ECMT 461 INTRODUCTION TO ECONOMIC DATA ANALYSIS

Lecture 17

Craig T. Schulman

LINEAR REGRESSION

- Regression R^{2} - Measure of Fit
- Regression Interpretation and Hypothesis Testing
- Correlation Analysis
- Multi-Group Correlation Tests

MEASURE OF "FIT"

- Regression is used to "explain" the observed variation in Y

$$
\begin{gathered}
\sum\left(Y_{i}-\bar{Y}\right)^{2}=\sum\left(\hat{Y}_{i}-\bar{Y}\right)^{2}+\sum e_{i}^{2} \\
S S T=S S R+S S E
\end{gathered}
$$

- SST: The Total Sum of Squares is the total variation of Y about its mean
- SSR: The Regression Sum of Squares is the variation in Y explained by the regression
- SSE: The Error Sum of Squares is the variance left unexplained by the regression

MEASURE OF "FIT"

- A measure of the degree of variation of Y explained by the regression is given by the Coefficient of Determination or Regression R^{2}

$$
R^{2}=1-\frac{S S E}{S S T}
$$

- If the regression equation includes the intercept term b_{0}, then R^{2} is bound on $[0,1]$ and for the bivariate model

$$
R^{2}=r_{X Y}^{2}
$$

REGRESSION EXAMPLE

- Consider the regression results below, where the dependent variable Y is the Quantity of gasoline sold, measured in gallons, and the explanatory variable X is the Price of gasoline measured in cents per gallon (so Price $=200$, is $\$ 2.00$)

SUMMARY OUTPUT						
Regression Statistics						
Multiple R	0.792					
R Square	0.627					
Adjusted R Square	0.619					
Standard Error	494.952					
Observations	50					
ANOVA						
	$d f$	SS	MS	F	$\begin{gathered} \hline \text { Significance } \\ F \end{gathered}$	
Regression	1	19733053.11	19733053.11	80.550	0.0000	
Residual	48	11758920.92	244977.5191			
Total	49	31491974.02				
	Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%
Intercept	10207.337	420.849	24.254	0.000	9361.164	11053.510
Price	-16.203	1.805	-8.975	0.000	-19.833	-12.573

REGRESSION EXAMPLE

- The "R Square" value of 0.627 says the model explains 62.7% of the variation in Quantity
- The "df" column in the ANOVA table stands for Degrees of Freedom and the Residual df of 48 is the "model" degrees of freedom (number of observations minus 2)
- The "Coefficients" column show the estimated intercept b_{0} is 10,207.337, and the estimated slope $b_{1}=-16.203$
- The interpretation of the slope parameter b_{1} is that, on average, for every l cent increase in Price, Quantity sold goes down by 16.203 gallons

REGRESSION EXAMPLE

- The " t Stat" column shows the calculated t -statistic for the specific hypothesis $H_{0}: \beta_{i}=0$
- For the Price variable, for example

$$
t_{c a l c}=\frac{b_{1}-0}{S_{b_{1}}}=-\frac{16.203}{1.805}=-8.95
$$

- The "P-value" for the Price variable of 0.000 indicates that we would reject this null at any reasonable value of alpha (e.g., 5% or 1%)
- Suppose we wish to test $H_{0}: \beta_{1}=-13$, versus the alternative that it is less than -13 , at alpha $=5 \%$. Use:

$$
t_{c a l c}=\frac{b_{1}-(-13)}{S_{b_{1}}}=\frac{-16.203+13}{1.805} \cong-1.774
$$

- Because $t(\alpha, n-2)=1.667$, we would Reject the Null in favor of the Alternative

MEASURE OF "FIT"

- If the regression equation includes the intercept term b_{0}, then R^{2} is bound on $[0,1]$
- The R^{2} (when an intercept is included in the regression equation) measures the proportion of variation in the dependent variable that is explained by the regression
- An R^{2} of 0.45 says the regression explains 45% of the observed variation in the dependent variable
- Not unusual with cross-sectional data to have R^{2} values that seem quite 'low' - e.g. 5\% or 10\%

CORRELATION ANALYSIS

- To test the hypothesis $H_{0}: \rho_{X Y}=0$, we can construct a test statistic based on the sample correlation coefficient $r_{X Y}$

$$
\begin{gathered}
\qquad t_{\text {calc }}=\frac{r_{X Y} \sqrt{n-2}}{\sqrt{1-r_{X Y}^{2}}} \\
\text { versus } t_{n-2, \alpha} \text { or } t_{n-2, \alpha / 2}
\end{gathered}
$$

- This is the form of the correlation test that I suggest you use for your term projects
- Example

CORRELATION ANALYSIS

- For the null hypothesis $H_{0}: \rho_{X Y}=0$ the t-distribution provides a robust test
- To test whether the correlation is any number other than zero, the sampling distribution of $\mathrm{t}_{\text {calc }}$ becomes highly skewed

$$
\begin{aligned}
& t_{c a l c}=\frac{r_{X Y} \sqrt{n-2}}{\sqrt{1-r_{X Y}^{2}}} \\
& \text { versus } t_{n-2, \alpha} \text { or } t_{n-2, \alpha / 2}
\end{aligned}
$$

