ECMT 461 Lecture Slides for Exam 3 Material

Craig Schulman

The following slide decks cover material that will be included on Exam 3.

I reserve the right to amend/expand this material as needed.

ECMT 461 INTRODUCTION TO ECONOMIC DATA ANALYSIS

Craig T. Schulman Lecture 13

1

AGENDA

- P-Values
- Term Project Examples
 - Descriptive Statistics
 - Frequency Distributions
 - Single Sample Confidence Intervals
 - Single Sample Hypothesis Tests

2

P-VALUES

- For a given *calculated test statistic*, the P-Value is the probability in the "tails" of the appropriate probability distribution
- Hypothesis Testing Decision Rules
 - + Reject H_0 if the P-Value < the significance level α
 - + Fail to Reject H_0 if the P-Value > the significance level α
- For Two-Tailed alternative hypotheses
 - P-Value is TWO TIMES the probability in the Upper or Lower tail
- For One-Tailed alternative hypotheses
 - P-Value is the probability in the tail

of stan	dard functions	to make you	if statemen ur coding m	ore efficient	array
Group	Sample Size	Minimum	Mean	Median	Max
Overall	3195	12.176	27.275	27.332	45.8
A	710	14.703	28.157	28.069	45.8
В	732	14.427	AVERAGE(I	F(\$A:\$A=\$F7,\$	B:\$B))
<u> </u>	1007	12.000	26.026	26 027	41.0
 Type y 	our formula th	en CTRL-SH	IFT-ENTER		
		2	Alignment		
,, ,					
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	fx {=AV	/ERAGE(IF(\$A	:\$A=\$F7,\$B:\$	B))}	

ECMT 461 INTRODUCTION TO ECONOMIC DATA ANALYSIS

Lecture 14 Craig T. Schulman

1

ANALYSIS OF VARIANCE: ANOVA

- A method for testing differences in means across multiple dimensions in a given variable.
- Three versions we will cover:
 - One-Way ANOVA
 - Two-Way ANOVA without Replication
 - Two-Way ANOVA with Replication

2

ONE-WAY ANOVA

- With a Random Variable X, for which we can identify 2 or more sub-groups.
 - For your Term Project, this is your Criterion variable and your identified sub-groups.
- The question is whether the means (averages) are the same across all the subgroups.

ONE-WAY ANOVA

• The Null Hypothesis is that the sub-groups all have the same mean:

 $H_0: \ \mu_1 = \mu_2 = \dots = \mu_k$

 Versus the Alternative Hypothesis that at least one of the sub-group means is different.
 H_A: μ_i ≠ μ_i for at least one pair, μ_i, μ_j

4

ONE-WAY ANOVA

• Our Test Statistics will be based on measures of how much error is observed under the Null Hypothesis versus the Alternative Hypothesis – measures of error based on **Sums of Squares:**

$$SS_i = \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2$$

5

ONE-WAY ANOVA

- Under the Alternative Hypothesis when we let each sub-group have a different mean, we have the *within group sum of squares*
 - SSW with Degrees of Freedom (DF): n K
 Where n is the total number of observations across all sub-groups and K is the number of sub-groups

$$SSW = \sum_{i=1}^{K} SS_i = \sum_{i=1}^{K} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2$$

ONE-WAY ANOVA

• Under the Null Hypothesis, when we force all the sub-groups to have the same means, we have the *total sum of squares, SST.*

$$SST = \sum_{i=1}^{K} \sum_{j=1}^{n_i} (x_{ij} - \bar{x})^2$$

• The "extra" error associated with forcing the null hypothesis to be true is the *between group* sum of squares, SSG

