ECMT 461 INTRODUCTION TO ECONOMIC DATA ANALYSIS

> Craig T. Schulman Lecture 13

AGENDA

- P-Values
- Term Project Examples
 - Descriptive Statistics
 - Frequency Distributions
 - Single Sample Confidence Intervals
 - Single Sample Hypothesis Tests

P-VALUES

- For a given *calculated test statistic,* the P-Value is the probability in the "tails" of the appropriate probability distribution
- Hypothesis Testing Decision Rules
 - Reject H_0 if the P-Value < the significance level α
 - Fail to Reject H_0 if the P-Value > the significance level α
- For Two-Tailed alternative hypotheses
 - P-Value is TWO TIMES the probability in the Upper or Lower tail
- For One-Tailed alternative hypotheses
 - P-Value is the probability in the tail

TERM PROJECT EXAMPLES

SETTING UP YOUR DATA

- Combine your data into a single workbook
- On a single worksheet, I suggest you have your Criterion Variable, Predictor Variable, and a variable to identify subgroups
- Check for missing values or "non-matches" and eliminate these from your "analysis" dataset
- Combining data from different datasets the XLOOKUP function
- You will want to set up your data in different ways for different tasks: Sections 3-4, Sections 5-6, Section 7

EXCEL "ARRAY" FUNCTIONS

• Allow you to include conditional IF statements in a wide array of standard functions to make your coding more efficient

Group	Sample Size	Minimum	Mean	Median	Max
Overall	3195	12.176	27.275	27.332	45.8
Α	710	14.703	28.157	28.069	45.8
В	732	14.427	=AVERAGE(IF(\$A:\$A=\$F7	7,\$B:\$B))
C	1007	12 000	26.026	26.027	41.0