ≤  1.53] = 1 − 0.9370 = 0.0630 
Similarly, to find P[X ≤ 7.5], calculate Z7.5 = –1.25 and 
Eq. 3:25 

𝑃𝑃[𝑍𝑍 ≤ −1.25] = 1 − 𝑃𝑃[𝑍𝑍 ≤ 1.25] = 1 − 0.8944 = 0.1056 
You can verify this in Excel in that: 
 NORM.S.DIST(-1.25,1) = 1 – NORM.S.DIST(1.25,1) 
Note also that symmetry implies that P[Z ≥ –1.25] = P[Z ≤ 1.25] = 0.8944.  
This type of problem can also be worked the other direction in that given a particular 
probability you could find the value of X above, below, of in an interval consistent 

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

Standard Normal Probability Plot

Z0

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

Z

Standard Normal Probability Plot

Probability under the Normal 
Curve for Z > 1.645 = 0.05

Probability under the Normal 
Curve for Z < -1.645 = 0.05
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with that probability.  For example, given X~N(10, 4), (that is, X is distributed as a 
Normal random variable with mean 𝜇𝜇 = 4, and variance 𝜎𝜎2 = 4) you are told that the 
probability is 0.2 that X is greater than some number k.  Thus, we want to find the 
number k such that: 
Eq. 3:26 

𝑃𝑃[𝑋𝑋 > 𝑘𝑘] = 0.2 

 
Because of symmetry, this information tells us that the probability that X is less 
than k is 1 – 0.2 = 0.8.  In Excel, use NORM.S.INV(0.8) to find 𝑍𝑍 ≅ 0.8416.  Then 
Eq. 3:27 

𝑍𝑍 = 0.8416 =
𝑘𝑘 − 𝜇𝜇
𝜎𝜎

=
k − 10

2
 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘 ≅ 11.6832 
 

G. Normal Approximation to the Binomial Distribution 
As discussed above, a Binomial random variable is one that can only take on one of 
two values:  for example, the flip of a coin coming up heads or tails, or among a 
sample of people whether an individual is male or female.  One of the two events is 
defined as a “success” and for the given population, a success will occur with 
probability P.  When sampling from a Binomial distribution, if the sample is “large” 
enough (the sample size n is such that nP(1 – P)>5) then the distribution of the total 
number of successes in the sample, X, is approximately Normal with: 
Eq. 3:28 

𝐸𝐸(𝑋𝑋) = 𝜇𝜇 = 𝑛𝑛𝑛𝑛 
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) = 𝜎𝜎2 = 𝑛𝑛𝑛𝑛(1 − 𝑃𝑃) 

Probability equals 0.2

µ k
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We can make statements in probability about X by calculating Z-scores using nP for 
µ and nP(1 – P) for σ2.  Similarly, dividing through the equations above by the 
sample size n, we can make statements in probability about the proportion of 
successes, which is approximately Normal with: 
Eq. 3:29 

𝐸𝐸 �
𝑋𝑋
𝑛𝑛
� = 𝜇𝜇 = 𝑃𝑃 

𝑉𝑉𝑉𝑉𝑉𝑉 �
𝑋𝑋
𝑛𝑛
� = 𝜎𝜎2 =

𝑃𝑃(1 − 𝑃𝑃)
𝑛𝑛

 

So that we calculate Z-scores using P for µ and 𝑃𝑃(1−𝑃𝑃)
𝑛𝑛

 for σ2. 

H. Sampling Distributions 
The foregoing discussion relates to making probability statements about specific 
values of a Normal random variable.  To make probability statements about sample 
statistics, such as the sample mean 𝑋𝑋�, we need to know the expected value (mean) 
and variance (and thus the standard deviation) of that particular sample statistic.  
For a random sample of size n for the variable X~N(µ, σ2) where the observed values 
of X are assumed to be independent from one another, the sample mean has the 
following distribution properties: 
Eq. 3:30 

𝐸𝐸(𝑋𝑋�) = 𝐸𝐸 �
∑𝑋𝑋𝑖𝑖
𝑛𝑛
� = �

∑𝐸𝐸(𝑋𝑋𝑖𝑖)
𝑛𝑛

� =
𝑛𝑛𝑛𝑛
𝑛𝑛

= 𝜇𝜇 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋�) = 𝑉𝑉𝑉𝑉𝑉𝑉 �
∑𝑋𝑋𝑖𝑖
𝑛𝑛
� = �

∑𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑖𝑖)
𝑛𝑛2

� =
𝑛𝑛𝜎𝜎2

𝑛𝑛2
=
𝜎𝜎2

𝑛𝑛
 

Given these properties, we can make statements in probability about the sample 
mean 𝑋𝑋� by calculating Z-scores using the population mean µ and the standard 
deviation of the sample mean 𝜎𝜎

√𝑛𝑛
.  For example, suppose you are told the random 

variable X follows a Normal distribution with mean µ=15 and variance σ2=400.  A 
random sample for X of size n=16 is obtained.  What is the probability that 𝑋𝑋� ≤ 17? 
Eq. 3:31 

𝑍𝑍 =
17 − 15

�400/16
= 0.4 

From the Normal probability table, P[Z ≤ 0.4] = 0.6554. 
To get the sampling distribution of the sample variance S2, we need to introduce a 
probability distribution related to the Normal.  If Z~N(0, 1) then Z2 is distributed as 
a Chi-Squared random variable with 1 degree of freedom.  This is denoted 𝜒𝜒(1)

2 .  If Z1, 
Z2, …, Zn are independently distributed N(0, 1) then ∑𝑍𝑍𝑖𝑖2 ~𝜒𝜒(𝑛𝑛)

2  (Chi-Squared with n 
degrees of freedom).  The Chi-Squared distribution is strictly positive (because it is 
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based on Z2), it is not symmetric, and it changes shape based on the degrees of 
freedom: 

 
Given a random variable 𝑋𝑋~𝑁𝑁(𝜇𝜇,𝜎𝜎2), the sampling distribution of the sample 
variance 𝑆𝑆2 based on a sample of n observations has the following distribution 
properties: 
Eq. 3:32 

𝐸𝐸(𝑆𝑆2) = 𝜎𝜎2 
(𝑛𝑛 − 1)𝑆𝑆2

𝜎𝜎2
~𝜒𝜒(𝑛𝑛−1)

2  

That is, on average, the sample variance 𝑆𝑆2 is equal to the true population variance 
𝜎𝜎2, and the ratio (𝑛𝑛−1)𝑆𝑆2

𝜎𝜎2
 is distributed as a Chi-Square random variable with (𝑛𝑛 − 1) 

degrees of freedom. 
For example, suppose you are told that the random variable X follows the Normal 
distribution with a standard deviation 𝜎𝜎 = 20.  A random sample of 𝑛𝑛 = 35 
observations is obtained.  What is the probability of finding a sample variance 𝑆𝑆2 less 
than 300? 
Given the sampling distribution of the sample variance, calculate: 
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Eq. 3:33 

𝜒𝜒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 =
(𝑛𝑛 − 1)𝑆𝑆2

𝜎𝜎2
=

(35 − 1) × 300
202

= 25.5 

Next, in Excel use =CHISQ.DIST(25.5,35-1,1) to get ≅ 0.1471.  Because all 
probabilities must sum to 1, the probability that 𝑆𝑆2 > 300 𝑖𝑖𝑖𝑖 1 − 0.1471 = 0.8529. 
To use the Normal approximation for the Binomial distribution to make probability 
statements about a sample proportion 𝑃𝑃� (X “successes” in a sample of size n gives a 
sample proportion 𝑃𝑃� = 𝑋𝑋/𝑛𝑛), the mean and variance are the same as those given in 
Eq. 3:29, above, but we use the sample proportion 𝑃𝑃� for the mean and in the 
calculation of the standard deviation.  For example, suppose you are told that out of 
a sample of 500 voters, 52% (𝑃𝑃�) say they intend to vote for Candidate M.  What is the 
probability that Candidate M gets 50% or more of the votes? 
Eq. 3:34 

𝑍𝑍 =
0.50 − 0.52

�0.52(1 − 0.52)
500

= −0.895 

Since the Z is negative but we want to know the probability that the proportion is 
greater than 50%, we get the answer from P[Z ≤ 0.895] ≈ 0.815. 
In the preceding discussion of the Normal Distribution, I have tried to be consistent 
in using weak inequalities (≤) in the probability statements.  However, with 
continuous probability distributions, there is no real difference between strict and 
weak inequalities.  For a continuous distribution such as the Normal, the probability 
of any specific value of the random variable is technically zero – think of the 
distinction of a variable being equal to 1.5 versus 1.5000001 or 1.49999999.  Thus, 
statements such as P[Z ≤ 0.895] and P[Z < 0.895] are essentially the same. 

I. Normal Probability Plots 
The Normal Probability Distribution is the most widely used probability model in 
statistics.  In practice however, it is not uncommon to deal with random variables 
whose behavior is quite different than the Normal model.  If we apply the Normal 
Probability model is such a situation, it will most likely lead to incorrect inferences 
about the nature of the population.  Thus, we need some method to assess whether 
the variable we are analyzing approximately follows the Normal Distribution in its 
behavior.  The chart below shows a Normal Probability Plot for 150 observations on 
a random variable known to Normal. 
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The vertical axis in this chart is the value of the Standard Normal CDF for each 
observation in the data.  Constructing this type of chart in Excel is quite 
straightforward.  First, sort the data from smallest to largest and calculate a Z-Score 
for each observation by subtracting the sample mean and dividing by the sample 
standard deviation.  Next use the NORM.S.DIST(Z-Score,1) function to get the value 
of the Standard Normal CDF for each observation.  Finally, plot these results 
against the (sorted) observation number.  If the data are close to Normal, the plot 
will appear similar to that above with the observations falling approximately along a 
straight line.  By way of contrast, the County Labor Force data discussed in Section 
1 has a distribution that is skewed sharply to the right.  The Normal Probability Plot 
for this variable is as follows. 
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J. Example Problems 
Let the random variable X follow a Normal distribution with mean μ = 50 and 
variance σ2 = 64. 

1. Find the probability that X is greater than 60. 

Answer:   Z-Score ==> 𝑍𝑍𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 60−50
8

= 1.25 

P[Z>Z-Score] ==>1 − 𝑃𝑃[𝑍𝑍 < 1.25] ≅ 0.1056 
2. Find the probability that X is greater than 35 and less than 62. 

Answer:  Z-Score1 for X greater than 35 ==> 𝑍𝑍𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1 = 35−50
8

= −1.875 

Z-Score2 for X less than 62 ==> 𝑍𝑍𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜2 = 62−50
8

= 1.5 

P[Z-Score1 < Z < Z-Score2] ==>𝑃𝑃[𝑍𝑍 < 1.5] − 𝑃𝑃[𝑍𝑍 < −1.875] ≅ 0.9028 
3. Find the Probability that X is less than 55. 

Answer:  Z-Score ==> 𝑍𝑍𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 55−50
8

= 0.63 

P[Z<Z-Score] ==>𝑃𝑃[𝑍𝑍 < 0.63] ≅ 0.73 
4. The probability is 0.2 that X is greater than what number? 

Answer:  Z-Score ==>𝑍𝑍𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑃𝑃[𝑍𝑍 < 𝑍𝑍𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆] = 0.80 𝑍𝑍𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ≅ 0.8416 

Solve for X =>𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑋𝑋−50
8

= 0.8416 𝑓𝑓𝑓𝑓𝑓𝑓 𝑋𝑋 ≅ 56.7330 

5. The probability is 0.05 that X is outside a symmetric interval about the mean 
between what number K from μ ± K? 

Answer:  Z-Score ==>𝑍𝑍𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑃𝑃[𝑍𝑍 < 𝑍𝑍𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆] = 0.975 𝑍𝑍𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ≅ 1.96 

Solve for K ==> 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝜇𝜇+𝐾𝐾−𝜇𝜇
𝜎𝜎

= 𝐾𝐾
8

= 1.96 𝑓𝑓𝑓𝑓𝑓𝑓 𝐾𝐾 ≅ 15.6797 

It is known that 10% of all items produced by a particular manufacturing process are 
defective.  From the very large output of a single day, 400 items are selected at 
random. 

6. What is the probability that at least 35 of the 400 selected items are defective 
(the number of defectives items X is greater than or equal to 35)? 

Answer:  Expected mean defective items? ==>𝐸𝐸(𝑋𝑋) = 𝑃𝑃 × 𝑛𝑛 = 0.1 × 400 = 40 
Variance of the number of defective items? ==>𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) = 𝑛𝑛 × 𝑃𝑃 × (1 − 𝑃𝑃) = 36 

Z-Score ==>𝑍𝑍𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 35−40
6

≅ −0.8333 

P[Z>Z-Score] ==>1 − 𝑃𝑃[𝑍𝑍 < −0.8333] ≅ 0.7977 
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7. What is the probability that between 40 and 50 of the selected items are 

defective? 

Answer:  Z-Score1 for X greater than 40 ==> 𝑍𝑍𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1 = 40−40
6

= 0 

Z-Score2 for X less than 50 ==> 𝑍𝑍𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2 = 50−40
6

≅ 1.6667 

P[Z-Score1 < Z < Z-Score2] ==> 𝑃𝑃[𝑍𝑍 < 1.667] − 𝑃𝑃[𝑍𝑍 < 0] ≅ 0.4522 
 

Let the random variable X follow a Normal distribution with mean μ = 200 and 
variance σ2 = 625.  A random sample of n = 50 is obtained.   

8. What are the mean and variance of the sample mean, 𝑋𝑋�? 

Answer:  Mean ==>𝐸𝐸(𝑋𝑋�) = 𝜇𝜇 = 200  Variance ==>𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋�) = 𝜎𝜎2

𝑛𝑛
= 12.5 

9. What is the probability that 𝑋𝑋� is greater than 204? 

Answer:  Z-Score for 𝑋𝑋� greater than 204 ==>𝑍𝑍𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 204−200
�625/50

≅ 1.1314 

P[Z > Z-Score] ==>1 − 𝑃𝑃[𝑍𝑍 < 1.1314] ≅ 0.1289 
10. What is the probability that 𝑋𝑋� is between 198 and 211? 

Answer:  Z-Score1 for 𝑋𝑋� greater than 198 ==>𝑍𝑍𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1 = 198−200
�625/50

≅ −0.5657 

Z-Score2 for 𝑋𝑋� less than 211 ==>𝑍𝑍𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2 = 211−200
�625/50

≅ 3.1127 

P[Z-Score1 < Z < Z-Score2] ==> 𝑃𝑃[𝑍𝑍 < 3.1127] − 𝑃𝑃[𝑍𝑍 < −0.5657] ≅ 0.7133 
11. What is the probability that the sample variance 𝑆𝑆2 < 500? 

Answer:  Calculate 𝜒𝜒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 = (49)(300)
625

= 39.2.  In Excel, use =CHISQ.DIST(39.2,49,1) to 
get ~0.1596 

12. What is the probability that the sample variance 𝑆𝑆2 > 800? 

Answer:  Calculate 𝜒𝜒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 = (49)(800)
625

= 62.72. In Excel, use =1–CHISQ.DIST(62.72,49,1) 
to get ~0.0901. 

13. What is the probability that the sample variance is between 500 and 800? 

Answer:  Given the values for 𝜒𝜒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 = (49)(300)
625

= 39.2, and 𝜒𝜒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 = (49)(800)
625

= 62.72, from 
above, in Excel, use =CHISQ.DIST(62.72,49,1)–CHISQ.DIST(39.2,49,1) to get 
~0.7504 
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The patient mix for a large group of hospitals is such that 46% of the patients have 
some type of government sponsored health insurance.  A random sample of 200 
patients is obtained. 

14. What are the mean and variance of the sample proportion of patients with 
government sponsored health insurance P-Hat? 

Answer:  Mean ==>𝐸𝐸�𝑃𝑃�� = 𝑃𝑃 = 0.46  Variance ==>𝑉𝑉𝑉𝑉𝑉𝑉�𝑃𝑃�� = 𝑃𝑃(1−𝑃𝑃)
𝑛𝑛

≅ 0.001242 

15. What is the probability that the sample proportion of patients with 
government sponsored health insurance P-Hat is greater than 50% 

Answer: Z-Score for P-Hat greater than 50% ==>𝑍𝑍𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 0.5−0.46
√0.001242

≅ 1.135 

P[Z > Z-Score] ==>1 − 𝑃𝑃[𝑍𝑍 < 1.135] ≅ 0.1282 
16. What is the probability that the sample proportion of patients with 

government sponsored health insurance P-Hat is between 42% and 48%? 