• SSG with DF:
$$K - 1$$

 $SSG = \sum_{i=1}^{K} n_i (\bar{x}_i - \bar{\bar{x}})^2$

7

8

ONE-WAY ANOVA

• Both SSW and SSG are distributed as Chi-Square. Our test of the Null that all the subgroups have the same mean will then use an F statistic:

$$F_{calc} = \frac{SSG/(K-1)}{SSW/(n-K)} \sim F_{(K-1),(n-K)}$$

• Excel Examples

TWO-WAY ANOVA

- With Two-Way ANOVA, the mean of our variable of interest can vary across two different dimensions – Groups and Blocks.
- Two different types of Two-Way ANOVA
 - Without "Replication"With Replication

10

TWO-WAY ANOVA WITHOUT REPLICATION

- With K different Groups (Columns in Excel), H different Blocks (Rows in Excel), and one observation for each Group-Block combination, for a total of N = HK observations.
- This gives us two potential Null Hypotheses
 - Means are the same across Groups
 - Means are the same across Blocks

11

TWO-WAY ANOVA WITHOUT REPLICATION

- Under the Alternative Hypothesis, where we allow the means to vary over both Groups and Blocks, we have the *error sum of squares*, SSE
 - SSE with DF: (K − 1)(H − 1)
- The "extra" error created when we force the Group means to be the same gives us the between Groups sum of squares, SSG
 SSG with DF: K - 1
 - SSG with DF: K − 1
- The "extra" error created when we force the Block means to be the same gives us the *between Blocks sum of squares, SSB* SSB with DF: H - 1

TWO-WAY ANOVA WITHOUT REPLICATION

• Sums of Squares Equations

between Groups:
$$SSG = H \sum_{i=1}^{K} (\bar{x}_{i.} - \bar{x})^2$$
 with $DF_G = K - 1$
between Blocks: $SSB = K \sum_{j=1}^{H} (\bar{x}_{.j} - \bar{x})^2$ with $DF_B = H - 1$
error: $SSE = \sum_{i=1}^{K} \sum_{j=1}^{H} (x_{ij} - \bar{x}_{i.} - \bar{x}_{.j} - \bar{x})^2$ with $DF_E = (K - 1)(H - 1)$

13

TWO-WAY ANOVA WITHOUT REPLICATION

To test the Null Hypothesis that the means are the same across Groups we use:

 $F_{calc} = \frac{SSG/(K-1)}{SSE/(K-1)(H-1)} vs. F_{\alpha,(K-1),(K-1)(H-1)}$

• To test the Null Hypothesis that the means are the same across Blocks we use:

 $F_{calc} = \frac{SSB/(H-1)}{SSE/(K-1)(H-1)} vs.F_{\alpha,(H-1),(K-1)(H-1)}$

Excel Example

14

TWO-WAY ANOVA WITH REPLICATION

- In Two-Way ANOVA with Replication, we again have K different Groups (Columns in Excel), H different Blocks (Sample in Excel), and multiple (m) observations for each Group-Block combination.
- This allows us to test three different null hypotheses:
 - Means the same across Groups
 - Means the same across Blocks
 - No "Interaction" effects between Groups and Blocks

TWO-WAY ANOVA WITH REPLICATION

- + For the Null of equal Group means $between\ Groups:\ SSG\ with\ DF_G=K-1$
- + For the Null of equal Block means $between \ Blocks: \ SSB \ with \ DF_B = H-1$
- + For the Null of no Interaction effects $\label{eq:Interaction:SI} Interaction: \; SSI \; with \; DF_I = (K-1)(H-1)$
- And the SS under the Alternative $error: \ SSE \ with \ DF_E = HK(m-1)$

16

TWO-WAY ANOVA WITH REPLICATION
• To test the Null of equal Group means
$F_{calc} = \frac{SSG/(K-1)}{SSE/HK(m-1)} vs. F_{a,(K-1),HK(m-1)}$
To test the Null of equal Block means
$F_{calc} = \frac{SSB/(H-1)}{SSE/HK(m-1)} vs. F_{a,(H-1),HK(m-1)}$
And for the Null of no Interaction Effects
$F_{calc} = \frac{SSI/(K-1)(H-1)}{SSE/HK(m-1)} vs. F_{\alpha,(K-1)(H-1),HK(m-1)}$
Excel Examples