CORRELATION ANALYSIS

- For the null hypothesis $H_{0}: \rho_{X Y}=k$, where k is any number on the interval ($-1,1$) we use Fisher's $\mathbf{z}_{\mathbf{r}}$ transformation

$$
z_{r}=\frac{1}{2} \ln \left[\frac{1+r_{X Y}}{1-r_{X Y}}\right]
$$

- Where \ln is the natural logarithm and z_{r} has a Normal distribution with

$$
\operatorname{Var}\left(z_{r}\right)=\frac{1}{n-3}
$$

CORRELATION ANALYSIS

- A confidence interval for z_{r} is

$$
z_{r} \pm Z_{\alpha / 2} \sqrt{\frac{1}{n-3}}
$$

- To test the null hypothesis $H_{0}: \rho_{X Y}=k$ use

$$
Z_{c a l c}=\frac{z_{r}-z_{k}}{\sqrt{\frac{1}{n-3}}}
$$

CORRELATION ANALYSIS

- Suppose $\mathrm{n}=45$ and $r_{X Y}=0.68$. To test the null hypothesis $H_{0}: \rho_{X Y}=0.5$

$$
\begin{aligned}
& z_{r}=\frac{1}{2} \ln \left[\frac{1+0.68}{1-0.68}\right]=0.8921 \\
& z_{k}=\frac{1}{2} \ln \left[\frac{1+0.5}{1-0.5}\right]=0.5493 \\
& Z_{\text {calc }}=\frac{0.8921-0.5493}{\sqrt{\frac{1}{45-3}}}=1.813
\end{aligned}
$$

for $\alpha=5 \% Z_{\alpha / 2}=1.96$ for $\alpha=10 \% Z_{\alpha / 2}=1.645$

CORRELATION ANALYSIS

- Two methods to test for differences in correlations between two sub-groups from a sample
- Using Linear Regression (a bit 'messy')
- Using Fisher's z_{r} transformation (much more straightforward)

REGRESSION WITH 2 GROUPS

- From a sample of n observations on Y and X, suppose you can identify two sub-groups in the sample - Group 1 and Group 2
- We can identify the two different groups with a single Yes/No identification variable - called a Dummy Variable
- If an observation is part of Group 1 , define the variable $\mathrm{D}=1$ and if part of Group 2, $D=0$, then specify the regression equation

$$
Y=\beta_{0}+\beta_{1} X+\gamma_{0} D+\gamma_{1}(D \times X)+\varepsilon
$$

REGRESSION WITH 2 GROUPS

- For Group 1 when $\mathrm{D}=1$, the regression intercept and slope can be written

$$
Y=\left(\beta_{0}+\gamma_{0}\right)+\left(\beta_{1}+\gamma_{1}\right) X+\varepsilon
$$

- So the intercept for Group 1 is $\beta_{0}+\gamma_{0}$ and the slope is $\beta_{1}+\gamma_{1}$
- For Group 2 when D=0

$$
Y=\beta_{0}+\beta_{1} X+\varepsilon
$$

- So the intercept and slope for Group 2 are just β_{0} and β_{1}
- The parameter γ_{0} measures the difference in the intercept between Group 1 and Group 2 (the difference in the mean of Y after controlling for the effect of X)
- The parameter γ_{1} measures the difference in the slope of the regression equation between the two groups (difference in correlation)

REGRESSION WITH 2 GROUPS

- Example using Salary Data
- Salary vs. Experience for Females (Group l) and Males (Group 2)

2 GROUP CORRELATION TEST

- An alternative (and more straightforward) test of differences in correlations across two subgroups uses Fisher's z_{r} transformation
- Suppose you have the sample correlation coefficient for the first group r_{1} based on n_{1} observations, and similarly for the second group, r_{2} based on n_{2} observations. First calculate the z_{r} transformations

$$
z_{r_{1}}=\frac{1}{2} \ln \left[\frac{1+r_{1}}{1-r_{1}}\right] \quad z_{r_{2}}=\frac{1}{2} \ln \left[\frac{1+r_{2}}{1-r_{2}}\right]
$$

2 GROUP CORRELATION TEST

- To test the null hypothesis $H_{0}: \rho_{1}=\rho_{2}$ construct the calculated Z-statistic

$$
Z_{c a l c}=\frac{z_{r_{1}}-z_{r_{2}}}{\sqrt{\frac{1}{n_{1}-3}+\frac{1}{n_{2}-3}}}
$$

- And compare to Z_{α} for a one-tailed test or $Z_{\alpha / 2}$ for a two-tailed test
- Example with Salary data

MULTI-GROUP CORRELATION TEST

- To test a hypothesis of equal correlations across multiple groups: $H_{0}: \rho_{1}=\rho_{2}=\cdots=\rho_{k}$ we can use Fisher's z_{r} transformation to construct a Chi-Square test statistic

$$
\chi_{c a l c}^{2}=\sum_{j=1}^{k}\left[\left(n_{j}-3\right) z_{r_{j}}^{2}\right]-\frac{\left[\sum_{j=1}^{k}\left(n_{j}-3\right) z_{r_{j}}\right]^{2}}{\sum_{j=1}^{k}\left(n_{j}-3\right)}
$$

- Compared to the (upper) Chi-Square distribution with $k-1$ degrees of freedom: $\chi^{2}(1-\alpha, k-1)$

MULTI-GROUP CORRELATION TEST

- The test statistic looks intimidating, but it is straightforward to calculate in Excel
- Example