Answer: Z-Score1 for P-Hat greater than 42% ==>𝑍𝑍𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1 = 0.42−0.46
√0.001242

≅ −1.135 

Z-Score2 for p-Hat less than 48%==>𝑍𝑍𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 0.48−0.46
√0.001242

≅ 0.5675 

P[Z-Score1 < Z < Z-Score2] ==> 𝑃𝑃[𝑍𝑍 < 0.5675] − 𝑃𝑃[𝑍𝑍 < −1.135] ≅ 0.5866 
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Section 4.  ESTIMATION AND HYPOTHESIS TESTING 

A. Sampling Distributions 
We introduced the notion of Sampling Distributions in Section 3, above, but the topic 
bears repeating.  Given a random sample of a random variable X that has a constant 
mean µ and constant variance σ2 (denoted X~(µ, σ2)) the Sampling Distribution is 
the PDF of the various sample statistics such as the sample mean, sample variance, 
and sample proportion.  Given the random variable X~(µ, σ2), the sample mean 𝑋𝑋� has 
the following distribution properties: 
Eq. 4:1 

𝑋𝑋� =
∑𝑋𝑋𝑖𝑖
𝑛𝑛

 
𝐸𝐸(𝑋𝑋�) = 𝜇𝜇 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋�) =
𝜎𝜎2

𝑛𝑛
 

𝑍𝑍 =
𝑋𝑋� − 𝜇𝜇
�𝜎𝜎2/𝑛𝑛

=
𝑋𝑋� − 𝜇𝜇
𝜎𝜎/√𝑛𝑛

~(0, 1) 

The Central Limit Theorem states that for a random variable X~(µ, σ2), as the 
sample size n becomes “large” then Z as defined above is approximately Normally 
distributed.  Thus, for any random variable with a constant mean and variance, we 
can make statements in probability about the sample mean based on the Normal 
probability distribution when we have a sufficiently large sample (usually, 20 or 
more observations is a sufficiently large sample). 
If X is a binomial random variable that takes on a value of one (a “success”) with 
probability P and is zero with probability (1 – P), the sample proportion 𝑃𝑃� = ∑𝑋𝑋 /𝑛𝑛 
has the following distribution properties: 
Eq. 4:2 

𝐸𝐸�𝑃𝑃�� = 𝑃𝑃 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑃𝑃�� =
𝑃𝑃(1 − 𝑃𝑃)

𝑛𝑛
 

𝑍𝑍 =
𝑃𝑃� − 𝑃𝑃

�𝑃𝑃(1 − 𝑃𝑃)/𝑛𝑛
~𝑁𝑁(0, 1) 𝑖𝑖𝑖𝑖 𝑛𝑛 𝑖𝑖𝑖𝑖 "𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙" 

 
To get the sampling distribution of the sample variance S2, we need to introduce a 
probability distribution related to the Normal.  If Z~N(0, 1) then Z2 is distributed as 
a Chi-Squared random variable with 1 degree of freedom.  This is denoted 𝜒𝜒(1)

2 .  If Z1, 
Z2, …, Zn are independently distributed N(0, 1) then ∑𝑍𝑍𝑖𝑖2 ~𝜒𝜒(𝑛𝑛)

2  (Chi-Squared with n 
degrees of freedom).  The sample variance then has the following distribution 
properties: 
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Eq. 4:3 

𝐸𝐸(𝑆𝑆2) = 𝜎𝜎2 
(𝑛𝑛 − 1)𝑆𝑆2

𝜎𝜎2
~𝜒𝜒(𝑛𝑛−1)

2  

The Chi-Square distribution is not symmetric so you must be careful to identify 
whether you are looking at lower tail versus upper tail probabilities.  A copy of the 
Chi-Square probability tables are attached at the end of these notes.  In Excel, the 
CHISQ.DIST(stat, degrees-of-freedom, cumulative) returns the “left tail” probability 
(the probability of finding a value less than “stat”) under the Chi-Square distribution 
if cumulative is set to yes (1).  CHISQ.DIST.RT returns the “right tail” probability. 

B. Confidence Intervals:  Single Sample 
The forgoing distribution properties allow us to make probability statements about 
the various sample statistics similar to those we constructed for Normal random 
variables.  In particular, we can construct Confidence Intervals for the various 
sample statistics.  For the random variable X~(µ,σ2) where the population variance 
σ2 is known, given a sufficiently large sample of size n, we can construct the Z-score 
for the sample mean: 
Eq. 4:4 

𝑍𝑍 =
𝑋𝑋� − 𝜇𝜇
𝜎𝜎/√𝑛𝑛

~𝑁𝑁(0, 1) 

Now if we choose a Confidence Level, (1 – α) where α is the chosen significance 
level between zero and one:  for example, for a 90% confidence level, α=0.1 or 10%.  
Next, split α in half so that there is a probability of α/2 in each tail of the Normal 
distribution.  Finding the Z value associated with α/2 then allows us to set up the 
following: 
Eq. 4:5 

𝑃𝑃 �−𝑍𝑍𝛼𝛼
2
≤ 𝑍𝑍 ≤ 𝑍𝑍𝛼𝛼

2
� = 1 − 𝛼𝛼 

𝑃𝑃 �−𝑍𝑍𝛼𝛼
2
≤
𝑋𝑋� − 𝜇𝜇
𝜎𝜎
√𝑛𝑛

≤ 𝑍𝑍𝛼𝛼
2
� = 1 − 𝛼𝛼 

Rearranging the terms inside the brackets, we can say that there is a probability of 
(1 – α) that the population mean µ is in the interval: 
Eq. 4:6 

𝑋𝑋� −
𝜎𝜎
√𝑛𝑛

𝑍𝑍𝛼𝛼
2
≤ 𝜇𝜇 ≤ 𝑋𝑋� +

𝜎𝜎
√𝑛𝑛

𝑍𝑍𝛼𝛼
2

, 𝑜𝑜𝑜𝑜 

𝜇𝜇 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:  𝑋𝑋� ±
𝜎𝜎
√𝑛𝑛

𝑍𝑍𝛼𝛼
2

,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 

𝑡𝑡ℎ𝑒𝑒 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿:  𝑈𝑈𝑈𝑈𝑈𝑈 = 𝑋𝑋� +
𝜎𝜎
√𝑛𝑛

𝑍𝑍𝛼𝛼
2

, 
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𝑡𝑡ℎ𝑒𝑒 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿:  𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑋𝑋� −
𝜎𝜎
√𝑛𝑛

𝑍𝑍𝛼𝛼
2

,𝑎𝑎𝑎𝑎𝑎𝑎 

𝑡𝑡ℎ𝑒𝑒 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸:  𝑀𝑀𝑀𝑀 =
𝜎𝜎
√𝑛𝑛

𝑍𝑍𝛼𝛼
2
 

For example, suppose the random variable X has a known variance σ2=144.  With a 
random sample of 25 observations, if we wanted to construct of 90% confidence 
interval, we need to find the value of Z such there is 5% in the upper right tail:  
𝑃𝑃 �𝑍𝑍 ≥ 𝑍𝑍𝛼𝛼

2
� = 0.05, or 1 − 𝑃𝑃 �𝑍𝑍 ≤ 𝑍𝑍𝛼𝛼

2
� = 0.95.  From the Normal probability table Zα/2 ≈ 

1.645.  Because of symmetry of the Normal this also tells us that 𝑃𝑃 �𝑍𝑍 ≤ −𝑍𝑍𝛼𝛼
2
� = 0.05.  

Therefore, there is a 90% probability that the population mean is in the interval: 
Eq. 4:7 

𝑋𝑋� ±
12
√25

1.645 

= 𝑋𝑋� ± (2.4)(1.645) 
= 𝑋𝑋� ± 3.948 

If the population variance for our random variable X is unknown, we need to use 
yet another distribution related to the Normal:  the t-distribution.  The t-
distribution is a ratio of a Standard Normal random variable and the square root of 
a Chi-Square random variable and makes use of the sampling distribution of the 
sample variance in Eq. 4:3 above.  Like the Normal distribution, the t-distribution is 
symmetric and gets closer and closer to the Normal as the sample size increases.  
Replacing the population standard deviation σ in our Z-score with the sample 
standard deviation S, we get the tStat: 
Eq. 4:8 

𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑋𝑋� − 𝜇𝜇
𝑆𝑆/√𝑛𝑛

~𝑡𝑡(𝑛𝑛−1) 

A t-distribution with (n-1) degrees of freedom.  The interval for a (1 – α)% confidence 
level is then given by: 
Eq. 4:9 

𝑋𝑋� ±
𝑆𝑆
√𝑛𝑛

𝑡𝑡(𝑛𝑛−1),𝛼𝛼/2 

Thus, we replace the population standard deviation with the sample standard 
deviation and use values out of the table of probabilities for the t-distribution rather 
than the standard Normal distribution.  A copy of the probability tables for the t-
distribution is attached at the end of these notes. 
For the sample proportion from a binomial random variable 𝑃𝑃� (see Eq. 4:2, above) if 
the sample size n is “large” (𝑛𝑛𝑃𝑃��1 − 𝑃𝑃�� > 5)) then the (1 – α)% confidence interval is 
calculated from: 



ECONOMETRICS 461 | LECTURE OUTLINE  SECTION 4 
 

CRAIG SCHULMAN  |  TEXAS A&M UNIVERSITY  |  DEPARTMENT OF ECONOMICS   
 

58 

Eq. 4:10 

𝑃𝑃� ± 𝑍𝑍𝛼𝛼/2�
𝑃𝑃�(1 − 𝑃𝑃�)

𝑛𝑛
 

For a confidence interval of the sample variance, S2, we need the Chi-Square values 
for the Upper tail corresponding to a probability of the (1 – α/2), and the Lower tail 
Chi-Square value corresponding to a probability of α/2.  The confidence interval is 
the calculated from: 
Eq. 4:11 

(𝑛𝑛 − 1)𝑆𝑆2

𝜒𝜒(𝑛𝑛−1),𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
2 ≤ 𝜎𝜎2 ≤

(𝑛𝑛 − 1)𝑆𝑆2

𝜒𝜒(𝑛𝑛−1),𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
2  

Note that the Chi-Square value from the “Upper Tail” will be associated with the 
LCL and the value from the “Lower Tail” will be associated with the UCL. 
 

C. Hypothesis Testing:  One Sample Tests 
The preceding discussion of Confidence Intervals is directly related to formal 
Hypothesis Testing.  The hypothesis to be tested might specify a specific single 
value, “the mean of variable X is 7,” or any other specific value, including zero, for 
example.  Or it could involve the relationship between the sample statistics from two 
(or more) random variables, “the mean for X is twice as large as the mean for Y,” for 
example.  In either case, we start by setting up a Null Hypothesis.  For the specific 
value example, we would state the Null, denoted H0, as: 
Eq. 4:12 

𝐻𝐻0: 𝜇𝜇𝑋𝑋 = 7 
We will then use the same information we used to construct our confidence intervals 
above to reach a conclusion on whether the Reject or Fail to Reject the Null 
Hypothesis (a Null Hypothesis is never “accepted”).  In drawing our conclusion, we 
have to compare our Null to an Alternative Hypothesis, denote HA.  The 
Alternative can be one-sided or two-sided.  Continuing with the specific value 
example: 
Eq. 4:13 

𝑂𝑂𝑂𝑂𝑂𝑂 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴:  𝐻𝐻𝐴𝐴: 𝜇𝜇𝑋𝑋 > 7, 𝑜𝑜𝑜𝑜 𝐻𝐻𝐴𝐴: 𝜇𝜇𝑋𝑋 < 7 
𝑇𝑇𝑇𝑇𝑇𝑇 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴:  𝐻𝐻𝐴𝐴:  𝜇𝜇𝑋𝑋 ≠ 7 

One-sided Alternatives are sometimes termed “directional” hypotheses.  The two-
sided alternative is basically, “the Null Hypothesis is not true.” 
In constructing our confidence intervals, we chose a probability α that defined our 
Confidence Level:  1 – α; α is also often called the “significance level” of the test.  In 
the context of hypothesis testing, the value of α is the probability of Rejecting the 
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Null Hypothesis when in fact the Null is true.  This is called a Type I error and we 
control the probability of a Type I error by choosing the value of α.  If we Fail to 
Reject the Null when in fact the Null is false, this is known as a Type II error and 
has a probability β.  The Power of a test is (1 – β).  There is a tradeoff between the 
significance level of a test and its power, as α gets smaller β will get larger. 

Decision 
States of Nature 

Null Hypothesis is True Null Hypothesis is False 
Fail to Reject H0 Correct Decision 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 1 − 𝛼𝛼 
Type II Error 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝛽𝛽 

Reject H0 Type I Error 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝛼𝛼 

Correct Decision 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 1 − 𝛽𝛽 

 
From the confidence intervals we defined above, we use the same information for 
calculate Z-Statistics or t-Statistics depending on what information is available, that 
I will denote Zcalc and tcalc.  To continue the specific value example, suppose X has a 
known population variance σ2 and the sample size is n.  Then to test 𝐻𝐻0:  𝜇𝜇𝑥𝑥 = 7 
Eq. 4:14 

𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑋𝑋� − 7
𝜎𝜎
√𝑛𝑛

 

To test this hypothesis against the two-sided Alternative 𝐻𝐻𝐴𝐴:  𝜇𝜇𝑋𝑋 ≠ 7, we choose a 
significance level α and compare Zcalc to Zα/2.  Zα/2 is called the “critical” Z.  Our 
decision rule regarding the Null is: 
Eq. 4:15 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐻𝐻0 𝑖𝑖𝑖𝑖 𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > 𝑍𝑍𝛼𝛼
2

 𝑜𝑜𝑜𝑜 𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 < −𝑍𝑍𝛼𝛼
2

 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑡𝑡𝑡𝑡 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑖𝑖𝑖𝑖 − 𝑍𝑍𝛼𝛼
2

< 𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 < 𝑍𝑍𝛼𝛼
2
 

That is, we reject H0 is Zcalc is in “one of the tails” of the Normal distribution.  If we 
have a one-sided alternative, then instead of splitting our significance into two tails, 
we place all the probability in one tail and compare Zcalc to Zα for the Alternative 
𝐻𝐻𝐴𝐴:  𝜇𝜇𝑋𝑋 > 7, and to –Zα for the Alternative 𝐻𝐻𝐴𝐴:  𝜇𝜇𝑋𝑋 < 7.  Our decision rule regarding 
the Null is: 
Eq. 4:16 

𝐹𝐹𝐹𝐹𝐹𝐹 𝐻𝐻𝐴𝐴:  𝜇𝜇𝑋𝑋 > 7,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐻𝐻0 𝑖𝑖𝑖𝑖 𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > 𝑍𝑍𝛼𝛼 , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑡𝑡𝑡𝑡 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 
𝐹𝐹𝐹𝐹𝐹𝐹 𝐻𝐻𝐴𝐴:  𝜇𝜇𝑋𝑋 < 7,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐻𝐻0 𝑖𝑖𝑖𝑖 𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 < −𝑍𝑍𝛼𝛼, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑡𝑡𝑡𝑡 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

 
It bears repeating that this applies to any specific value hypothesis.  Instead of 
comparing Zcalc to a critical Z, Zα or Zα/2, we can rearrange our test statistic to 
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calculate a critical 𝑋𝑋� denoted 𝑋𝑋�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.  To test 𝐻𝐻0:  𝜇𝜇𝑋𝑋 = 𝜇𝜇0, where µ0 is any specific 
value, assuming the variance of X is known, then: 
Eq. 4:17 

𝑓𝑓𝑓𝑓𝑓𝑓 𝐻𝐻𝐴𝐴:  𝜇𝜇𝑋𝑋 > 𝜇𝜇0:   𝑋𝑋�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝜇𝜇0 + 𝑍𝑍𝛼𝛼
𝜎𝜎
√𝑛𝑛

 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐻𝐻0 𝑖𝑖𝑖𝑖 𝑋𝑋� > 𝑋𝑋�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
𝑓𝑓𝑓𝑓𝑓𝑓 𝐻𝐻𝐴𝐴:  𝜇𝜇𝑋𝑋 < 𝜇𝜇0:   𝑋𝑋�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝜇𝜇0 − 𝑍𝑍𝛼𝛼

𝜎𝜎
√𝑛𝑛

 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐻𝐻0 𝑖𝑖𝑖𝑖 𝑋𝑋� < 𝑋𝑋�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
𝑓𝑓𝑓𝑓𝑓𝑓 𝐻𝐻𝐴𝐴:  𝜇𝜇𝑋𝑋 ≠ 𝜇𝜇0:   𝑋𝑋�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝜇𝜇0 ± 𝑍𝑍𝛼𝛼

2

𝜎𝜎
√𝑛𝑛

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐻𝐻0 𝑖𝑖𝑖𝑖 𝑋𝑋� > 𝜇𝜇0 + 𝑍𝑍𝛼𝛼
2

𝜎𝜎
√𝑛𝑛

 , 𝑜𝑜𝑜𝑜 𝑋𝑋� < 𝜇𝜇0 − 𝑍𝑍𝛼𝛼
2

𝜎𝜎
√𝑛𝑛

 

 
Note that with the two-sided alternative there is an “upper” critical value and a 
“lower” critical value. 
Suppose you are given a sample of n=40 observations of the random variable X and 
told that the population variance is known: 𝜎𝜎2 = 30.  Test the hypothesis that the 
population mean is equal to 12 versus the alternative that it is greater than 12:  
𝐻𝐻0:  𝜇𝜇𝑋𝑋 = 12 𝑣𝑣𝑣𝑣.𝐻𝐻𝐴𝐴:  𝜇𝜇𝑋𝑋 > 12, at the α=0.10 level of significance.  Although we are not 
given the value of the sample mean 𝑋𝑋�, we have enough information to calculate the 
critical value 𝑋𝑋�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.  Since this is an “upper” one-sided alternative we find 𝑍𝑍𝛼𝛼 ≈ 1.282, 
and 
Eq. 4:18 

𝑋𝑋�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝜇𝜇0 + 𝑍𝑍𝛼𝛼
𝜎𝜎
√𝑛𝑛

= 12 + 1.282�
30
40

≈ 13.12 

Thus, our decision rule would be to reject the null if the sample mean is greater than 
the critical value: Reject if 𝑋𝑋� > 𝑋𝑋�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 13.12 
Altering the example slightly, suppose you are told the sample mean 𝑋𝑋� = 10.9 and 
are asked to test 𝐻𝐻0:  𝜇𝜇𝑋𝑋 = 12 𝑣𝑣𝑣𝑣.𝐻𝐻𝐴𝐴:  𝜇𝜇𝑋𝑋 < 12, at the α=0.05 level of significance.  With 
this “lower” one-sided alternative, we find −𝑍𝑍𝛼𝛼 ≈ −1.645, and 
Eq. 4:19 

𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
10.9 − 12

�30/40 
≈ −1.27 

Since –1.27 > –1.645, 𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > −𝑍𝑍𝛼𝛼, and we Fail to Reject the null hypothesis. 
For a specific test of a population proportion from a “large” sample of size n, the null 
hypothesis would take the form 𝐻𝐻0:  𝑃𝑃 = 𝑃𝑃0, and given the sample proportion 𝑃𝑃� 
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𝑍𝑍𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑃𝑃� − 𝑃𝑃0