ECMT 461 INTRODUCTION TO ECONOMIC DATA ANALYSIS

Lecture 15 Craig T. Schulman

1

LINEAR REGRESSION

- Sample Correlation r_{xy} provides a measure of the degree of association between two variables X and Y
- Linear Regression is a method of "explaining" the observed variation in some variable Y that is believed to be related in some way to the variable X
- Y is denoted the "Dependent" variable
- X is denoted the "Explanatory" variable
- Express Y as a function of X: Y = f(X)

2

BIVARIATE REGRESSION MODEL

- "Bivariate" because there are two variables X and Y
- Assume the relationship between X and Y is linear in the population parameters β_0 and β_1 and the random error term ε

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

- Where β_0 is the intercept and β_1 is the slope of the regression line
- Error $\boldsymbol{\epsilon}$ is the difference between the observed Y and the regression line

MODEL ASSUMPTIONS

- The values of X are either fixed or a random variable that is independent of the error term $\boldsymbol{\epsilon}$
- The random error term ε is distributed with a mean of zero and a constant variance $\varepsilon \sim (0, \sigma^2)$
- The sample variance of X is not zero

5

LEAST SQUARES RULE

- The Least Squares Rule provides a set of formulas *estimators* – to get sample estimates for the population parameters
- This is like using the sample mean \overline{X} as the estimator for the population mean μ
- The task is to find an estimator b_0 for the population intercept β_0 , and b_1 for the population slope β_1 that minimize the amount of squared error between the observed data and the regression line – hence, Least Squares

LEAST SQUARES RULE

- SSE is the sum of squared errors
- We want to find b_0 and b_1 to minimize SSE
- Use calculus to take derivatives of SSE with respect to b_0 and b_1 set these equal to zero and solve

7

8

ESTIMATOR PROPERTIES

• Under the model assumptions, the Least Squares estimators b_0 and b_1 are **Unbiased**

 $E(b_0) = \beta_0$

 $E(b_1) = \beta_1$

• Among all linear unbiased estimators, the Least Squares estimators have the smallest variance – they are the Best Linear Unbiased Estimator or BLUE

MEASURE OF "FIT"

• Regression is used to "explain" the observed variation in Y

$$\sum (Y_i - \overline{Y})^2 = \sum (\hat{Y}_i - \overline{Y})^2 + \sum e_i^2$$

SST = SSR + SSE

- SST: The Total Sum of Squares is the total variation of ${\bf Y}$ about its mean
- SSR: The Regression Sum of Squares is the variation in Y explained by the regression
- SSE: The Error Sum of Squares is the variance left unexplained by the regression

10

MEASURE OF "FIT"

- A measure of the degree of variation of Y explained by the regression is given by the Coefficient of Determination or Regression $R^2\,$

$$R^2 = 1 - \frac{SSE}{SST}$$

- If the regression equation includes the intercept term $b_0,$ then R^2 is bound on [0,1] and for the bivariate model

$$R^2 = r_{XY}^2$$

11

ANOTHER ASSUMPTION

• If we add the assumption that the error term ϵ is distributed as a Normal random variable: $\epsilon \sim N(0,\sigma^2)$ then the Least Squares estimators b_0 and b_1 are also have a Normal distribution

$$b_0 \sim N\left(\beta_0, \left\{\frac{1}{n} + \frac{\bar{X}^2}{(n-1)\sum(X_i - \bar{X})^2}\right\}\sigma^2\right)$$
$$b_1 \sim N\left(\beta_1, \frac{\sigma^2}{\sum(X_i - \bar{X})^2}\right)$$

+ For sample estimators, replace $\sigma^2~with~S^2$ and denote the variances of ${\bf b}_0$ and ${\bf b}_1$ as $S^2_{b_0}$ and $S^2_{b_1}$