�𝑃𝑃0(1 − 𝑃𝑃0)/𝑛𝑛
 

Note that the variance in the denominator of this statistic is based on the 
hypothesized value of the proportion, P0.  We then compare Zcalc to Zα or –Zα for one-
sided tests, or to ±Zα/2 for a two sided test.  Or, for a given “critical” Zcrit (Zα or Zα/2) we 
can compare 𝑃𝑃� to a critical 𝑃𝑃�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
Eq. 4:20 

𝑃𝑃�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑃𝑃0 ± 𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�
𝑃𝑃0(1 − 𝑃𝑃0)

𝑛𝑛
 

Use the “+” in the above for an upper tailed one-sided test, use the “−” for a lower 
tailed one-sided test, and use both for a two-sided test.  For example, you are told 
that out of a sample of 400 items from a production line, 25 are defective.  Test that 
hypothesis that the population proportion of defective items is 4% against a two-
sided alternative at the α=0.01 level of significance.  The sample proportion 𝑃𝑃� = 400

25
=

0.0625, and 
Eq. 4:21 

𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
0.0625 − 0.04

�(0.04)(0.96)/400
= 2.296 

Since this is a two-sided alternative, we find Z0.005≈2.58 and since 
Eq. 4:22 

−2.58 < 2.29 < 2.58 
We Fail to Reject the Null.  Note that if our significance level had been α=0.05, then 
Zα/2=1.96 and we would have Rejected the null hypothesis. 
As with our Confidence Intervals, the detail of how to calculate the test statistic 
depends on what information is known or must be estimated.  To test the mean of a 
random variable X with an unknown variance, given the sample mean 𝑋𝑋�, the 
sample variance S2, and the sample size n, we calculate a t-statistic, tcalc 
Eq. 4:23 

𝐻𝐻0: 𝜇𝜇𝑋𝑋 = 𝜇𝜇0 

𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑋𝑋� − 𝜇𝜇0
𝑆𝑆/√𝑛𝑛

 

Then compare tcalc to t(n-1, α) or t(n-1, α/2) depending on whether it is a one-sided or two-
sided alternative.  For example, if n=25 and α=0.05, we compare tcalc to t(24, 0.05)=1.711 
for a one-sided alternative and to t(24, 0.025)=2.064 for a two-sided alternative. 
For tests of the variance of a random variable X we calculate a Chi-Square statistic: 
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Eq. 4:24 

𝐻𝐻0: 𝜎𝜎2 = 𝜎𝜎02 

𝜒𝜒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 =
(𝑛𝑛 − 1)𝑆𝑆2

𝜎𝜎02
 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑡𝑡𝑡𝑡 𝜒𝜒(𝑛𝑛−1,𝛼𝛼)
2  𝑜𝑜𝑜𝑜 𝜒𝜒

(𝑛𝑛−1,𝛼𝛼2)
2  

D. Confidence Intervals:  Two Sample 
We now turn to intervals for the difference between the sample statistics for two 
random variables.  Suppose you have a random variable X with mean 𝜇𝜇𝑋𝑋 and 
variance 𝜎𝜎𝑋𝑋2:  𝑋𝑋~(𝜇𝜇𝑋𝑋 ,𝜎𝜎𝑋𝑋2); and the random variable Y with mean 𝜇𝜇𝑌𝑌 and variance 𝜎𝜎𝑌𝑌2:  
𝑌𝑌~(𝜇𝜇𝑌𝑌,𝜎𝜎𝑌𝑌2).  The nature of the sampling distributions for the difference between the 
sample statistics of these two random variables will depend on whether the samples 
are dependent or independent. 

Dependent Samples 
A dependent sample is such that each specific observation in the sample for X can be 
linked with a specific observation in the sample for Y.  Consider the following 
example.  A sample of n students is given an aptitude test and the scores are 
recorded.  Call this initial set of scores the random variable X.  The same set of 
students then participate in a test preparation course, after which they retake the 
aptitude test.  Call the recorded set of scores for this second round of testing the 
random variable Y.  The score for each specific student in the first round of testing, 
Xi, can be linked to that student’s score on the second round of testing, Yi.  Define the 
difference between the two test scores as: 𝑑𝑑𝑖𝑖 = 𝑋𝑋𝑖𝑖 − 𝑌𝑌𝑖𝑖.  In this example, I have 
defined the difference as “before” minus “after” but it can be defined the other way as 
well.  The difference variable di has the following properties: 
Eq. 4:25 

𝑑̅𝑑 =
∑𝑑𝑑𝑖𝑖
𝑛𝑛

=
∑(𝑋𝑋𝑖𝑖 − 𝑌𝑌𝑖𝑖)

𝑛𝑛
 

𝑆𝑆𝑑𝑑2 =
∑�𝑑𝑑𝑖𝑖 − 𝑑̅𝑑�

2

𝑛𝑛 − 1
 

𝐸𝐸�𝑑̅𝑑� = 𝜇𝜇𝑋𝑋 − 𝜇𝜇𝑌𝑌 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑑̅𝑑� =
1
𝑛𝑛

(𝜎𝜎𝑋𝑋2 + 𝜎𝜎𝑌𝑌2 − 2𝜎𝜎𝑋𝑋𝑋𝑋) =
𝜎𝜎𝑑𝑑�
2

𝑛𝑛
 

Given the sample mean of the difference variable, 𝑑̅𝑑 and its sample variance 𝑆𝑆𝑑𝑑�
2, and 

assuming the sample size is large enough to apply the Central Limit Theorem, the 
(1 – α)% confidence interval with significance for the difference in the population 
means (𝜇𝜇𝑋𝑋 − 𝜇𝜇𝑌𝑌) is given by: 
Eq. 4:26 

𝑑̅𝑑 −
𝑆𝑆𝑑𝑑
√𝑛𝑛

𝑡𝑡(𝑛𝑛−1),𝛼𝛼2
≤ 𝜇𝜇𝑋𝑋 − 𝜇𝜇𝑌𝑌 ≤ 𝑑̅𝑑 +

𝑆𝑆𝑑𝑑
√𝑛𝑛

𝑡𝑡(𝑛𝑛−1),𝛼𝛼2
  𝑜𝑜𝑜𝑜 
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𝑑̅𝑑 ±
𝑆𝑆𝑑𝑑
√𝑛𝑛

𝑡𝑡(𝑛𝑛−1),𝛼𝛼2
 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡ℎ𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒: 𝑀𝑀𝑀𝑀 =
𝑆𝑆𝑑𝑑
√𝑛𝑛

𝑡𝑡(𝑛𝑛−1),𝛼𝛼2
 

Note that the interval is calculated using the sample standard deviation of the 
difference variable and uses the t-distribution with degrees of freedom based on the 
number of pairs of observations, n – 1. 

Independent Samples 
Suppose we have two random variables X and Y with means and variances as 
defined in (1) above.  Now, however, suppose that the samples for X and Y are 
independent of one another.  To continue with a modified version of the testing 
example above, suppose a sample of 𝑛𝑛𝑋𝑋 students who are Economics majors are 
administered the aptitude test and scores are recorded as the random variable X.  A 
second sample of  𝑛𝑛𝑌𝑌 students who are Sociology majors are also administered the 
test and their scores recorded as the random variable Y.  If the population variances 
of the two variables are known, then the difference in the sample means, 𝑋𝑋� − 𝑌𝑌�, has 
the following properties: 
Eq. 4:27 

𝐸𝐸(𝑋𝑋� − 𝑌𝑌�) = 𝜇𝜇𝑋𝑋 − 𝜇𝜇𝑌𝑌 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋� − 𝑌𝑌�) =
𝜎𝜎𝑋𝑋2

𝑛𝑛𝑋𝑋
+
𝜎𝜎𝑌𝑌2

𝑛𝑛𝑌𝑌
 

And the (1 – α)% confidence interval for the difference in the population means is 
given by: 
Eq. 4:28 

(𝑋𝑋� − 𝑌𝑌�) − ��
𝜎𝜎𝑋𝑋2

𝑛𝑛𝑋𝑋
+
𝜎𝜎𝑌𝑌2

𝑛𝑛𝑌𝑌
�𝑍𝑍𝛼𝛼

2
≤ 𝜇𝜇𝑋𝑋 − 𝜇𝜇𝑌𝑌 ≤ (𝑋𝑋� − 𝑌𝑌�) + ��

𝜎𝜎𝑋𝑋2

𝑛𝑛𝑋𝑋
+
𝜎𝜎𝑌𝑌2

𝑛𝑛𝑌𝑌
�𝑍𝑍𝛼𝛼

2
 

(𝑋𝑋� − 𝑌𝑌�) ± ��
𝜎𝜎𝑋𝑋2

𝑛𝑛𝑋𝑋
+
𝜎𝜎𝑌𝑌2

𝑛𝑛𝑌𝑌
�𝑍𝑍𝛼𝛼

2
 

𝑀𝑀𝑀𝑀 = ��
𝜎𝜎𝑋𝑋2

𝑛𝑛𝑋𝑋
+
𝜎𝜎𝑌𝑌2

𝑛𝑛𝑌𝑌
�𝑍𝑍𝛼𝛼

2
 

Now suppose that the population variances for our two independent samples are 
unknown but assumed to be equal, so: 𝜎𝜎𝑋𝑋2 = 𝜎𝜎𝑌𝑌2 = 𝜎𝜎2.  The variance of the 
difference in the sample means is now: 
Eq. 4:29 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋� − 𝑌𝑌�) =
𝜎𝜎𝑋𝑋2

𝑛𝑛𝑋𝑋
+
𝜎𝜎𝑌𝑌2

𝑛𝑛𝑌𝑌
= 𝜎𝜎2 �

1
𝑛𝑛𝑋𝑋

+
1
𝑛𝑛𝑌𝑌
� 
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Since the (assumed equal) population variance σ2 is unknown, we need a sample 
estimate.  Given the sample variance for X and Y, 𝑆𝑆𝑋𝑋2 and 𝑆𝑆𝑌𝑌2, as an estimate of the 
(assumed equal) variance σ2 we calculate a pooled sample variance 𝑆𝑆𝑃𝑃2 as: 
Eq. 4:30 

𝑆𝑆𝑃𝑃2 =
(𝑛𝑛𝑥𝑥 − 1)𝑆𝑆𝑋𝑋2 + (𝑛𝑛𝑌𝑌 − 1)𝑆𝑆𝑌𝑌2

𝑛𝑛𝑋𝑋 + 𝑛𝑛𝑌𝑌 − 2
 

And the (1 – α)% confidence interval for the difference in the population means is 
given by: 
Eq. 4:31 

𝑋𝑋� − 𝑌𝑌� ± ��
𝑆𝑆𝑃𝑃2

𝑛𝑛𝑋𝑋
+
𝑆𝑆𝑃𝑃2

𝑛𝑛𝑌𝑌
� 𝑡𝑡(𝑛𝑛𝑥𝑥+𝑛𝑛𝑌𝑌−2),𝛼𝛼2

 

So we use a pooled estimate of the population variance and the t-distribution with 
degrees of freedom based on the sum of the sample sizes: (𝑛𝑛𝑋𝑋 + 𝑛𝑛𝑌𝑌 − 2). 
Now suppose that the population variances for our two independent samples are 
unknown but not assumed to be equal.  The variance of the difference in the 
sample means is now: 
Eq. 4:32 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋� − 𝑌𝑌�) =
𝜎𝜎𝑋𝑋2

𝑛𝑛𝑋𝑋
+
𝜎𝜎𝑌𝑌2

𝑛𝑛𝑌𝑌
 

Given the sample variances for X and Y, 𝑆𝑆𝑋𝑋2 and 𝑆𝑆𝑌𝑌2, the (1 – α)% confidence interval 
for the difference in the population means is similar to that in (9) above, but the 
extra uncertainty introduced by the unequal variances requires a complicated 
adjustment to the degrees of freedom for the t-distribution.   
Eq. 4:33 

𝑋𝑋� − 𝑌𝑌� ± ��
𝑆𝑆𝑋𝑋2

𝑛𝑛𝑋𝑋
+
𝑆𝑆𝑌𝑌2

𝑛𝑛𝑌𝑌
� 𝑡𝑡�𝑚𝑚,𝛼𝛼2�

 

Where the degrees of freedom, m is calculated from: 
Eq. 4:34 

𝑚𝑚 =
�𝑆𝑆𝑋𝑋

2

𝑛𝑛𝑋𝑋
+ 𝑆𝑆𝑌𝑌2
𝑛𝑛𝑌𝑌
�
2

�𝑆𝑆𝑋𝑋
2

𝑛𝑛𝑥𝑥
�
2

𝑛𝑛𝑋𝑋 − 1 +
�𝑆𝑆𝑌𝑌

2

𝑛𝑛𝑌𝑌
�
2

𝑛𝑛𝑌𝑌 − 1
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Rounded down to the next integer.  Obviously, this is a messy calculation but the 
Excel T.TEST function includes an option for the two-sample unequal variances case 
(see the Excel help for the T.TEST function for a description). 
For the difference in two sample proportions, 𝑃𝑃�𝑋𝑋 and 𝑃𝑃�𝑌𝑌, assuming the sample sizes 
are “large” the (1 – α)% confidence interval for the difference is: 
Eq. 4:35 

𝑃𝑃�𝑋𝑋 − 𝑃𝑃�𝑌𝑌 ± 𝑍𝑍𝛼𝛼
2
�𝑃𝑃
�𝑋𝑋�1 − 𝑃𝑃�𝑋𝑋�

𝑛𝑛𝑋𝑋
+
𝑃𝑃�𝑌𝑌(1 − 𝑃𝑃�𝑌𝑌)

𝑛𝑛𝑌𝑌
 

 

Summary of Confidence Interval formulas: 
Statistic Confidence Interval 

Sample Mean, Known Variance 𝑋𝑋� ±
𝜎𝜎
√𝑛𝑛

𝑍𝑍𝛼𝛼
2
 

Sample Mean, Unknown Variance 𝑋𝑋� ±
𝑆𝑆
√𝑛𝑛

𝑡𝑡(𝑛𝑛−1),𝛼𝛼/2 

Sample Proportion 𝑃𝑃� ± 𝑍𝑍𝛼𝛼/2�
𝑃𝑃�(1 − 𝑃𝑃�)

𝑛𝑛
 

Sample Variance 
(𝑛𝑛 − 1)𝑆𝑆2

𝜒𝜒(𝑛𝑛−1),𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
2 ≤ 𝜎𝜎2 ≤

(𝑛𝑛 − 1)𝑆𝑆2

𝜒𝜒(𝑛𝑛−1),𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
2  

Two Sample Means, Dependent 
Samples 

𝑑̅𝑑 ±
𝑆𝑆𝑑𝑑
√𝑛𝑛

𝑡𝑡(𝑛𝑛−1),𝛼𝛼2
 

 

Two Sample Means, Known 
Variances 

(𝑋𝑋� − 𝑌𝑌�) ± ��
𝜎𝜎𝑋𝑋2

𝑛𝑛𝑋𝑋
+
𝜎𝜎𝑌𝑌2

𝑛𝑛𝑌𝑌
�𝑍𝑍𝛼𝛼

2
 

 

Two Sample Means, Unknown 
Variances assumed Equal 

𝑋𝑋� − 𝑌𝑌� ± ��
𝑆𝑆𝑃𝑃2

𝑛𝑛𝑋𝑋
+
𝑆𝑆𝑃𝑃2

𝑛𝑛𝑌𝑌
� 𝑡𝑡(𝑛𝑛𝑥𝑥+𝑛𝑛𝑌𝑌−2),𝛼𝛼2

 

Where the pooled variance is calculated as 

𝑆𝑆𝑃𝑃2 =
(𝑛𝑛𝑥𝑥 − 1)𝑆𝑆𝑋𝑋2 + (𝑛𝑛𝑌𝑌 − 1)𝑆𝑆𝑌𝑌2

𝑛𝑛𝑋𝑋 + 𝑛𝑛𝑌𝑌 − 2
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Two Sample Means, Unknown 
Variances not assumed Equal 

𝑋𝑋� − 𝑌𝑌� ± ��
𝑆𝑆𝑋𝑋2

𝑛𝑛𝑋𝑋
+
𝑆𝑆𝑌𝑌2

𝑛𝑛𝑌𝑌
� 𝑡𝑡�𝑚𝑚,𝛼𝛼2�

 

Where the degrees of freedom m is from 

𝑚𝑚 =
�𝑆𝑆𝑋𝑋

2

𝑛𝑛𝑋𝑋
+ 𝑆𝑆𝑌𝑌2
𝑛𝑛𝑌𝑌
�
2

�𝑆𝑆𝑋𝑋
2

𝑛𝑛𝑥𝑥
�
2

𝑛𝑛𝑋𝑋 − 1 +
�𝑆𝑆𝑌𝑌

2

𝑛𝑛𝑌𝑌
�
2

𝑛𝑛𝑌𝑌 − 1

 

Sample proportion when nX and nY 
are “large” 𝑃𝑃�𝑋𝑋 − 𝑃𝑃�𝑌𝑌 ± 𝑍𝑍𝛼𝛼

2
�𝑃𝑃
�𝑋𝑋�1 − 𝑃𝑃�𝑋𝑋�

𝑛𝑛𝑋𝑋
+
𝑃𝑃�𝑌𝑌(1 − 𝑃𝑃�𝑌𝑌)

𝑛𝑛𝑌𝑌
 

 
E. Hypothesis Testing:  Two Sample Tests 

For two sample means, dependent sample with unknown variance.  Given the 
difference variable 𝑑𝑑𝑖𝑖 = 𝑋𝑋𝑖𝑖 − 𝑌𝑌𝑖𝑖, the sample mean and standard deviation of the 
difference variable, 𝑑̅𝑑 𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆𝑑𝑑, and sample size n, 
Eq. 4:36 

𝐻𝐻0: 𝜇𝜇𝑋𝑋 − 𝜇𝜇𝑌𝑌 = 0 

𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑑̅𝑑

𝑆𝑆𝑑𝑑/√𝑛𝑛
 

Then compare tcalc to t(n-1, α) or t(n-1, α/2) depending on whether it is a one-sided or two-
sided alternative.  
For two sample means, independent samples with known variances  
Eq. 4:37 

𝐻𝐻0: 𝜇𝜇𝑋𝑋 − 𝜇𝜇𝑌𝑌 = 0 

𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑋𝑋� − 𝑌𝑌�

�𝜎𝜎𝑋𝑋
2

𝑛𝑛𝑋𝑋
+ 𝜎𝜎𝑌𝑌2
𝑛𝑛𝑦𝑦

 

Then compare to Zα or Zα/2 
For two sample means, independent samples with unknown variances 
assumed to be equal  
Eq. 4:38 

𝐻𝐻0:  𝜇𝜇𝑋𝑋 − 𝜇𝜇𝑌𝑌 = 0 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉:  𝑆𝑆𝑃𝑃2 =
(𝑛𝑛𝑋𝑋 − 1)𝑆𝑆𝑋𝑋2 + (𝑛𝑛𝑌𝑌 − 1)𝑆𝑆𝑌𝑌2

(𝑛𝑛𝑋𝑋 + 𝑛𝑛𝑌𝑌 − 2)
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𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑋𝑋� − 𝑌𝑌�

�𝑆𝑆𝑃𝑃
2

𝑛𝑛𝑋𝑋
+ 𝑆𝑆𝑃𝑃2
𝑛𝑛𝑌𝑌

 

Then compare tcalc to 𝑡𝑡(𝑛𝑛𝑋𝑋+𝑛𝑛𝑌𝑌−2,𝛼𝛼) 𝑜𝑜𝑜𝑜 𝑡𝑡(𝑛𝑛𝑥𝑥+𝑛𝑛𝑌𝑌−2,𝛼𝛼2). 

For two sample means, independent samples with unknown variances not 
assumed to be equal 

𝐻𝐻0:  𝜇𝜇𝑋𝑋 − 𝜇𝜇𝑌𝑌 = 0 

𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑋𝑋� − 𝑌𝑌�

�𝑆𝑆𝑋𝑋
2

𝑛𝑛𝑋𝑋
+ 𝑆𝑆𝑌𝑌2
𝑛𝑛𝑌𝑌

 

Then compare tcalc to the critical t with degrees of freedom set to: 

𝑚𝑚 =
�𝑆𝑆𝑋𝑋

2

𝑛𝑛𝑋𝑋
+ 𝑆𝑆𝑌𝑌2
𝑛𝑛𝑌𝑌
�
2

�𝑆𝑆𝑋𝑋
2

𝑛𝑛𝑥𝑥
�
2

𝑛𝑛𝑋𝑋 − 1 +
�𝑆𝑆𝑌𝑌

2

𝑛𝑛𝑌𝑌
�
2

𝑛𝑛𝑌𝑌 − 1

 

Rounded down to the next integer. 
For two sample proportions from “large” independent samples, since under the 
null hypothesis the two proportions are equal, we calculate a pooled proportion from 
the two samples for the variance estimate in the denominator of the test statistic. 
Eq. 4:39 

𝐻𝐻0:  𝑃𝑃𝑋𝑋 = 𝑃𝑃𝑌𝑌 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃:  𝑃𝑃0 =
𝑛𝑛𝑋𝑋𝑃𝑃�𝑋𝑋 + 𝑛𝑛𝑌𝑌𝑃𝑃�𝑌𝑌
𝑛𝑛𝑋𝑋 + 𝑛𝑛𝑌𝑌

 

𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑃𝑃�𝑋𝑋 − 𝑃𝑃�𝑌𝑌

�𝑃𝑃0(1 − 𝑃𝑃0)
𝑛𝑛𝑋𝑋

+ 𝑃𝑃0(1 − 𝑃𝑃0)
𝑛𝑛𝑌𝑌

 

Then compare to Zα or Zα/2 
For a test of the equality of the variances from two samples, we need to introduce 
another probability distribution related to the Normal and Chi-Squared 
distributions.  The F Distribution has a “numerator” and “denominator” degrees of 
freedom.  For a given level of significance, α, in the attached table of “Upper Critical 
Values of the F Distribution,” the numerator degrees of freedom is read across 
columns and the denominator degrees of freedom is read down rows. 
Eq. 4:40 

𝐻𝐻0:  𝜎𝜎𝑋𝑋2 = 𝜎𝜎𝑌𝑌2  𝑣𝑣𝑣𝑣.  𝐻𝐻𝐴𝐴: 𝜎𝜎𝑋𝑋2 > 𝜎𝜎𝑌𝑌2 
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𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑆𝑆𝑋𝑋2

𝑆𝑆𝑌𝑌2
 

Where 𝑺𝑺𝑿𝑿𝟐𝟐  is the larger of the two sample variances so that Fcalc≥1.  Compare to 
𝐹𝐹(𝑛𝑛𝑋𝑋−1,𝑛𝑛𝑌𝑌−1,𝛼𝛼). 

For example, suppose you are given a sample for the variable X with 𝑛𝑛𝑋𝑋 =
10 𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆𝑋𝑋2 = 12.3, and for the variable Y, 𝑛𝑛𝑌𝑌 = 12 𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆𝑌𝑌2 = 5.6, then  
Eq. 4:41 

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
12.3
5.6

= 2.196 

From the F table with α=0.05, F(9,11,0.05) = 2.896 > Fcalc so we would Fail to Reject the 
null hypothesis that the two variances are equal. 

F. P-Values 
The preceding discussion of hypothesis testing compared calculated test statistics to 
“critical” values derived from the sampling distribution of the hypothesis in question 
(normal, t-distribution, Chi-Square distribution, or F distribution.)  An equivalent 
decision rule involves calculating the probability in the “tail(s)” of the distribution for 
a given calculated test statistic – the p-value for the test statistic – and comparing 
the p-value to the chosen level of significance, α.  The decision rule is to Reject the 
Null Hypothesis if the p-value is less than α, and Fail to Reject the Null Hypothesis 
if the p-value is greater than α.  In this sense, the p-value is the smallest 
significance level at which the null hypothesis can be rejected. 
To illustrate, consider the example of testing a hypothesis regarding the mean of a 
normal random variable with known variance.  If the alternative hypothesis is an 
upper (right-tailed) alternative, for the calculated Z-Score, Zc, the p-value is the 
probability 𝑃𝑃[𝑍𝑍 > 𝑍𝑍𝑐𝑐] and can be calculated using “=1–NORM.S.DIST(Zc,1)” in Excel.  
If the alternative hypothesis is a lower (left-tailed) alternative, we need 𝑃𝑃[𝑍𝑍 < 𝑍𝑍𝑐𝑐] 
and use “=NORM.S.DIST(Zc,1)” in Excel. 
For a two-sided (or two-tailed) alternative hypothesis, the p-value is the probability 
given by 2 × 𝑃𝑃[𝑍𝑍 > |𝑍𝑍𝑐𝑐|] and can be calculated using “=1–NORM.S.DIST(ABS(Zc),1)” 
in Excel.   
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G. Example Problems 
Scores on an aptitude test are known to follow a normal distribution with a standard 
deviation of 32.4 points.  A random sample of 12 test scores had a mean score of 
189.7 points. 

1. Find an 80% confidence interval for the population mean for this sample. 
LCL ==> 𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑋𝑋� − 𝑍𝑍𝛼𝛼

2

𝜎𝜎
√𝑛𝑛
≅ 189.7 − (1.2816)(32.4

√12
) ≅ 177.7136 

UCL ==> 𝑈𝑈𝑈𝑈𝑈𝑈 = 𝑋𝑋� + 𝑍𝑍𝛼𝛼
2

𝜎𝜎
√𝑛𝑛
≅ 189.7 + (1.2816)(32.4

√12
) ≅ 201.6864 

2. Based on the sample results, a confidence interval for the population mean is 
found extending from 171.4 to 208 points.  Find the confidence level of this 
interval. 

Margin of Error (ME) ==>𝑀𝑀𝑀𝑀 = 𝑈𝑈𝑈𝑈𝑈𝑈 − 𝑋𝑋� = 208 − 189.7 = 18.3  
(𝑜𝑜𝑜𝑜 𝑀𝑀𝑀𝑀 = 𝑋𝑋� − 𝐿𝐿𝐿𝐿𝐿𝐿) 

Z-Score (Zα/2) ==>𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑀𝑀𝑀𝑀 = 𝑍𝑍𝛼𝛼
2

𝜎𝜎
√𝑛𝑛

  18.3 = 𝑍𝑍𝛼𝛼
2

32.4
√12

→ 𝑍𝑍𝛼𝛼
2
≅ 1.96 

Confidence Level ==>𝑃𝑃 �𝑍𝑍 > 𝑍𝑍𝛼𝛼
2

= 1.96� = 0.025 𝑠𝑠𝑠𝑠 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 0.95 
Note:  The information and questions 14 and 15 could also be applied to the 
case of an unknown variance (e.g. the sample standard deviation is 32.4).  In 
the foregoing answers, you would replace Zα/2 with tα/2, (n-1).  
 
A sample of 24 months of stock return data for “Company X” is obtained and the 
sample variance of returns is calculated to be 𝑆𝑆2 ≅ 0.0035.  Assume the data are 
drawn from a normal distribution with unknown variance. 

3. Calculate the LC and UCL for a 90% confidence interval of the population 
variance of monthly returns. 

LCL ==>𝐿𝐿𝐿𝐿𝐿𝐿 = (𝑛𝑛−1)𝑆𝑆2

𝜒𝜒
(𝑛𝑛−1,1−𝛼𝛼2)
2 ≅ (23)(0.0035)

35.172
≅ 0.00229 

UCL ==> 𝑈𝑈𝑈𝑈𝑈𝑈 = (𝑛𝑛−1)𝑆𝑆2

𝜒𝜒
(𝑛𝑛−1,𝛼𝛼2)
2 ≅ (23)(0.0035)

13.091
≅ 0.00615 

 
A sample of 25 students is administered an aptitude test before and after they 
completed a test prep course.  The “After” minus “Before” scores of the students 
yielded the following test statistics:  𝑑̅𝑑 = 24.72, 𝑆𝑆𝑑𝑑2 = 4317.21 

4. Calculate the LCL and UCL for a 90% CI (α = 0.1) for the mean difference in 
scores. 

Need 𝑑̅𝑑 ± 𝑡𝑡(𝑛𝑛−1,𝛼𝛼2)�
𝑆𝑆𝑑𝑑
2

𝑛𝑛
= 24.72 ± (1.7109) × �4317.21

25
 

LCL ==>𝐿𝐿𝐿𝐿𝐿𝐿 ≅ 2.2371 
UCL ==>𝑈𝑈𝑈𝑈𝑈𝑈 ≅ 47.2029 
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The results from independent random sampling from two normally distributed 
populations is provided in the following table 

Variable Sample Size n: Sample Mean Known Variance 

X 81 140 25 
Y 100 120 14 

 
5. Find a 95% confidence interval for the difference between the means in these 

two populations (the mean of X minus the mean of Y): 

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (𝑋𝑋� − 𝑌𝑌�) ± 𝑍𝑍𝛼𝛼
2
�𝜎𝜎𝑥𝑥2

𝑛𝑛𝑥𝑥
+

𝜎𝜎𝑦𝑦2

𝑛𝑛𝑦𝑦
= 20 ± (1.96) × �25

81
+ 14

100
 

LCL ==>𝐿𝐿𝐿𝐿𝐿𝐿 ≅ 18.6872 
UCL ==>𝑈𝑈𝑈𝑈𝑈𝑈 ≅ 21.3128 
 
Data from two independent samples of the annual returns for a sample of 12 
Technology firms and a sample of 14 Finance firms are collected.  The population 
variance of annual returns is unknown but assumed to be equal across the two 
samples and the following sample statistics are calculated. 

 Mean Variance Sample Size 
Technology Firms 0.1141 0.00022 12 
Finance Firms 0.1034 0.00021 14 

 
Calculate the LCL and UCL for a 90% CI (α = 0.1) for the difference in mean returns 
between the two samples. 

Need the pooled variance estimate from 𝑆𝑆𝑃𝑃2 =
(𝑛𝑛𝑥𝑥−1)𝑆𝑆𝑥𝑥2+(𝑛𝑛𝑦𝑦−1)𝑆𝑆𝑦𝑦2

(𝑛𝑛𝑥𝑥+𝑛𝑛𝑦𝑦−2)
≅ 0.00022 

Need (𝑋𝑋� − 𝑌𝑌�) ± 𝑡𝑡�𝑛𝑛𝑥𝑥+𝑛𝑛𝑦𝑦−2,𝛼𝛼2�
�𝑆𝑆𝑃𝑃

2

𝑛𝑛𝑥𝑥
+ 𝑆𝑆𝑃𝑃

2

𝑛𝑛𝑦𝑦
≅ 0.0107 ± (1.7109) × �0.00022

12
+ 0.00022

14
 

LCL ==>𝐿𝐿𝐿𝐿𝐿𝐿 ≅ 0.0007 
UCL ==>𝑈𝑈𝑈𝑈𝑈𝑈 ≅ 0.0206 
In a random sample of 120 large retailers, 85 used regression analysis as a method 
of forecasting.  In an independent random sample of 163 small retailers, 78 used 
regression as a method of forecasting.    Calculate the LCL and UCL for a 98% 
confidence interval of the difference between the two population proportions. 
Based on the information provided, 𝑃𝑃�𝑋𝑋 = 85

120
= 0.708 and 𝑃𝑃�𝑌𝑌 = 78

163
= 0.479 

Need (𝑃𝑃𝑥𝑥� − 𝑃𝑃𝑦𝑦� ) ± 𝑍𝑍𝛼𝛼
2

× �𝑃𝑃𝑥𝑥�(1−𝑃𝑃𝑥𝑥�)
𝑛𝑛𝑥𝑥

+ 𝑃𝑃𝑦𝑦��1−𝑃𝑃𝑦𝑦��
𝑛𝑛𝑦𝑦

≅ 0.2298 ± (2.326)(0.057) 
LCL ==>𝐿𝐿𝐿𝐿𝐿𝐿 ≅ 0.097 
UCL ==>𝑈𝑈𝑈𝑈𝑈𝑈 ≅ 0.362 
A random sample of size n=25 is obtained from a normal population with variance σ2 
= 625, and the sample mean is computed.  Test the null hypothesis H0: μ = 100 
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versus the alternative hypothesis H1: μ > 100 with α = 0.05.  Compute the critical 
value 𝑋𝑋𝑐𝑐 and state your decision rule for this hypothesis: 

 
Given that this is a right-tailed one-sided test and α = 0.05, the critical Zα = 1.645 
(this is calculated in Excel using the NORM.S.INV(0.95) or by interpolating from the 
Standard Normal Probability table.)  The critical value 𝑋𝑋𝑐𝑐 is found by comparing Zα 
to the calculated Z-Score Zc: 

𝑍𝑍𝑐𝑐 =
𝑋𝑋 − 𝜇𝜇
𝜎𝜎𝑋𝑋

 

The standard error of the sample mean is calculated as:  𝜎𝜎𝑋𝑋 = �𝜎𝜎2

25
= �625

25
= 5, then 

𝑍𝑍𝑐𝑐 =
𝑋𝑋 − 100

5
 

Setting this equal to Zα and solving for 𝑋𝑋 gives 𝑋𝑋𝑐𝑐 = 5 × 1.645 + 100 = 108.224 and 
the decision rule is “Reject H0 if 𝑋𝑋 > 108.224” 

Note:  If the alternative hypothesis had been H1: μ < 100 with α = 0.05, we 
would have used Zα = −1.645 (because this is a left-tailed alternative) and the 
resulting decision rule would be “Reject H0 if 𝑋𝑋 < 91.776" 

 
A random sample is obtained from a normal population with variance σ2 = 400, and 
the sample mean is computed to be 76.5.  Consider the null hypothesis H0: μ = 80 
versus the alternative hypothesis H1: μ < 80.  For a sample size n=40, compute the 
p-value and state your decision if α = 0.1. 
 
Since the alternative hypothesis is a lower (left-tailed) alternative, to get the p-value 
we need 𝑃𝑃[𝑍𝑍 < 𝑍𝑍𝑐𝑐].  The calculated Z-Score is 𝑍𝑍𝑐𝑐 = 76.5−80

�400/40
≅ −1.1068 

Using NORM.S.DIST(Zc,1) gives 𝑃𝑃[𝑍𝑍 < 𝑍𝑍𝑐𝑐] ≅ 0.1341.  Since the p-value is greater 
than α = 0.1, we Fail to Reject the Null Hypothesis. 

Note that is the sample size is n=70, 𝑍𝑍𝑐𝑐 ≅ −1.4642 resulting in a p-value of 
0.0716, so in this case we would Reject the Null Hypothesis. 