HYPOTHESIS TESTS

• Given the Normal Distribution assumption we can test hypotheses about the Least Squares parameters as follows:

$$H_0: \ \beta_1 = k$$
$$t_{calc} = \frac{b_1 - k}{S_{b_1}}$$

versus
$$t_{n-2,\frac{\alpha}{2}}$$
 or $t_{n-2,\alpha}$

• Excel Example

13

FUNCTIONAL FORM

- The assumption that the model is linear in the parameters β_0 and β_1 **DOES NOT** mean the model involves a linear relation between the two variables of interest
- Consider the Demand equation

$$Q = A P^{\beta_1} v$$

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

- Where Y is the log of Q, X is the log of P, and ϵ is the log of v

ECMT 461 INTRODUCTION TO ECONOMIC DATA ANALYSIS

Lecture 16 Craig T. Schulman

1

LINEAR REGRESSION

- Regression R^2 Measure of Fit
- Regression "Outliers"
- Prediction
- Correlation Analysis

2

MEASURE OF "FIT"

- Regression is used to "explain" the observed variation in $\ensuremath{\mathbf{Y}}$

$$\sum (Y_i - \bar{Y})^2 = \sum (\hat{Y}_i - \bar{Y})^2 + \sum e_i^2$$

SST = SSR + SSE

- SST: The Total Sum of Squares is the total variation of Y about its mean
- SSR: The Regression Sum of Squares is the variation in Y explained by the regression
- SSE: The Error Sum of Squares is the variance left unexplained by the regression

MEASURE OF "FIT"

- A measure of the degree of variation of Y explained by the regression is given by the Coefficient of Determination or Regression $R^2\,$

$$R^2 = 1 - \frac{SSE}{SST}$$

- If the regression equation includes the intercept term $b_0,$ then R^2 is bound on [0,1] and for the bivariate model

 $R^2 = r_{XY}^2$

4

MEASURE OF "FIT"

- If the regression equation includes the intercept term $b_0,$ then $R^2 \mbox{ is bound on } [0,1]$
- The R² (when an intercept is included in the regression equation) measures the proportion of variation in the dependent variable that is explained by the regression
- An R^2 of 0.45 says the regression explains 45% of the observed variation in the dependent variable
- Not unusual with cross-sectional data to have R^2 values that seem quite 'low' e.g. 5% or 10%

5

REGRESSION OUTLIERS

- An "Outlier" is a data point that deviates substantially from the predicted value (the regression line)
- Can identify the points by computing "standardized" residuals
- Excel "Standard Residuals" are not technically correct but are a reasonably close approximation
- A standardized residual greater than 2 in absolute value is a potential outlier
- Check for data errors or unusual circumstances

PREDICTION

- Can use a regression equation to predict or forecast the dependent variable for an assumed value of the independent variable, $X_{\rm 0}$

$$\hat{Y} = b_0 + b_1 X_0$$

• Of interest is a prediction interval

$$\hat{Y} \pm t_{n-2,\alpha/2} S \sqrt{1 + \frac{1}{n} + \frac{\left(X_0 - \overline{X}\right)^2}{\sum \left(X - \overline{X}\right)^2}}$$

7

CORRELATION ANALYSIS

• For the Bivariate Regression model (that includes an intercept)

$$b_1 = \frac{S_Y}{S_X} r_{XY}$$

• So the test of the hypothesis H_0 : $\beta_1 = 0$ is a direct test of the hypothesis H_0 : $\rho_{XY} = 0$.