 

You are provided a sample of n=23 test scores. The sample mean is calculated to be 
𝑋𝑋 = 81.5 and the sample variance is calculated to be 𝑆𝑆2 = 14.7.  Assuming the sample 
is drawn from a Normal population with unknown variance, provide a test of the 
null hypothesis H0: 𝜇𝜇 = 80 against each of the following alternative hypotheses and 
significance levels: 

a. H1:  𝜇𝜇 ≠ 80 with α = 0.05 
The calculated t-statistic is given by:  𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑋𝑋−𝜇𝜇

�𝑆𝑆2/𝑛𝑛
= 81.5−80

�14.7/23
≅ 1.876 
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With degrees of freedom equal to 22, the critical t for this two-tailed test is 
𝑡𝑡(𝑛𝑛−1,𝛼𝛼/2) = 2.074 which is greater than tcalc so we Fail to Reject the Null Hypothesis. 

b. H1: 𝜇𝜇 > 80 with α = 0.05 
The calculated t-statistic remains the same, but because this is now a one-tailed test, 
the critical t is 𝑡𝑡(𝑛𝑛−1,𝛼𝛼) = 1.717 which is less than tcalc so we Reject the Null 
Hypothesis. 
Alternatively, the probability 𝑃𝑃[𝑡𝑡 > 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐] can be calculated using “1–T.DIST(tcalc,22)” 
giving a one-tailed p-value of about 0.037 which implies a two-tailed p-value of about 
0.074 (2×0.037).   For part (a), since the two-tailed p-value is greater than α, you Fail 
to Reject the null, and for part (b), you Reject the null because the p-value is less 
than α. 
More examples for this section will be provided through homework sets and the mid-
term exam study guide.  
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Section 5. ANALYSIS OF VARIANCE 

Our discussion of hypothesis testing has thus far been limited to comparing sample 
statistics between at most two samples.  There are many applications in business 
and economics that posit potential differences across many more than two groups 
identifiable in a population.  Consider the following example:  You have a sample of 
test scores from students at 15 different schools and you would like to know if 
average test scores differ across schools.  One possibility would be to do pair-wise 
tests for differences in the mean scores for each possible pair of schools.  However, 
with 15 schools, this would involve 105 difference pair-wise comparisons. 
The statistical tool known as Analysis of Variance, or ANOVA, provides a basis for 
testing for differences in the population means among any number of groups.  As 
with the two variable tests we have covered previously, the nature of these ANOVA 
tests will depend on the properties of the sample data.  Conceptually, the basis of an 
ANOVA is a comparison of the degree of variability (the variance) in the overall 
sample assuming some null hypothesis is true (that is, assuming all the groups in 
the sample have the same overall mean) versus the degree of variability when each 
group in the sample is allowed to take on its own mean. 

A. One-Way Analysis of Variance 
Suppose that you want to compare the means of K populations, each of which is 
assumed to have the same variance.  Independent random samples of n1, n2, …, nK 
observations are taken from these populations.  Let xij denote the jth observation 
from the ith population.  Formally, we wish to test the following hypothesis: 
Eq. 5:1 

𝐻𝐻0:  𝜇𝜇1 = 𝜇𝜇2 = ⋯ = 𝜇𝜇𝑘𝑘 
𝐻𝐻𝐴𝐴: 𝜇𝜇𝑖𝑖 ≠ 𝜇𝜇𝑗𝑗 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝜇𝜇𝑖𝑖, 𝜇𝜇𝑗𝑗 

The sample means for the K groups can be expressed as follows: 
Eq. 5:2 

𝑥̅𝑥𝑖𝑖 =
∑ 𝑥𝑥𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖
𝑗𝑗=1

𝑛𝑛𝑖𝑖
 (𝑖𝑖 = 1, 2, … ,𝐾𝐾) 

Let n denote the total number of observations: 
Eq. 5:3 

𝑛𝑛 = �𝑛𝑛𝑖𝑖

𝐾𝐾

𝑖𝑖=1

 

The overall mean across all K groups, denoted 𝑥̿𝑥, can be expressed as: 
Eq. 5:4 

𝑥̿𝑥 =
∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖

𝑛𝑛𝑖𝑖
𝑗𝑗=1

𝐾𝐾
𝑖𝑖=1

𝑛𝑛
=
∑ 𝑛𝑛𝑖𝑖𝑥̅𝑥𝑖𝑖𝐾𝐾
𝑖𝑖=1

𝑛𝑛
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The degree of variability for each group – when each group is allowed to take on its 
own mean – is measured by its Sum of Squares 
Eq. 5:5 

𝑆𝑆𝑆𝑆𝑖𝑖 = ��𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥̅𝑥𝑖𝑖�
2

𝑛𝑛𝑖𝑖

𝑗𝑗=1

 

The total within-group variability, or within group sum of squares, denoted SSW, is 
then given by: 
Eq. 5:6 

𝑆𝑆𝑆𝑆𝑆𝑆 = �𝑆𝑆𝑆𝑆𝑖𝑖

𝐾𝐾

𝑖𝑖=1

= ���𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥̅𝑥𝑖𝑖�
2

𝑛𝑛𝑖𝑖

𝑗𝑗=1

𝐾𝐾

𝑖𝑖=1

 

SSW, then, is the total observed variability in the sample when each group is 
allowed to take on its own mean.  Next, we need a measure of the degree of 
variability in the sample based on the null hypothesis that all the means are equal.  
This measure is known as the between group sum of squares, denoted SSG and 
calculated by: 
Eq. 5:7 

𝑆𝑆𝑆𝑆𝑆𝑆 = �𝑛𝑛𝑖𝑖(𝑥̅𝑥𝑖𝑖 − 𝑥̿𝑥)2
𝐾𝐾

𝑖𝑖=1

 

If the null hypothesis is, in fact, true, SSG should be close to zero.  Another sum of 
squares that is often calculated and presented as part the ANOVA results is known 
as the total sum of squares, denoted SST as calculated by: 
Eq. 5:8 

𝑆𝑆𝑆𝑆𝑆𝑆 = ���𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥̿𝑥�
2

𝑛𝑛𝑖𝑖

𝑗𝑗=1

𝐾𝐾

𝑖𝑖=1

 

And it can be shown that: 
Eq. 5:9 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑆𝑆𝑆𝑆𝑆𝑆 
To formulate a test statistic, we need to know the distributional properties of our 
sum of squares measures.  Under the assumptions that the population variances are 
equal and the population distributions are normal, SSW is distributed as Chi-Square 
with (n – K) degrees of freedom and SSG is Chi-Square with (K – 1) degrees of 
freedom.  We can use these two measures to calculate an F-Statistic in the following 
form 
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Eq. 5:10 

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑆𝑆𝑆𝑆𝑆𝑆/(𝐾𝐾 − 1)
𝑆𝑆𝑆𝑆𝑆𝑆/(𝑛𝑛 − 𝐾𝐾)

~𝐹𝐹(𝐾𝐾−1),(𝑛𝑛−𝐾𝐾) 

That is, Fcalc is distributed as an F-statistic with numerator degrees of freedom equal 
to (K-1) and denominator degrees of freedom equal to (n-K).  For a chosen level of 
significance α, we compare our calculated test statistic, Fcalc to the critical F(K-1),(n-K),α 
and reject the null hypothesis that the means are equal if Fcalc> F(K-1),(n-K),α. 
Suppose, for example, an instructor administers the same exam to 5 different 
sections of students with the following results: 

Section Students Average 
S1 21 74.7 
S2 20 73.9 
S3 12 71.8 
S4 22 79.4 
S5 23 73.8 

Overall 98 75.0 
 
While it is clear that section S4 scored the highest on average and section S3 the 
lowest, the instructor wants to test whether the exam means are significantly 
different across sections.   With each section’s scores arranged in consecutive 
columns, in Excel, the instructor uses the Data Analysis Add-In for a “ANOVA:  
Single Factor” which looks like the following: 
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 Choosing “OK” then brings up the following dialog box: 

 
Where you can choose the data range (“Input Range”), indicate whether the data is 
arranged in rows or columns, indicate whether the first row or column contains 
variable names (“Labels in First Row” or “Labels in First Column”), choose the 
significance level α (“Alpha”) for the test, and where you want the output.  For our 
example, this will generate the following output 
Anova: Single Factor      

       
SUMMARY       

Groups Count Sum Average Variance   
S1 21 1568 74.67 200.53   
S2 20 1478 73.90 503.36   
S3 12 862 71.83 301.24   
S4 22 1747 79.41 325.78   
S5 23 1698 73.83 252.97   

       
ANOVA       
Source of Variation SS df MS F P-value F crit 

Between Groups 606.152 4 151.538 0.4811 0.7495 2.4696 
Within Groups 29294.756 93 314.997    

       
Total 29900.908 97     
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In this example, there are 5 groups (K=5) and a total of 98 observations (n=98), from 
Eq. 5:10 above, the value of “F” in the ANOVA table is then calculated from: 
Eq. 5:11 

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑆𝑆𝑆𝑆𝑆𝑆/(𝐾𝐾 − 1)
𝑆𝑆𝑆𝑆𝑆𝑆/(𝑛𝑛 − 𝐾𝐾)

=
606.152/4

29294.756/93
= 0.4811 

The “F crit” in the ANOVA table is the value of Fα,(K-1),(n-K) with α=0.05.  Since Fcalc < 
Fcrit we Fail to Reject the null hypothesis that the group (section) means are equal to 
one another.  To find “F crit” in Excel for any specific level of significance α, 
numerator degrees of freedom DF1, and denominator degrees of freedom DF2, you 
would use “=F.INV.RT(α,DF1,DF2)” 
The “P-value” in the ANOVA table, is the probability in the right-hand tail of the F 
distribution starting at the calculated F statistic Fcalc.  An equivalent way to 
evaluate the null hypothesis is to Reject the null if the P-value < α, and Fail to Reject 
the null otherwise.  In our example, since the 0.7495 > 0.05 we Fail to Reject the 
null.  To find a P-value in Excel for a particular calculated Fcalc with numerator 
degrees of freedom DF1, and denominator degrees of freedom DF2, you would use 
“=F.DIST.RT(Fcalc,DF1,DF2)” 
For exam purposes on this type of problem, I would give you Summary and ANOVA 
tables similar to those above, but leave the values for “F,” “P-value,” and “F 
crit” blank.  It would be up to you to take the values out of the ANOVA table to 
calculate the appropriate Fcalc and find the appropriate “F crit” from the probability 
tables. 

B. Two-Way Analysis of Variance 
In a One-Way ANOVA, we are testing for differences in the population means across 
a single dimension – across the different Groups in the sample.  In a Two-Way 
ANOVA, we allow for the possibility that the population means may differ in at least 
two ways – across the different Groups, and across different Blocks.  Suppose for 
example, that you have a set of 5 automobiles (the Groups) that you want to test for 
differences in fuel consumption as measured by miles-per-gallon (MPG), among a set 
of 7 specific drivers (the Blocks).  In the language of ANOVA, each unique 
combination of a Group type and Block type is referred to as a “cell” in the 
experimental design.  The number of ways that we can assess whether there are 
differences in the population means within this design depends on whether we have 
a single observation or multiple observations for each Group (car) Block (driver) 
combination – that is, single or multiple observations per cell. 
If there is a single observation per cell, this is called a Two-Way ANOVA With-out 
Replication.  With a single observation per cell in our car/driver example, the data 
may look like the following: 
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As before, let K denote the number of Groups (cars, in our example, so K=5) and let 
H denote the number of Blocks (drivers, in our example, so H=7).  Then the total 
number of observations is n=KH and we can define three different Sum of Squares 
measures and associated degrees of freedom (DF): 
Eq. 5:12 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺:  𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐻𝐻�(𝑥̅𝑥𝑖𝑖. − 𝑥̿𝑥)2
𝐾𝐾

𝑖𝑖=1

   𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝐷𝐷𝐹𝐹𝐺𝐺 = 𝐾𝐾 − 1 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵:  𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐾𝐾��𝑥̅𝑥.𝑗𝑗 − 𝑥̿𝑥�
2

𝐻𝐻

𝑗𝑗=1

   𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝐷𝐷𝐹𝐹𝐵𝐵 = 𝐻𝐻 − 1 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒:  𝑆𝑆𝑆𝑆𝑆𝑆 = ���𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥̅𝑥𝑖𝑖.  − 𝑥̅𝑥.𝑗𝑗 − 𝑥̿𝑥�
2

𝐻𝐻

𝑗𝑗=1

 
𝐾𝐾

𝑖𝑖=1

   𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝐷𝐷𝐹𝐹𝐸𝐸 = (𝐾𝐾 − 1)(𝐻𝐻 − 1) 

Where 𝑥̅𝑥𝑖𝑖. is the sample mean for each Group type (cars) across Blocks (drivers, this 
is also called the “column means”), 𝑥̅𝑥.𝑗𝑗 is the sample mean for each Block type across 
Groups (called the “row means”) and as before, 𝑥̿𝑥 is the overall mean. 
To test the null hypothesis that the population means are the same across Groups 
(cars) we would compare SSG to SSE with the following F-statistic: 
Eq. 5:13 

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑆𝑆𝑆𝑆𝑆𝑆/(𝐾𝐾 − 1)

𝑆𝑆𝑆𝑆𝑆𝑆/(𝐾𝐾 − 1)(𝐻𝐻 − 1)
 𝑣𝑣𝑣𝑣.𝐹𝐹𝛼𝛼,(𝐾𝐾−1),(𝐾𝐾−1)(𝐻𝐻−1) 

And to test the null hypothesis that the population means are the same across 
Blocks (drivers) we would compare SSB to SSE with the following F-statistic: 
Eq. 5:14 

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑆𝑆𝑆𝑆𝑆𝑆/(𝐻𝐻 − 1)

𝑆𝑆𝑆𝑆𝑆𝑆/(𝐾𝐾 − 1)(𝐻𝐻 − 1)
 𝑣𝑣𝑣𝑣.𝐹𝐹𝛼𝛼,(𝐻𝐻−1),(𝐾𝐾−1)(𝐻𝐻−1) 
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In Excel, we would use the “ANOVA:  Two Factor without Replication” option in the 
Data Analysis ToolPack and in our car/driver example the output would look like the 
following: 

 
Given these results, we would Reject the null that population means are equal across 
Cars (Groups) at significance level α=0.05 because 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 2.7789 > 2.7762 = 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (or 
equivalently because the p-value = 0.0498 < 0.05 = α) and we would Fail to Reject the 
null that the population means are equal across Drivers (Blocks) because 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
1.330 < 2.508 = 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (equivalently because the p-value>α). 
If we have multiple observations for each Block (in our car/driver example, multiple 
observations of a particular driver in a particular car), this is called a Two Way 
ANOVA With Replication.  In Excel, an example of how your may be arranged is 
as follows: 
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In this example, we have 10 observations on each driver for each car.  Importantly, 
in the Excel ToolPack for this type of ANOVA, you must have the same number of 
observations per “cell” (car/driver combination).  The notation for how to calculate 
the specific sums of squares gets very messy, so I will present the summary names 
and their degrees of freedom.  Let m be the number of observations per cell.  Then 
we can define four different sum of squares measures: 
Eq. 5:15 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝐺𝐺𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜:  𝑆𝑆𝑆𝑆𝑆𝑆 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝐷𝐷𝐹𝐹𝐺𝐺 = 𝐾𝐾 − 1 
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵:  𝑆𝑆𝑆𝑆𝑆𝑆 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝐷𝐷𝐹𝐹𝐵𝐵 = 𝐻𝐻 − 1 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼:  𝑆𝑆𝑆𝑆𝑆𝑆 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝐷𝐷𝐹𝐹𝐼𝐼 = (𝐾𝐾 − 1)(𝐻𝐻 − 1) 
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒:  𝑆𝑆𝑆𝑆𝑆𝑆 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝐷𝐷𝐹𝐹𝐸𝐸 = 𝐻𝐻𝐻𝐻(𝑚𝑚 − 1) 

While the notion of there being differences in the population means across Groups 
(cars) or Blocks (drivers) is somewhat intuitive, the Interaction effect relates to the 
possibility that some combinations of the Group and Block effects may be different 
than others. 
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To test the null hypothesis that the population means are the same across Groups 
(cars) we would compare SSG to SSE with the following F-statistic: 
Eq. 5:16 

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑆𝑆𝑆𝑆𝑆𝑆/(𝐾𝐾 − 1)

𝑆𝑆𝑆𝑆𝑆𝑆/𝐻𝐻𝐻𝐻(𝑚𝑚− 1)
 𝑣𝑣𝑣𝑣.𝐹𝐹𝛼𝛼,(𝐾𝐾−1),𝐻𝐻𝐻𝐻(𝑚𝑚−1) 

To test the null hypothesis that the population means are the same across Blocks 
(drivers) we would compare SSB to SSE with the following F-statistic: 
Eq. 5:17 

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑆𝑆𝑆𝑆𝑆𝑆/(𝐻𝐻 − 1)

𝑆𝑆𝑆𝑆𝑆𝑆/𝐻𝐻𝐻𝐻(𝑚𝑚− 1)
 𝑣𝑣𝑣𝑣.𝐹𝐹𝛼𝛼,(𝐻𝐻−1),𝐻𝐻𝐻𝐻(𝑚𝑚−1) 

And to test whether or not there are Interaction effects, we would compare SSI to 
SSE with the following F-statistic:  
Eq. 5:18 

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑆𝑆𝑆𝑆𝑆𝑆/(𝐾𝐾 − 1)(𝐻𝐻 − 1)
𝑆𝑆𝑆𝑆𝑆𝑆/𝐻𝐻𝐻𝐻(𝑚𝑚− 1)

 𝑣𝑣𝑣𝑣.𝐹𝐹𝛼𝛼,(𝐾𝐾−1)(𝐻𝐻−1),𝐻𝐻𝐻𝐻(𝑚𝑚−1) 

In Excel, we would use the “ANOVA:  Two Factor without Replication” option in the 
Data Analysis ToolPack and in our car/driver example the ANOVA Table output 
would look like the following: 

 
With these results, the hypotheses and conclusions for α=0.05 are as follows: 

Population means equal across Groups (cars):  Reject because 5.01>2.4 
(equivalently, because the P-Value is less than α). 
Population means equal across Blocks (drivers):  Reject because 
2.796>2.127 (equivalently, because the P-Value is less than α). 
Interaction effects are not present:  Fail to Reject because 1.469<1.552 
(equivalently, because the P-Value is greater than α). 

Note that these conclusions are for a significance level of α=0.05.  If the significance 
level were set at a smaller value, say α=0.01, we would still Reject the first 
hypothesis above because the P-value 0.0006 is less than α.  However, we would Fail 
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to Reject the second hypothesis because the P-value 0.036 is now greater than α.  
Similarly, if we set α=0.1, we would Reject the hypothesis that there are no 
Interaction effects because it’s P-value of 0.075 is less than α. 
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Section 6. LINEAR REGRESSION 

Up to this point, other than examining some degree of association via a correlation, 
our examination of the relationship between two variables has been limited to 
comparing their means.  Linear Regression is a method of “explaining” the observed 
variation in some variable Y that is believed to be related in some way to the 
variable X.  Y is denoted the “Dependent” variable; X is denoted the “Explanatory” 
variable.  We begin by expression Y as a function of X:  Y = f(X) 

A. The Bivariate Regression Model 
When there is a single right-hand-side variable, the regression model is known as a 
bivariate model.  Linear Regression assumes that the relationship between Y and X 
is linear in the population parameters β0 and β1 and a random error term ε 
Eq. 6:1 

𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋 + 𝜀𝜀 

β0 is the intercept;  β1 is the slope; ε is the error term and is the difference between 
the actual observed X-Y pairs and the straight line – the regression line. 