8

CORRELATION ANALYSIS

• We can also construct a test statistic based on the sample correlation coefficient r_{XY} to test the hypothesis H_0 : $\rho_{XY} = 0$

$$t_{calc} = \frac{r_{XY}\sqrt{n-2}}{\sqrt{1-r_{XY}^2}}$$

versus $t_{n-2,\alpha}$ or $t_{n-2,\alpha/2}$

• This is the form of the correlation test that I suggest you use for your term projects

CORRELATION ANALYSIS

- For the null hypothesis H_0 : $\rho_{XY} = 0$ the t-distribution provides a robust test
- To test whether the correlation is any number other than zero, the sampling distribution of t_{calc} becomes highly skewed

$$t_{calc} = \frac{r_{XY}\sqrt{n-2}}{\sqrt{1-r_{XY}^2}}$$

versus $t_{n-2,\alpha}$ or $t_{n-2,\alpha/2}$

11

CORRELATION ANALYSIS

• For the null hypothesis $H_0: \rho_{XY} = k$, where k is any number on the interval (-1,1) we use **Fisher's** z_r transformation

$$z_r = \frac{1}{2} \ln \left[\frac{1 + r_{XY}}{1 - r_{XY}} \right]$$

- Where ln is the natural logarithm and \mathbf{z}_{r} has a Normal distribution with

$$Var(z_r) = \frac{1}{n-3}$$

CORRELATION ANALYSIS

- A confidence interval for \boldsymbol{z}_r is

$$z_r \pm Z_{\alpha/2} \sqrt{\frac{1}{n-3}}$$

• To test the null hypothesis H_0 : $\rho_{XY} = k$ use

$$Z_{calc} = \frac{Z_r - Z_k}{\sqrt{\frac{1}{n-3}}}$$

13

CORRELATION ANALYSIS

• Suppose n=45 and $r_{XY} = 0.68$. To test the null hypothesis H_0 : $\rho_{XY} = 0.5$ $z_r = \frac{1}{2} \ln \left[\frac{1+0.68}{1-0.68} \right] = 0.8921$ $z_k = \frac{1}{2} \ln \left[\frac{1+0.5}{1-0.5} \right] = 0.5493$ $Z_{calc} = \frac{0.8921 - 0.5493}{\sqrt{\frac{1}{45-3}}} = 1.813$ for $\alpha = 5\% Z_{\alpha/2} = 1.96$ for $\alpha = 10\% Z_{\alpha/2} = 1.645$

14

CORRELATION ANALYSIS

- Two methods to test for differences in correlations between two sub-groups from a sample
- Using Linear Regression (a bit 'messy')
- + Using Fisher's \mathbf{z}_{r} transformation (much more straightforward)

REGRESSION WITH 2 GROUPS

- From a sample of n observations on Y and X, suppose you can identify two sub-groups in the sample Group 1 and Group 2
- We can identify the two different groups with a single Yes/No identification variable called a *Dummy Variable*
- If an observation is part of Group 1, define the variable D=1 and if part of Group 2, D=0, then specify the regression equation

$$Y = \beta_0 + \beta_1 X + \gamma_0 D + \gamma_1 (D \times X) + \varepsilon$$

16

REGRESSION WITH 2 GROUPS

- For Group 1 when D=1, the regression intercept and slope can be written $Y=(\beta_0+\gamma_0)+(\beta_1+\gamma_1)X+\varepsilon$
- So the intercept for Group 1 is $\beta_0 + \gamma_0$ and the slope is $\beta_1 + \gamma_1$
- + For Group 2 when D=0 $Y = \beta_0 + \beta_1 X + \varepsilon$
- So the intercept and slope for Group 2 are just β_0 and β_1
- The parameter γ_0 measures the difference in the intercept between Group 1 and Group 2 (the difference in the mean of Y after controlling for the effect of X)
- The parameter γ_1 measures the difference in the slope of the regression equation between the two groups (difference in correlation)

17

REGRESSION WITH 2 GROUPS

- Example using Salary Data
- Salary vs. Experience for Females (Group 1) and Males (Group 2)