 
Given this structure, we need an estimator (a rule) that uses the observed values of 
the variables Y and X to calculate sample estimates of the population parameters β0 
and β1.  Recall that for a single random variable with a population mean µ, our 
estimator for the population mean was the sample mean 𝑋𝑋�. 
Letting Yi and Xi represent individual observations out of a sample of size n of the 
variables Y and X, the assumptions of the Linear Regression model are as follows: 

a. The relationship between Y and X is linear in the population 
parameters β0 and β1 and a random error term ε: 𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑖𝑖 + 𝜀𝜀𝑖𝑖 

b. The values of X are either fixed or a random variable that is 
independent of the error term εi 

Y = 3.00+ 0.5 X 
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c. The random error term εi is distributed with a mean of zero and a 
constant variance σ2:  εi ~ (0, σ2) 

The estimator that we will use to calculation sample estimates for the population 
parameters β0 and β1 and a random error term ε is the Least Squares Procedure 
which is based on finding the sample estimators b0 (for β0) and b1 (for β1) that 
minimize the Sum of Squared Errors – SSE – defined as follows: 
Eq. 6:2 

𝑆𝑆𝑆𝑆𝑆𝑆 = �𝑒𝑒𝑖𝑖2 

= �(𝑌𝑌𝑖𝑖 − (𝑏𝑏0 + 𝑏𝑏1𝑋𝑋𝑖𝑖))
2
 

= ��𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖�
2
 

Taking derivatives of SSE with respect to b0 and b1, setting them equal to zero and 
solving for b0 and b1 gives (after some manipulation) the following Least Squares 
estimators of β0 and β1 
Eq. 6:3 

𝑏𝑏0 = 𝑌𝑌� − 𝑏𝑏1𝑋𝑋� 

𝑏𝑏1 =
∑(𝑋𝑋𝑖𝑖 − 𝑋𝑋�)(𝑌𝑌𝑖𝑖 − 𝑌𝑌�)

∑(𝑋𝑋𝑖𝑖 − 𝑋𝑋�)2
 

The Least Squares estimator of the random error term is: 
Eq. 6:4 

𝑒𝑒𝑖𝑖 = 𝑌𝑌𝑖𝑖 − 𝑏𝑏0 − 𝑏𝑏1𝑋𝑋𝑖𝑖 = 𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖. 

Note that so long as the regression equation includes an intercept term, b0, the Least 
Squares procedure will give the result: ∑𝑒𝑒𝑖𝑖 = 0.  The Least Squares Estimator for the 
variance of ε, σ2 is denoted S2 and given by: 
Eq. 6:5 

𝑆𝑆2 =
𝑆𝑆𝑆𝑆𝑆𝑆
𝑛𝑛 − 2

 

Given the assumptions of the Least Squares procedure in (4) above, the Least 
Squares Estimators b0 and b1 are Unbiased: 
Eq. 6:6 

𝐸𝐸(𝑏𝑏0) = 𝛽𝛽0 

𝐸𝐸(𝑏𝑏1) = 𝛽𝛽1 
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And among the class of linear estimators, they have the minimum variance.  Thus 
they are termed BLUE (Best Linear Unbiased Estimators). 

As I noted above, the goal of Linear Regression is to “explain” the observed variation 
in the variable Y.  A measure of the degree of variation in Y that is explained by the 
regression is known as the Coefficient of Determination or the regression R2.  The 
observed variation in Y can be broken down as follows: 
Eq. 6:7 

�(𝑌𝑌𝑖𝑖 − 𝑌𝑌�)2 = ��𝑌𝑌�𝑖𝑖 − 𝑌𝑌��
2

+ �𝑒𝑒𝑖𝑖2 
𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑆𝑆𝑆𝑆𝑆𝑆 

The regression R2 is then defined as:  𝑅𝑅2 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆

.  So long as the regression 
equation includes an intercept term, the R2 is bound between zero and one and gives 
the proportion of the variation in Y explained by the regression equation.  Note that 
in a regression model with only one right-hand-side variable X, the regression R2 is 
simply the squared sample correlation between X and Y. 

Expanding our assumptions concerning the random error term ε to include that it is 
Normally distributed, we can derive the distributional properties of the estimators b0 
and b1. 
Eq. 6:8 

𝑏𝑏0~𝑁𝑁�𝛽𝛽0, �
1
𝑛𝑛

+
𝑋𝑋�2

(𝑛𝑛 − 1)∑(𝑋𝑋𝑖𝑖 − 𝑋𝑋�)2
� 𝜎𝜎2� 

𝑏𝑏1~𝑁𝑁�𝛽𝛽1,
𝜎𝜎2

∑(𝑋𝑋𝑖𝑖 − 𝑋𝑋�)2
� 

For the sample estimators of the variances of b0 and b1, simply replace σ2 with S2 so 
that: 
Eq. 6:9 

𝑆𝑆𝑏𝑏0
2 = �

1
𝑛𝑛

+
𝑋𝑋�2

(𝑛𝑛 − 1)∑(𝑋𝑋𝑖𝑖 − 𝑋𝑋�)2
� 𝑆𝑆2 

𝑆𝑆𝑏𝑏1
2 =

𝑆𝑆2

∑(𝑋𝑋𝑖𝑖 − 𝑋𝑋�)2
 

We can then test hypotheses concerning the intercept and slope parameters using 
the t-distribution.  For example, to test the hypothesis that the slope parameter is 
equal to a constant k, we have the following: 
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Eq. 6:10 

𝐻𝐻0:  𝛽𝛽1 = 𝑘𝑘 

𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑏𝑏1 − 𝑘𝑘
𝑆𝑆𝑏𝑏1

  

We then compare tcalc to the value of the t distribution with (n-2) degrees of freedom 
and a significance value of α/2 for a two-tailed test or α for a one tailed test. 

While the various formulas given above may appear somewhat intimidating, in 
practice we rely on standard statistical software packages to do all the calculations.  
The results produced by the Excel regression Add-on package look like the following: 
SUMMARY OUTPUT      

Regression Statistics      
Multiple R 0.8164      
R Square 0.6665      
Adjusted R Square 0.6295      
Standard Error 1.2366      
Observations 11      

       
ANOVA       

 Df SS MS F Significanc
e F 

 

Regression 1 27.510 27.510 17.990 0.002  
Residual (SSE) 9 13.763 1.529    
Total 10 41.273     

       
 Coefficients Standard 

Error 
t Stat P-value Lower 95% Upper 95% 

Intercept 3.000 1.125 2.667 0.026 0.456 5.544 
X1 0.500 0.118 4.241 0.002 0.233 0.767 

The “R Square” in the table above is the R2 discussed in Eq. 6:9 above and for this 
example, indicates that the regression explains 66.65% of the observed variation in 
Y.  From the ANOVA table, the regression SSE is 13.763 and S2=1.529.  The 
estimated value for b0 and b1 are the values in the “Coefficients” column for 
“Intercept” and “X1” respectively.  The values for Sb0 and Sb1 are given in the 
“Standard Error” column.  The values in the “t Stat” and “P-value” columns are to 
test the specific hypotheses that the intercept and slope parameters β0 and β1 are 
equal to zero against a two-tailed alternative.  Looking at these values for X1, the t 
stat of 4.241 and P-value of 0.002 indicates that we would reject the null that β1 is 
equal to zero at a 95% or 99% confidence level and would have to set α less than 0.2% 
before we would fail to reject. 

The regression output above can also be used to test specific hypotheses regarding 
the size of β0 or β1 such as that in Eq. 6:10 above.  For example, suppose we wish to 
test the hypothesis 𝐻𝐻0: 𝛽𝛽1 = 0.35 versus the alternative hypothesis 𝐻𝐻𝐴𝐴: 𝛽𝛽1 > 0.35 at a 
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confidence level of 90% (α=10%).  Using the information for b1 (the Coefficient for X1) 
and 𝑆𝑆𝑏𝑏1(the Standard Error of b1) from the regression results table and Eq. 6:10 we 
get: 
Eq. 6:11 

𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
0.5 − 0.35

0.118
= 1.273 

The degrees of freedom for this test is 9 (the number of observations n minus 2) 
which gives a (one tailed) critical t of 𝑡𝑡(9,0.1) = 1.383 > 𝑡𝑡_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 so we would Fail to 
Reject the Null Hypothesis. 

B. Correlation Analysis 

Sample covariance and correlation statistics as measures of co-movement between 
two random variables X and Y were introduced in Section 2.D., Eq. 2:17 and Eq. 
2:15Eq. 2:18  The sample correlation coefficient rxy (the estimator for the population 
correlation coefficient ρxy) is bound on the interval [-1, 1] and is calculated based on 
the sample covariance between X and Y, SXY and the sample standard deviations of 
X and Y, SX and SY, as follows: 
Eq. 6:12 

𝑟𝑟𝑋𝑋𝑋𝑋 =
𝑆𝑆𝑋𝑋𝑋𝑋
𝑆𝑆𝑋𝑋𝑆𝑆𝑌𝑌

 

Negative values of rxy imply an inverse relationship between X and Y with higher 
values of X being associated with lower values of Y.  Positive values of rxy imply an 
upward sloping relationship – higher X, higher Y.  (Note that this is a measure of 
association and says little if anything about causation). Values close to -1 or 1 
imply that observed X-Y pairs fall almost exactly on a straight line with values 
closer to zero suggesting little if any statistical association between the variables. 

The sample correlation coefficient between X and Y is directly related to the 
estimated regression slope coefficient b1 from the Bivariate Regression model 
discussed above, as follows: 
Eq. 6:13 

𝑏𝑏1 =
𝑆𝑆𝑌𝑌
𝑆𝑆𝑋𝑋
𝑟𝑟𝑋𝑋𝑋𝑋 

Therefore, a test of the hypothesis 𝐻𝐻0: 𝛽𝛽1 = 0 is a direct test of the hypothesis 
𝐻𝐻0: 𝜌𝜌𝑋𝑋𝑋𝑋 = 0.  However, we can also construct a test statistic based on sample 
correlation: 
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Eq. 6:14 

𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑟𝑟𝑋𝑋𝑋𝑋√𝑛𝑛 − 2

�1 − 𝑟𝑟𝑋𝑋𝑌𝑌2
 

Versus 𝑡𝑡(𝑛𝑛−2,𝛼𝛼) for a one tailed test and 𝑡𝑡(𝑛𝑛−2,𝛼𝛼2) for a two tailed test.  For example, 
suppose you have a sample of n=25 observations on the variables X and Y, and the 
calculated sample correlation coefficient is 𝑟𝑟𝑋𝑋𝑋𝑋 = 0.36.  Then tcalc from Eq. 6:14 is: 
Eq. 6:15 

𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
0.36√25 − 2
√1 − 0.362

= 1.851 

For α=5%, since 𝑡𝑡(23,0.025) = 2.064, we would fail to reject 𝐻𝐻0: 𝜌𝜌𝑋𝑋𝑋𝑋 = 0 against a two-
tailed alternative hypothesis.  However, since 𝑡𝑡(23,0.05) = 1.711, we would reject H0 in 
favor of 𝐻𝐻𝐴𝐴: 𝜌𝜌𝑋𝑋𝑋𝑋 > 0. 

The t-statistic presented in Error! Bookmark not defined.Eq. 6:14 is a 
straightforward and robust test of the null hypothesis 𝐻𝐻0: 𝜌𝜌𝑋𝑋𝑋𝑋 = 0.  However, for 
values other than zero, the sampling distribution of this test statistic becomes highly 
skewed.  To deal with this issue, we can use what is known as Fisher’s zr 
transformation, as follows: 
Eq. 6:16 

𝑧𝑧𝑟𝑟 =
1
2

ln �
1 + 𝑟𝑟𝑋𝑋𝑋𝑋
1 − 𝑟𝑟𝑋𝑋𝑋𝑋

� 

Where ln represents the natural logarithm.  The sampling distribution of zr is 
Normal with a variance of 1

𝑛𝑛−3
, where n is the sample size.  Thus an α% confidence 

interval for zr can be computed as follows: 
Eq. 6:17 

𝑧𝑧𝑟𝑟 ± 𝑍𝑍𝛼𝛼/2�
1

𝑛𝑛 − 3
  

And a test of the null hypothesis 𝐻𝐻0: 𝜌𝜌𝑋𝑋𝑋𝑋 = 𝜌𝜌0 can be conducted using the calculated 
Z statistic: 
Eq. 6:18 

𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑧𝑧𝑟𝑟 − 𝑧𝑧𝜌𝜌0

� 1
𝑛𝑛 − 3
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Where zr is the Fisher transformed value of rxy and 𝑧𝑧𝜌𝜌0is the Fisher transformed 
value of 𝜌𝜌0 from the null hypothesis.  The value of Zcalc is compared to Zα/2 for a two-
tailed test and to Zα for a one tailed test. 

For example, suppose you have a sample of n=45 observations on the variables X and 
Y, and the calculated sample correlation coefficient is 𝑟𝑟𝑋𝑋𝑋𝑋 = 0.68.  To test the null 
hypothesis 𝐻𝐻0: 𝜌𝜌𝑋𝑋𝑋𝑋 = 0.5, use Eq. 6:16 and Eq. 6:18 to get: 
Eq. 6:19 

𝑧𝑧𝑟𝑟 =
1
2

ln �
1 + 0.68
1 − 0.68

� = 0.8921 

𝑧𝑧𝜌𝜌0 =
1
2

ln �
1 + 0.5
1 − .05

� = 0.5493 

𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
0.8921 − 0.5493

� 1
45 − 3

= 1.813 

For α=5%, since Z0.025=1.96, we would fail to reject the null versus a two tailed 
alternative.  However, since Z0.05=1.645, we would reject H0 in favor of 𝐻𝐻𝐴𝐴: 𝜌𝜌𝑋𝑋𝑋𝑋 > 0.5. 

 
C. Bivariate Regression with Multiple Groups 

The Bivariate Regression model presented in Section 6.A, above, provides a 
straightforward method for testing whether there is a significant (that is, non-zero) 
correlation between two variables X and Y.  As discuss above, the intercept term 𝛽𝛽0 
is interpreted as the mean value of Y after accounting for the effect of X.  The 
slope term 𝛽𝛽1 is interpreted as the marginal effect on Y of a one unit increase in 
X – if X increases by one unit, Y changes by 𝜷𝜷𝟏𝟏 units.  However, suppose there 
are multiple distinct subgroups identifiable in the data.  An extension of the 
Bivariate Model can be specified to test for differences in the mean value of Y (after 
accounting for the effects of X) and the marginal effect of X on Y (that is, the 
correlation between X and Y) among the different subgroups in the data. 

To allow for (potential) differences in the mean of Y and the degree of correlation 
between X and Y among subgroups, we make use of what are known as a dummy 
variables – a 0/1 (yes/no) variables equal to one if a particular X-Y pair is part of a 
specific subgroup, and zero otherwise.  For example, suppose you have 3 distinct 
subgroups in a set of data.  (This formulation can accommodate any number of 
subgroups provided that there are a sufficient number of observations – e.g. 10 or 
more – in each subgroup).  Choose one of the groups as a “reference” group.  While 
the interpretation of the resulting individual regression coefficients will change 
depending on which group is chosen as the reference group, the overall regression 
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results will not, so the choice of reference group is arbitrary.  For this example of 3 
subgroups, let group 3 be the reference group.  Define D1 to be a dummy variable 
equal to one if an observation is part of group 1 and zero otherwise.  Similarly for a 
dummy variable D2.  Next, create the variables X×D1 and X×D2.  In Excel, such data 
could look something like the following: 

 

Thus, when D1=D2=0, the observation relates to Group 3.  Next, using the D1, D2, 
X×D1, and X×D2, variables, specify the regression equation: 
Eq. 6:20 

𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋 + 𝛼𝛼1𝐷𝐷1 + 𝛼𝛼2𝐷𝐷2 + 𝛾𝛾1(𝑋𝑋 × 𝐷𝐷1) + 𝛾𝛾2(𝑋𝑋 × 𝐷𝐷2) + 𝜀𝜀 

This is the “Unrestricted” regression equation.  It is unrestricted in the sense that 
both the intercept terms (the means of Y) and slope terms (the correlations between 
Y and X) are allowed to differ among all the subgroups.  For purposes of testing 
whether the slope terms are equal across the subgroups, the key statistic that we 
need from this regression is the sum of squared errors, SSEU and its degrees of 
freedom DFU.  Estimating the regression in Excel, these statistics are reported in the 
regression ANOVA table as the “Residual” df and SS as in the example below: 
ANOVA      

 df SS MS F Significance F 
Regression 1 12010.4 12010.4 20.725 9.016E-06 
Residual 208 120537.8 579.509   
Total 209 132548.2    

When D1=D2=0 in Eq. 6:20 for Group 3, the regression equation reduces to the 
simple Bivariate Regression: 
Eq. 6:21 

𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋 + 𝜀𝜀 
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So 𝛽𝛽0 measures the intercept for Group 3 and 𝛽𝛽1 measures the slope for Group 3.  
When D1=1 and D2=0, for Group 1, the regression equation becomes: 
Eq. 6:22 

𝑌𝑌 = (𝛽𝛽0 + 𝛼𝛼1) + (𝛽𝛽1 + 𝛾𝛾1)𝑋𝑋 + 𝜀𝜀 

So that the intercept and slope for Group 1 are 𝛽𝛽0 + 𝛼𝛼1 and 𝛽𝛽1 + 𝛾𝛾1, respectively.  
Last, when D1=0 and D2=1, the intercept and slope for Group 2 are, 𝛽𝛽0 + 𝛼𝛼2 and 𝛽𝛽1 +
𝛾𝛾2, respectively.  

To test the null hypothesis that the slope terms are equal across all the groups, the 
formal hypothesis becomes 𝐻𝐻0: 𝛾𝛾1 = 𝛾𝛾2 = 0.  Imposing the null hypothesis restriction 
on our regression equation in Eq. 6:20, results in a “Restricted” regression equation: 
Eq. 6:23 

𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋 + 𝛼𝛼1𝐷𝐷1 + 𝛼𝛼2𝐷𝐷2 + 𝜀𝜀 

Estimating this restricted regression equation and taking the sum of squared errors 
and degrees of freedom as SSER and DFR, we can calculate an F-statistic to test our 
null hypothesis: 
Eq. 6:24 

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
(𝑆𝑆𝑆𝑆𝐸𝐸𝑅𝑅 − 𝑆𝑆𝑆𝑆𝐸𝐸𝑈𝑈)/(𝐷𝐷𝐹𝐹𝑅𝑅 − 𝐷𝐷𝐹𝐹𝑈𝑈)

𝑆𝑆𝑆𝑆𝐸𝐸𝑈𝑈/𝐷𝐷𝐹𝐹𝑈𝑈
 

This Fcalc is then compared to the critical value 𝐹𝐹(𝛼𝛼,𝐷𝐷𝐹𝐹𝑅𝑅 − 𝐷𝐷𝐹𝐹𝑈𝑈,𝐷𝐷𝐹𝐹𝑈𝑈).  Note that this 
framework is flexible enough to allow for the joint test of the slopes and/or intercept 
terms or any subset of either or both. 

D. Alternative Tests for Differences in Sub-Sample Correlations 

In Section 6.B, above, we introduced Fisher’s zr transformation (Eq. 6:16).  This 
transformation of the sample correlation coefficient can also be used to test for the 
equality of correlations across two or more subgroups.  For two subgroups, suppose 
you have the sample correlation coefficient for the first group r1 based on n1 
observations, and similarly for the second group, r2 based on n2 observations.  First 
calculate the zr transformations as: 
Eq. 6:25 

𝑧𝑧𝑟𝑟1 =
1
2

ln �
1 + 𝑟𝑟1
1 − 𝑟𝑟1

�     𝑧𝑧𝑟𝑟2 =
1
2

ln �
1 + 𝑟𝑟2
1 − 𝑟𝑟2

� 

Then, to test the null hypothesis that the population correlation coefficients for these 
two subgroups are equal to one another: 𝐻𝐻0:𝜌𝜌1 = 𝜌𝜌2, construct the calculated Z-
statistic: 
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Eq. 6:26 

𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑧𝑧𝑟𝑟1 − 𝑧𝑧𝑟𝑟2

� 1
𝑛𝑛1 − 3 + 1

𝑛𝑛2 − 3

 

The Zcalc in Eq. 6:24 is then compared to Zα for a one-tailed alternative or Zα/2 for a 
two-tailed alternative. 

For example, suppose you have two independent subgroup samples with sample 
correlation coefficients, sample sizes, and zr transformations as follows: 

Group 1 Sample Correlation: r1 0.582 
Group 1 Sample Size: n1 123 
Group 1 zr transformation: 𝑧𝑧𝑟𝑟1 0.6655 
Group 1 Sample Correlation: r2 0.413 
Group 1 Sample Size:  n2 117 
Group 1 zr transformation: 𝑧𝑧𝑟𝑟2 0.4392 

Then from Eq. 6:26, the calculated Z-statistic is: 
Eq. 6:27 

𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
0.6655 − 0.4392

� 1
123 − 3 + 1

117 − 3

= 1.729 

For α=5%, since Zα/2=1.96, we would fail to reject the null hypothesis of equal 
population correlations against a two-tailed alternative. 

The zr transformation can also be used to test for the joint equality among a group of 
sample correlation coefficients.  Suppose you have k subgroups and wish to test the 
null hypothesis 𝐻𝐻0:𝜌𝜌1 = 𝜌𝜌2 = ⋯ = 𝜌𝜌𝑘𝑘 against the alternative hypothesis that H0 is not 
true.  Based on the zr transformations of the sample correlation coefficients, and 
subgroup sample sizes, we can calculate the chi-square test statistic as follows: 
Eq. 6:28 

𝜒𝜒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 = ���𝑛𝑛𝑗𝑗 − 3�𝑧𝑧𝑟𝑟𝑗𝑗
2 � −

[∑ �𝑛𝑛𝑗𝑗 − 3�𝑧𝑧𝑟𝑟𝑗𝑗]
𝑘𝑘
𝑗𝑗=1

2

∑ (𝑛𝑛𝑗𝑗 − 3)𝑘𝑘
𝑗𝑗=1

𝑘𝑘

𝑗𝑗=1

 

We compare this to the upper chi-square value with 𝑘𝑘 − 1 degrees of freedom at the 
chosen α level.  While this equation looks a bit intimidating, it is fairly 
straightforward to calculate in Excel.  Suppose you have four subgroups with sample 
correlation statistics, sample sizes and zr transformations as follows: 
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Group 

Sample 
Corr. 
Coeff. 

Sample 
Sizes zr trans. nj-3 �𝑛𝑛𝑗𝑗 − 3�𝑧𝑧𝑟𝑟𝑗𝑗

2  �𝑛𝑛𝑗𝑗 − 3�𝑧𝑧𝑟𝑟𝑗𝑗 
1 0.245 73 0.2501 70 4.378 17.506 
2 0.351 86 0.3666 83 11.154 30.426 
3 0.277 67 0.2844 64 5.178 18.204 
4 0.581 91 0.6640 88 38.795 58.429 

Sums    305 59.505 124.565 

 The calculated chi-square statistic from Eq. 6:28 is then: 
Eq. 6:29 

𝜒𝜒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 = 59.505 −
(124.565)2

305
= 8.631 

At α=5%, since the upper 𝜒𝜒2 critical value with 3 degrees of freedom is 7.815, we 
would reject the null hypothesis that the four groups have the same population 
correlation. 

E. ANOVA as Multiple Regression 

The preceding discussion involving a regression with a single right-hand-side 
variable is known as a bivariate regression.  When additional X variables are added 
to the equation, it is called a multiple regression.  The formulas for the Least 
Squares parameters in a multiple regression can get very messy in summation form 
– in particular, the formulas change every time you add another right-hand-side 
variable – and we will not go into that level of detail.  However, I do want to go into a 
special version of multiple regression for ANOVA. 

Consider the Car-Driver two way ANOVA from the ANOVA lecture outline where 
there were 5 different cars and seven different drivers and the variable Y is the gas 
mileage for the car-driver combinations.  Define the variable C1 to be an indicator 
variable equal to one if the observed Y is associated with car 1 and zero otherwise.  
Similarly define the variables C2, C3, and C4, for cars 2-4, and D1, … D6 for drivers 1-
6.  Note that we need only four “car” variables to categorize the 5 cars because if 
C1=C2=C3=C4=0 we know that the observation is associated with car 5.  Similarly, we 
only need 6 driver variables to categorize the 7 drivers.  The regression equation is 
then: 
Eq. 6:30 

𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝐶𝐶1 + 𝛽𝛽2𝐶𝐶2 + 𝛽𝛽3𝐶𝐶3 + 𝛽𝛽4𝐶𝐶4 + 𝛽𝛽5𝐷𝐷1+𝛽𝛽6𝐷𝐷2 + 𝛽𝛽7𝐷𝐷3 + 𝛽𝛽8𝐷𝐷4 + 𝛽𝛽9𝐷𝐷5 + 𝛽𝛽10𝐷𝐷6 + 𝜀𝜀 

Since all the right-hand-side variables are zero-one indicator variables, the intercept 
term β0 has a specific interpretation.  When all the “C” and “D” variables are equal to 
zero it implies we are looking at the value of Y for car 5, driver 7, so β0 is the mean 
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mileage for car 5, driver 7.  The coefficients on the other “C” and “D” variables 
measure how different those combinations are compared to car 5, driver 7.  In this 
context then, car 5, driver 7 are called the “reference” categories.  For this example, 
the data in Excel would look like the following: 

 

Including all 4 of the car variables and all 6 of the driver variables, the Excel 
regression output is as follows: 
SUMMARY OUTPUT      

Regression Statistics      
Multiple R 0.6657      
R Square 0.4431      
Adjusted R 
Square 

0.2111      

Standard Error 2.0799      
Observations 35      

       
ANOVA       

 df SS MS F Significance F 
Regression 10 82.617 8.262 1.910 0.094  
Residual (SSE) 24 103.819 4.326    
Total 34 186.437     

       
 Coefficients Standar

d Error 
t Stat P-value Lower 

95% 
Upper 
95% 

Intercept 18.598 1.1660 15.9501 0.0000 16.1912 21.0042 
C1 -0.691 1.1117 -0.6219 0.5398 -2.9859 1.6031 
C2 -2.384 1.1117 -2.1447 0.0423 -4.6788 -0.0898 
C3 -3.044 1.1117 -2.7383 0.0115 -5.3388 -0.7498 
C4 -0.529 1.1117 -0.4754 0.6388 -2.8231 1.7659 
D1 -0.858 1.3154 -0.6523 0.5204 -3.5729 1.8569 
D2 1.468 1.3154 1.1160 0.2755 -1.2469 4.1829 
D3 -0.496 1.3154 -0.3771 0.7094 -3.2109 2.2189 
D4 2.186 1.3154 1.6618 0.1096 -0.5289 4.9009 
D5 0.266 1.3154 0.2022 0.8415 -2.4489 2.9809 
D6 0.57 1.3154 0.4333 0.6687 -2.1449 3.2849 

In order to test the hypotheses that there are no differences across cars or drivers, 
we estimate two additional “restricted” versions of the regression – one that forces 
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all the car effects to be zero (it leaves out the car variables) and another that forces 
all the driver effects to be zero.  The general form of the test statistic for these 
hypotheses is as follows: 
Eq. 6:31 

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
(𝑆𝑆𝑆𝑆𝐸𝐸𝑅𝑅 − 𝑆𝑆𝑆𝑆𝐸𝐸𝑈𝑈)/(𝐷𝐷𝐹𝐹𝑅𝑅 − 𝐷𝐷𝐹𝐹𝑈𝑈)

𝑆𝑆𝑆𝑆𝐸𝐸𝑈𝑈/𝐷𝐷𝐹𝐹𝑈𝑈
~𝐹𝐹(𝐷𝐷𝐹𝐹𝑅𝑅 − 𝐷𝐷𝐹𝐹𝑈𝑈,𝐷𝐷𝐹𝐹𝑈𝑈) 

Where SSEU is the SSE from the “unrestricted” regression above, DFU is the degrees 
of freedom for the unrestricted regression, SSER is the SSE from a regression that 
“restricts” either the car effects or the driver effects to be zero.  For this example, the 
ANOVA tables from the two “restricted” regressions are as follows: 
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ANOVA No Driver Effects    
 df SS MS F Significa

nce F 
Regression 4 48.085 12.021 2.607 0.055 
Residual (SSE) 30 138.352 4.612   
Total 34 186.437    

      
ANOVA No Car Effects    

 df SS MS F Significa
nce F 

Regression 6 34.533 5.755 1.061 0.409 
Residual (SSE)  28 151.904 5.425   
Total 34 186.437    

To test the null hypothesis of no driver effects we would then use: 
Eq. 6:32 

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
(138.352 − 103.819)/(30 − 24)

103.819/24
= 1.33 

At a significance value of α=0.05, the critical F for 6 and 24 degrees of freedom is 
2.508 so we would fail to reject the null that there are no driver effects.  To test for 
car effects we would use: 
Eq. 6:33 

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
(151.904 − 103.819)/(28 − 24)

103.819/24
= 2.779 

Since the 5% critical F for 4 and 24 degrees of freedom is 2.776, we would reject the 
null hypothesis of no car effects. 

While compared to the simple two-way ANOVA with no replication, the foregoing 
mat seem a bit cumbersome, the utility of using a multiple regression framework for 
ANOVA is that you can include any number of different category groups and there is 
no requirement that you have an equal number of observations in repeated designs. 
 
 

 

 
  



SECTION 7 ECONOMETRICS 461 | LECTURE OUTLINE
  

CRAIG SCHULMAN  |  TEXAS A&M UNIVERSITY  |  DEPARTMENT OF ECONOMICS   
 

 

97 

Section 7. NONPARAMETRIC STATISTICAL TESTS 

A. Introduction 

The confidence intervals and statistical tests presented in Section 4 – Section 6 can 
be described as parametric statistical tests in the sense that we made specific 
assumptions about one or more of the population parameters that characterize the 
underlying probability distributions of for which the tests were used.  These types of 
tests are entirely appropriate when the level of measurement of the variables under 
consideration are interval or ratio data (see Section 1.C and Section 1.D).  However, 
we are quite often confronted with questions related to categorical data – does a 
particular observation for a variable fall in a particular category?  To address these 
types of questions, we emplo0y what are known as nonparametric or distribution 
free statistical tests.  Two such tests are presented in this section: the Chi-Square 
Goodness-of-Fit test, and the Chi-Square Independence test. 

B. Chi-Square Goodness-of-Fit Test 

In a wide range of applications, the data analyst is confronted with the question of 
whether a set of observed categorical data are consistent with (or “fit”) a particular 
distribution.  That is, in the underlying population represented by a sample, are the 
observed cell frequencies (the number of observations that fall in a particular 
category) different from the expected cell frequencies.  The general form of the test 
begins with a set of category frequency counts, as follows: 

Category Observed Frequency Count 

C1 O1 

C2 O2 

… … 

CK OK 

Total Obs. n 

Where Ci is one of K mutually exclusive categories, Oi is the observed frequency 
count for category i, and n is the total number of observations.  The assumptions 
underlying the chi-square goodness-of-fit test are as follows:  a) Categorical/nominal 
data representing mutually exclusive categories are used in the analysis; b) The data 
represent a sample of n independent observations; c) The expected frequency of each 
category (or cell) is 5 or greater. 
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If there are K different categories of outcomes, Oi is the number of observed 
outcomes for category i, and Ei is the number of expected outcomes for category i 
(based on the distribution postulated in the null hypothesis), the null hypothesis to 
be tested is, 𝐻𝐻0:𝑂𝑂𝑖𝑖 = 𝐸𝐸𝑖𝑖 for all K categories, versus the alternative hypothesis 
𝐻𝐻𝐴𝐴:  𝑂𝑂𝑖𝑖 ≠ 𝐸𝐸𝑖𝑖 for at least one category.  The following chi-square statistic then provides 
a test of the null hypothesis that the data are consistent with (“fit”) the hypothesized 
distribution: 
Eq. 7:1 

𝜒𝜒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 = �
(𝑂𝑂𝑖𝑖 − 𝐸𝐸𝑖𝑖)2

𝐸𝐸𝑖𝑖

𝐾𝐾

𝑖𝑖=1

 

This is distributed as 𝜒𝜒(𝐾𝐾−1)
2  and is always evaluated as a one-tailed (upper or right 

hand value) alternative.  Thus we would reject the null hypothesis if 𝜒𝜒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 >
𝜒𝜒𝐾𝐾−1,𝛼𝛼
2  (𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢).  For example, suppose you have data that reflect 5 different 

categories of outcomes, with observed and expected outcomes as follows: 
Category Observed Expected (𝑂𝑂𝑖𝑖 − 𝐸𝐸𝑖𝑖)2

𝐸𝐸𝑖𝑖
 

1 35 50 4.50 
2 40 30 3.33 
3 20 12 5.33 
4 1 6 4.17 
5 4 2 2.00 

 
𝜒𝜒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 = �

(𝑂𝑂𝑖𝑖 − 𝐸𝐸𝑖𝑖)2

𝐸𝐸𝑖𝑖

𝐾𝐾

𝑖𝑖=1

= 
19.33 

 
For 𝛼𝛼 = 0.05, the upper critical value 𝜒𝜒42 = 9.49 so we would reject the null 
hypothesis. 

This type of test can be used for many types of discrete probability distributions.  As 
another example, suppose you roll a six-sided die 120 times and wish to test whether 
the die is “fair.”  With a fair die, the probability of any individual outcome {1, 2, …, 6} 
on a particular roll is 1/6.  Thus, with a sample of n=120 rolls, the expected 
frequency of each possible outcome under the null hypothesis of a “fair” die is: 𝑛𝑛𝑛𝑛 =
120 × 1

6
= 20.  Using the framework above, suppose you observe outcome frequencies 

as shown in the following table: 
 
 
 



SECTION 7 ECONOMETRICS 461 | LECTURE OUTLINE
  

CRAIG SCHULMAN  |  TEXAS A&M UNIVERSITY  |  DEPARTMENT OF ECONOMICS   
 

 

99 

Category Observed 
Frequency (Oi) 

Expected 
Frequency (Ei) 

(𝑂𝑂𝑖𝑖 − 𝐸𝐸𝑖𝑖)2

𝐸𝐸𝑖𝑖
 

1 20 20 0 
2 14 20 1.8 
3 18 20 0.2 
4 17 20 0.45 
5 22 20 0.2 
6 29 20 4.05 

Totals 120 120 6.70 

Thus, from Eq. 7:1, 𝜒𝜒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 = 6.70 versus 𝜒𝜒(5,0.05)
2 = 11.07.  We would therefore fail to 

reject the null of a “fair” die. 
C. Chi-Square Test of Homogeneity/Independence 

The Chi-Square Goodness-of-Fit Test presented above can also be adapted for a test 
of homogeneity or independence in categorical data.  In the underlying 
population(s) represented by a sample(s), are the observed cell frequencies (the 
number of observations that fall in a particular category) different from the expected 
cell frequencies.  Both of these tests have the same basic form but a slightly different 
predicate in terms of the nature of the data. 