2 GROUP CORRELATION TEST

- An alternative (and more straightforward) test of differences in correlations across two subgroups uses Fisher's z_r transformation
- Suppose you have the sample correlation coefficient for the first group r_1 based on n_1 observations, and similarly for the second group, r_2 based on n_2 observations. First calculate the z_r transformations

$$z_{r_1} = \frac{1}{2} \ln \left[\frac{1+r_1}{1-r_1} \right] \quad z_{r_2} = \frac{1}{2} \ln \left[\frac{1+r_2}{1-r_2} \right]$$

19

2 GROUP CORRELATION TEST

- To test the null hypothesis H_0 : $\rho_1 = \rho_2$ construct the calculated Z-statistic

$$Z_{calc} = \frac{Z_{r_1} - Z_{r_2}}{\sqrt{\frac{1}{n_1 - 3} + \frac{1}{n_2 - 3}}}$$

- And compare to Z_{α} for a one-tailed test or $Z_{\alpha/2}$ for a two-tailed test
- Example with Salary data

ECMT 461 INTRODUCTION TO ECONOMIC DATA ANALYSIS

Lecture 17 Craig T. Schulman

1

MULTI-GROUP TESTS

- A test of equal correlations across 2 or more groups
- Multi-Group Tests using Regression

2

2 GROUP CORRELATION TEST

- Test of differences in correlations across two subgroups using Fisher's z_r transformation

$$z_{r_1} = \frac{1}{2} \ln \left[\frac{1+r_1}{1-r_1} \right] \quad z_{r_2} = \frac{1}{2} \ln \left[\frac{1+r_2}{1-r_2} \right]$$
$$Z_{calc} = \frac{z_{r_1} - z_{r_2}}{\sqrt{\frac{1}{n_1 - 3} + \frac{1}{n_2 - 3}}}$$

• And compare to Z_{α} for a one-tailed test or $Z_{\alpha/2}$ for a two-tailed test

MULTI-GROUP CORRELATION TEST

• To test a hypothesis of equal correlations across multiple groups: $H_0: \rho_1 = \rho_2 = \cdots = \rho_k$ we can use Fisher's z_r transformation to construct a Chi-Square test statistic

$$\chi^{2}_{calc} = \sum_{j=1}^{k} \left[(n_{j} - 3) z_{r_{j}}^{2} \right] - \frac{\left[\sum_{j=1}^{k} (n_{j} - 3) z_{r_{j}} \right]^{2}}{\sum_{j=1}^{k} (n_{j} - 3)}$$

- Compared to the Chi-Square distribution with k-1 degrees of freedom

4

MULTI-GROUP CORRELATION TEST

- The test statistic looks intimidating, but it is straightforward to calculate in Excel
- Example

5

MULTI-GROUP TESTS WITH REGRESSION

- When we considered an X-Y regression with two groups, we found that we can identify the two different groups with a single Yes/No identification variable – called a *Dummy Variable*
- With ${\pmb k}$ sub-groups in the data, we need k-1 Dummy Variables to uniquely identify the ${\pmb k}$ sub-groups
- We pick one of the groups to be the *reference group*

MULTI-GROUP TESTS WITH REGRESSION

· Suppose we have 4 subgroups in the data

•	Let the fourth sub-group be
	the reference group

1	1	0	0
2	0	1	0
3	0	0	1
4	0	0	0

• Define 3 Dummy Variables $D_1, D_2, and D_3$ for sub-groups 1, 2, and 3, respectively

Group	\mathbf{D}_1	\mathbf{D}_2	\mathbf{D}_3
1	1	0	0
2	0	1	0
3	0	0	1
4	0	0	0

7

MULTI-GROUP TESTS WITH REGRESSION

• Specify the Unrestricted regression equation

$$\begin{split} Y &= \beta_0 + \beta_1 X + \alpha_1 D_1 + \alpha_2 D_2 + \alpha_3 D_3 \\ + \gamma_1 (D_1 \times X) + \gamma_2 (D_2 \times X) + \gamma_3 (D_3 \times X) + \varepsilon \end{split}$$