In a test of homogeneity, there are k independent random samples and within each 
sample, there are m mutually exclusive categories.  For example, there are k=8 
different Recitation sections as part of ECMT 461, and each student in each section 
can be categorized into one of m=4 different classifications: {U1, U2, U3, U4}.  The 
Chi-Square test of homogeneity could then be used to test whether the distribution 
of classifications are statistically different across the sections.  
In a test of independence, there is a single overall random sample that can be 
categorized along two different dimensions.  This is a type of two-way contingency 
table.  For example, suppose a random sample of size n can be categorized according 
to Factor A with with k distinct outcomes and Factor B with m distinct outcomes of 
the form: 
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  Factor A  
  A1 A2 … Ak Row Totals 
 B1 O11 O12 … O1k nB1 

B2 O21 O22 … O2k nB2 

… … … … … … 
Bm Om1 Om2 … Omk nBm 

Column Totals nA1 nA2 … nAk n 
 

Where O11 is the number of observations (frequency count) that fall into the 
mutually exclusive combination of factor A1 and B1 (or, in the context of a 
homogeneity test, the number of observations in sample A1 that fall into category 
B1).  And similarly, Oij observations in the Bi, Aj combination.  If Factor A and Factor 
B are independent (or the B category distribution across samples is homogeneous) 
then the expected number of observations in each cell Eij (row i and column j) is: 
Eq. 7:2 

𝐸𝐸𝑖𝑖𝑖𝑖 =
𝑛𝑛𝐵𝐵𝐵𝐵𝑛𝑛𝐴𝐴𝐴𝐴
𝑛𝑛

 

And the calculated chi-square statistic for a test of independence (or homogeneity) is 
given by: 

Eq. 7:3 

𝜒𝜒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 = ��
�𝑂𝑂𝑖𝑖𝑖𝑖 − 𝐸𝐸𝑖𝑖𝑖𝑖�

2

𝐸𝐸𝑖𝑖𝑖𝑖

𝑘𝑘

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

 

This statistic is distributed as 𝜒𝜒(𝑚𝑚−1)(𝑘𝑘−1)
2 . 

For example, consider the following data related to the number of hours spent in 
volunteer work per week (Factor A) and volunteer type (Factor B): 

Observed Outcomes     
Type of Volunteer 1–3 

Hours 
4–6 
Hours 

7–9 
Hours 

Row 
Total 

Community College 
Students 

111 96 48 255 

Four-Year College Students 96 133 61 290 
Nonstudents 91 150 53 294 
Column Total 298 379 162 839 

Fa
ct

or
 B
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Based on these data, we can calculate Expected Outcomes under the null hypothesis 
of independence: 
Expected Outcomes     
Type of Volunteer 1–3 

Hours 
4–6 
Hours 

7–9 
Hours 

Row 
Total 

Community College 
Students 

91 115 49 255 

Four-Year College Students 103 131 56 290 
Nonstudents 104 133 57 294 
Column Total 298 379 162 839 

And the �𝑂𝑂𝑖𝑖𝑖𝑖−𝐸𝐸𝑖𝑖𝑖𝑖�
2

𝐸𝐸𝑖𝑖𝑖𝑖
 elements of the test statistic: 

4.607 3.197 0.031   
0.476 0.030 0.447   
1.726 2.225 0.250   

𝜒𝜒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 = ��
�𝑂𝑂𝑖𝑖𝑖𝑖 − 𝐸𝐸𝑖𝑖𝑖𝑖�

2

𝐸𝐸𝑖𝑖𝑖𝑖

𝑘𝑘

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

= 
12.991 

Since there are 3 of each factor type, this statistic is distributed as 𝜒𝜒42 – chi-squared 
with 4 degrees of freedom.  At α=0.05, the critical value is 9.488, and we would 
therefore reject the null hypothesis of independence. 
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Section 8. INTRODUCTION TO TIME SERIES ANALYSIS 

Coming soon.  In production… 
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Section 9. CLASSICAL PROBABILITY APPENDIX 

Classical probability analysis builds on a number of intuitive ideas related to 
uncertain events.   

A. Basic Definitions 
Let’s begin with a few basic definitions: 

Random Experiment – a process leading to an uncertain outcome. 
Basic Outcome – a possible outcome of a random experiment. 
Sample Space (S) – the collection of all possible outcomes of a random 

experiment. 
Event (E) – any subset of basic outcomes from the sample space. 
Intersection of Events – if A and B are two events in the sample space S, then 

the intersection, 𝐴𝐴 ∩ 𝐵𝐵, is the set of all outcomes in S that belong to both 
A and B. 

Mutually Exclusive Events – A and B are mutually exclusive if they have no 
basic outcomes in common.  The set 𝐴𝐴 ∩ 𝐵𝐵 is empty. 

Union of Events – If A and B are two events in the sample space S, then the 
union, 𝐴𝐴 ∪ 𝐵𝐵, is the set of all outcomes in S that belong to either A or B. 

A group of events are Collectively Exhaustive if their union completely covers 
the sample space S. 

The Complement of an event A is the set of all outcomes in the sample space 
that do not belong to A and is denoted 𝐴𝐴.  Note that for an event A in 
the sample space S, 𝐴𝐴 ∪ 𝐴𝐴 is collectively exhaustive. 

Venn diagrams are an intuitive way to illustrate these concepts: 
Intersection of events A and B 
 
 
 
 
 
 
 
 
 
 
Mutually Exclusive Events 
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The Union of Events 
 
 
 
 
 
 The Complement of 
an Event  
 
 
 
For uncertain events A and B in the sample space S, there are a number of 
straightforward probability postulates: 

The probability that A occurs is bound on the zero-one interval.  That is:  0 ≤
𝑃𝑃(𝐴𝐴) ≤ 1. 

The probability for the entire sample space S, is 1:  𝑃𝑃(𝑆𝑆) = 1. 
The Complement Rule:  𝑃𝑃�𝐴𝐴� = 1 − 𝑃𝑃(𝐴𝐴). 
Joint Probability: 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵), the probability of the intersection of A and B, is 

called a joint probability. 
The Addition Rule:  𝑃𝑃(𝐴𝐴 ∪ 𝐵𝐵) = 𝑃𝑃(𝐴𝐴) + 𝑃𝑃(𝐵𝐵)− 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵) 
 

The probabilities and joint probabilities for two events A and B can be summarized 
in a Probability Table: 

 
B. Conditional Probabilities 

A Conditional Probability is the probability of one event given that another event 
has occurred: the probability of A given B is denoted 𝑃𝑃(𝐴𝐴|𝐵𝐵). 
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The relationship between joint and conditional probabilities is as follows: 

 
An additional postulate is known as Statistical Independence.  Two events A and B 
are Statistically Independent if and only if: 
Eq. 9:1 

𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵) = 𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐵𝐵).   
If A and B are independent then: 
Eq. 9:2 

𝑃𝑃(𝐴𝐴|𝐵𝐵) = 𝑃𝑃(𝐴𝐴) 𝑖𝑖𝑖𝑖 𝑃𝑃(𝐵𝐵) > 0 
𝑃𝑃(𝐵𝐵|𝐴𝐴) = 𝑃𝑃(𝐵𝐵) 𝑖𝑖𝑖𝑖 𝑃𝑃(𝐴𝐴) > 0 

We can use these postulates to solve a wide range of probability problems.  Suppose 
that of the cars on a used car lot, 70% have air conditioning (AC), 40% have a CD 
player (CD) and 20% of the cars have both.  What is the probability that a car has a 
CD player given that it has AC? 
We can summarize the given information in a probability table 

 CD No CD Total 
AC 0.2  0.7 

No AC    
Total 0.4   

 
We can use the Complement Rule and the fact that the probability of the entire 
sample space is 1 to fill out the rest of the table: 

 CD No CD Total 
AC 0.2 0.5 0.7 

No AC 0.2 0.1 0.3 
Total 0.4 0.6 1 

 
We want to find 𝑃𝑃(𝐶𝐶𝐶𝐶|𝐴𝐴𝐴𝐴) so we use the following: 
Eq. 9:3 

𝑃𝑃(𝐶𝐶𝐶𝐶|𝐴𝐴𝐴𝐴) =
𝑃𝑃(𝐶𝐶𝐶𝐶 ∩ 𝐴𝐴𝐴𝐴)
𝑃𝑃(𝐴𝐴𝐴𝐴)

=
0.2
0.7

= 0.2857 
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Here is another example from a previous exam: 
 
In a recent survey about the direction of the U.S. economy, a sample was asked 
whether they thought the U.S. economy was headed in the “right direction” or the 
“wrong direction” (the only two choices)  Of those surveyed, 41% of the respondents 
said that they thought the U.S. economy was headed in the right direction.  Males 
comprised 45% of the sample, and of the males, 36% said the U.S. economy was 
headed in the right direction.  A person is randomly chosen from the survey sample. 
 
a) What is the probability that the person we select is male that thinks the U.S. 

economy is headed in the right direction? 
b) Are the events “thinks the U.S. economy is headed in the wrong direction” and 

“male” statistically independent?  Why or why not? 
c) What is the probability that the person we select is female? 
d) Suppose we select a respondent that thinks the U.S. economy is headed in the 

right direction.  What is the probability that the person we select is male? 
 
Let M denote Male, F denote Female, R denote “right direction” and W denote 
“wrong direction.”  Use a probability table to summarize what is given and fill in 
missing information with the various postulates. 

 R W (or 𝑅𝑅) Total 
M   45% 

F (or 𝑀𝑀)   55% 
Total 41% 59% 1 

  
In addition, we are given 𝑃𝑃(𝑅𝑅|𝑀𝑀) = 36% 
For part (a) we want 𝑃𝑃(𝑀𝑀 ∩ 𝑅𝑅).  Using the relationship between conditional and joint 
probabilities from above: 
Eq. 9:4 

𝑃𝑃(𝑅𝑅|𝑀𝑀) =
𝑃𝑃(𝑀𝑀 ∩ 𝑅𝑅)
𝑃𝑃(𝑀𝑀)

, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

𝑃𝑃(𝑀𝑀 ∩ 𝑅𝑅) = 𝑃𝑃(𝑅𝑅|𝑀𝑀)𝑃𝑃(𝑀𝑀) = (0.36)(0.45) = 0.162 
Given this result, we can fill in the rest of the probability table. 

 R W (or 𝑅𝑅) Total 
M 16.2% 28.8% 45% 

F (or 𝑀𝑀) 24.8% 30.2% 55% 
Total 41% 59% 1 

 
For part b: 
Statistically independent if P(W ∩ M) = P(W)P(M) 
From the completed probability table, P(W ∩ M) = 0.288 
P(W)P(M) = (0.59)(0.45) = 0.2655 
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So the two are not statistically independent. 
Alternatively, 
P(W ∩ M) = P(W|M)P(M)  
 P(W|M) = 1 – P(R|M) = 0.64, so 
P(W ∩ M) = (0.64)(0.45) = 0.288 
So, again, the two are not statistically independent 
For part c, from our probability table P(F)=0.55 
 
For part d, looking for P(M|R) 
Eq. 9:5 

𝑃𝑃(𝑀𝑀|𝑅𝑅) =
𝑃𝑃(𝑀𝑀 ∩ 𝑅𝑅)
𝑃𝑃(𝑅𝑅)

=
0.162
0.41

= 0.3951 

 
 

C. Bayes Theorem 
1. Let A and B be two events in the sample space.  Bayes Theorem states: 

Eq. 9:6 

𝑃𝑃(𝐵𝐵|𝐴𝐴) =
𝑃𝑃(𝐴𝐴|𝐵𝐵)𝑃𝑃(𝐵𝐵)

𝑃𝑃(𝐴𝐴) ,𝑎𝑎𝑎𝑎𝑎𝑎 

𝑃𝑃(𝐴𝐴|𝐵𝐵) =
𝑃𝑃(𝐵𝐵|𝐴𝐴)𝑃𝑃(𝐴𝐴)

𝑃𝑃(𝐵𝐵)  

 
Alternatively, using the probability postulates from above: 
Eq. 9:7 

𝑃𝑃(𝐴𝐴) = 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵) + 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵) 
𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵) = 𝑃𝑃(𝐴𝐴|𝐵𝐵)𝑃𝑃(𝐵𝐵),𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃�𝐴𝐴 ∩ 𝐵𝐵� = 𝑃𝑃�𝐴𝐴�𝐵𝐵�𝑃𝑃�𝐵𝐵�, 𝑠𝑠𝑠𝑠 

𝑃𝑃(𝐴𝐴) = 𝑃𝑃(𝐴𝐴|𝐵𝐵)𝑃𝑃(𝐵𝐵) + 𝑃𝑃�𝐴𝐴�𝐵𝐵�𝑃𝑃(𝐵𝐵) 
Bayes Theorem can thus be restated as: 
Eq. 9:8 

𝑃𝑃(𝐵𝐵|𝐴𝐴) =
𝑃𝑃(𝐴𝐴|𝐵𝐵)𝑃𝑃(𝐵𝐵)

𝑃𝑃(𝐴𝐴|𝐵𝐵)𝑃𝑃(𝐵𝐵) + 𝑃𝑃�𝐴𝐴�𝐵𝐵�𝑃𝑃(𝐵𝐵)
,𝑎𝑎𝑎𝑎𝑎𝑎 

 

𝑃𝑃(𝐴𝐴|𝐵𝐵) =
𝑃𝑃(𝐵𝐵|𝐴𝐴)𝑃𝑃(𝐴𝐴)

𝑃𝑃(𝐵𝐵|𝐴𝐴)𝑃𝑃(𝐴𝐴) + 𝑃𝑃(𝐵𝐵|𝐴𝐴)𝑃𝑃(𝐴𝐴)
 

 
More generally, let A be an event in the sample space and let Ei be the ith event of k 
mutually exclusive and collectively exhaustive events.  Then Bayes Theorem states: 
Eq. 9:9 

𝑃𝑃(𝐸𝐸𝑖𝑖|𝐴𝐴) =
𝑃𝑃(𝐴𝐴|𝐸𝐸𝑖𝑖)𝑃𝑃(𝐸𝐸𝑖𝑖)

𝑃𝑃(𝐴𝐴|𝐸𝐸1)𝑃𝑃(𝐸𝐸1) + 𝑃𝑃(𝐴𝐴|𝐸𝐸2)𝑃𝑃(𝐸𝐸2) + ⋯+ 𝑃𝑃(𝐴𝐴|𝐸𝐸𝑘𝑘)𝑃𝑃(𝐸𝐸𝑘𝑘)
 

Several examples help to illustrate. 
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Example 1:  Let the sample space 𝑆𝑆 = {𝐴𝐴,𝐴𝐴,𝐵𝐵,𝐵𝐵} 
Given 𝑃𝑃(𝐴𝐴) = 0.6,𝑃𝑃(𝐵𝐵|𝐴𝐴) = 0.6,𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃�𝐵𝐵�𝐴𝐴� = 0.4,𝑤𝑤ℎ𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑃𝑃(𝐴𝐴|𝐵𝐵) 
First, using the complement rule: 

𝑃𝑃(𝐴𝐴) = 0.6 → 𝑃𝑃�𝐴𝐴� = 0.4 
𝑃𝑃(𝐵𝐵|𝐴𝐴) = 0.6 → 𝑃𝑃�𝐵𝐵�𝐴𝐴� = 0.4 
𝑃𝑃�𝐵𝐵�𝐴𝐴� = 0.4 → 𝑃𝑃�𝐵𝐵�𝐴𝐴� = 0.6 

Then: 

𝑃𝑃(𝐴𝐴|𝐵𝐵) =
𝑃𝑃(𝐵𝐵|𝐴𝐴)𝑃𝑃(𝐴𝐴)

𝑃𝑃(𝐵𝐵|𝐴𝐴)𝑃𝑃(𝐴𝐴) + 𝑃𝑃(𝐵𝐵|𝐴𝐴)(𝑃𝑃(𝐴𝐴)
 

=
(0.6)(0.6)

(0.6)(0.6) + (0.4)(0.4)
= 0.6923 

 
Example 2:  An economics professor finds that 21% of students earn a course grade 
of A.  Of those students who obtain a course grade of A, 67% obtained an A on the 
midterm examination.  Also, 15% of the students who did not obtain a course grade 
of A, earned an A on the midterm examination. 

(a) If a student earned a course grade of A, what is the probability that a student 
did not earn an A on the midterm exam? 

 
Let A1 be the event “earns a course grade of A” and A2 be the complement of A1 (did 
not earn a course grade of A).  Let B1 be the event “earned an A on the midterm 
exam” and let B2 be the complement of B1.  Then: 
 
Given:  𝑃𝑃(𝐴𝐴1) = 0.21 → 𝑃𝑃(𝐴𝐴2) = 0.79,𝑃𝑃(𝐵𝐵1|𝐴𝐴1) = 0.67 → 𝑃𝑃(𝐵𝐵2|𝐴𝐴1) = 0.33,  

𝑃𝑃(𝐵𝐵1|𝐴𝐴2) = 0.15 → 𝑃𝑃(𝐵𝐵2|𝐴𝐴2) = 0.85 
 
For part (a), looking for 𝑃𝑃(𝐵𝐵2|𝐴𝐴1) = 0.33 

(b) For a student that earned an A on the midterm examination, what is the 
probability that they earned a course grade of A? 

 
Looking for 𝑃𝑃(𝐴𝐴1|𝐵𝐵1) 

𝑃𝑃(𝐴𝐴1|𝐵𝐵1) =
𝑃𝑃(𝐵𝐵1|𝐴𝐴1)𝑃𝑃(𝐴𝐴1)

𝑃𝑃(𝐵𝐵1|𝐴𝐴1)𝑃𝑃(𝐴𝐴1) + 𝑃𝑃(𝐵𝐵1|𝐴𝐴2)𝑃𝑃(𝐴𝐴2)
=

(0.67)(0.21)
(0.67)(0.21) + (0.15)(0.79)

≅ 0.5428 
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