• And the *Restricted* regression equation that forces all the subgroup correlations to be the same but allows the means of the sub-groups to be different

 $Y = \beta_0 + \beta_1 X + \alpha_1 D_1 + \alpha_2 D_2 + \alpha_3 D_3 + \varepsilon$

8

MULTI-GROUP TESTS WITH REGRESSION

- In this example, we used sub-group 4 as the reference group
- The "alpha" parameters from the Unrestricted equation measure the difference in the conditional mean of Y for each of the three groups compared to sub-group 4
- · The "gamma" parameters from the Unrestricted equation measure the difference in the effect of ${\tt X}$ on ${\tt Y}$ for each of the three groups compared to sub-group 4
- · Changing the reference group would change the interpretation of the parameters but does not affect the overall results

10

MULTI-GROUP TESTS WITH REGRESSION

 The SSE from the Unrestricted equation, SSE₁₀, and the SSE from the Restricted equation, SSE₁₀, allow us to construct a calculated F-statistic

 $F_{calc} = \frac{(SSE_R - SSE_U)/(DF_R - DF_U)}{SSE_U/DR_U} \sim F_{DF_R - DR_U, DF_U}$

• Where DF_R and DF_U are the degrees of freedom in the Restricted and Unrestricted equations, respectively

• Example

ECMT 461 INTRODUCTION TO ECONOMIC DATA ANALYSIS

Lecture 18 Craig T. Schulman

1

TERM PROJECT SECTION 5

- Two Sample Confidence Intervals and Hypothesis Tests
- You should first conduct pair-wise hypothesis tests of equal variances among sub-groups
- Given the results of your variance tests, next use the Excel Data Analysis Tool to conduct pair-wise means tests with either equal or unequal means as determined by your variance tests
- Use the Analysis Tool results to create tables of your confidence intervals and pair-wise tests
- Example

2

NON-PARAMETRIC TESTS

- Non-Parametric tests are typically used to assess categorical or nominal (discrete) data
- Goodness of Fit Test
- Goodness of Fit for Poisson Distribution

CHI-SQUARE GOODNESS OF FIT TEST

- Suppose you have a categorical variable that takes on a fixed number of distinct values, or categories: $C_1, C_2, ..., C_k$
- Denote the Observed number of outcomes that fall into each category as $0_1, 0_2, \dots, 0_k$
- The question is whether these observed outcomes are consistent with – fit – a particular distribution or set of Expected outcomes $E_1, E_2, ..., E_k$

4

CHI-SQUARE GOODNESS OF FIT TEST

- The assumptions underlying the Chi-Square goodness-of-fit test are as follows:
- Categorical/nominal data representing mutually exclusive categories are used in the analysis
- The data represent a sample of n independent observations
- The expected frequency of each category (or cell) is 5 or greater

	I	1
Category	Observed Frequency Count	Expected Frequency Count
C_1	O_1	${ m E}_1$
C_2	O_2	${ m E}_2$
C_K	OK	E _K
Total Obs.	n	
		1

TEST STATISTIC

• Under these assumptions we can formulate a Chi-Square test statistic as follows

$$\chi^{2}_{calc} = \sum_{i=1}^{K} \frac{(O_{i} - E_{i})^{2}}{E_{i}} \sim \chi^{2}_{(K-1)}$$

- Against a one-tailed upper alternative
- Examples

7

NCAA STARTING PITCHERS

• Among all NCAA D-1 pitchers that started at least 5 games, the distribution by class rank is:

	Proportion of
Class Rank	Starters
Fr	20%
So	22%
Jr	33%
Sr	25%

• Is the distribution of starting pitchers by class rank in the SEC consistent with the overall distribution?

8

OTHER EXAMPLES

- Students doing homework by day of the week is it evenly distributed?
- Rolls of a six-sided die is the die 'fair'?
- Number of television sets per family

TEST FOR THE POISSON DISTRIBUTION

- The same basic test procedure can be applied to assess whether a set of observed outcomes are consistent with a particular probability distribution with unknown parameters
- However, we must adjust the degrees of freedom of the Chi-Square statistic for the number of unknown parameters
- For the Poisson distribution, there is one parameter the mean number of occurrences per observation unit, λ

10

POISSON DISTRIBUTION

• The Poisson probability distribution can be used to model the number of occurrences (or successes) of a certain event in a given continuous interval such as time, spatial area, or length.

- The number of trucks arriving at a warehouse in a given week.
- The number of failures in a computer system in a given day.
- The number of defects in a large roll of sheet metal.
- The number of customers to arrive at a coffee bar in a given time interval.

11

POISSON ASSUMPTIONS

- Assume that an interval is divided into a large number of equal subintervals so that the probability of the occurrence of an event in any subinterval is small.
- The probability of the occurrence of an event is constant for all subintervals.
- There can be no more than one occurrence in each subinterval.
- Occurrences are independent an occurrence in one subinterval does not have an effect on the probability of an occurrence in another subinterval.

13

POISSON CDF

- Recall that the CDF is defined as the probability of X being less than or equal to some specific value, X_0

- We get the CDF by summing up the PDF for all values of $X\!\leq X_0$

$$P[X \le X_0] = F(X) = \sum_{X_i=0}^{X_0} P(X_i)$$

• Example

ECMT 461 INTRODUCTION TO ECONOMIC DATA ANALYSIS

Lecture 19 Craig T. Schulman

1

NON-PARAMETRIC TESTS

- Chi-Square Non-Parametric tests of:
- Homogeneity Are independent samples of a random variable X homogeneous with respect to some category variable?
- Independence For a random variable that can be categorized in two dimensions (two category variables), are the two dimensions independent of one another?

2

HOMOGENEITY TEST

- For a random variable X, suppose you have \mathbf{k} independent samples denoted X_1, X_2, \dots, X_k
- Each of these samples can be categorized into one of **m** mutually exclusive categories C_1, C_2, \dots, C_m
- Is the distribution of observations among the m categories homogeneous (the same) across the k samples?
- This can be presented in the form of a contingency table

CONTINGENCY TABLE

			Sample			
		X1	X_2		Xk	Row Totals
s	C ₁	O ₁₁	O ₁₂		O _{1k}	n_{C_1}
Categorie	C_2	O ₂₁	O ₂₂		O _{2k}	n_{C_2}
	Cm	O _{m1}	O_{m2}		O _{mk}	n_{C_m}
Colum	n Totals	<i>n</i> _{X1}	n_{X_2}		n_{X_k}	n

• Where

+ O_{ij} is the *frequency count* for category i in sample j

- n_{X_i} is the sample size for sample X_j
- n_{C_i} is the total frequency count for category i
- *n* is the overall sample size

4

HOMOGENEITY TEST

- To construct our test statistic, we need to compare each observed cell frequency count, O_{ij} to the *expected* frequency count, E_{ij} under the null hypothesis of homogeneity – that the categories are proportionally similar across all the samples
- As with the Goodness of Fit test, we require each expected cell frequency to be greater than 5

5

HOMOGENEITY TEST

• The expected cell frequency under the null hypothesis is calculated by

$$E_{ij} = \frac{n_{C_i} n_{X_j}}{n}$$

• And the Chi-Square test statistic is then

$$\chi_{calc}^{2} = \sum_{i=1}^{m} \sum_{j=1}^{k} \frac{\left(O_{ij} - E_{ij}\right)^{2}}{E_{ij}} \sim \chi_{(m-1)(k-1)}^{2}$$

• Example

INDEPENDENCE TEST

- Consider a random variable that can be categorized in two dimensions – or across two categorical factors
- The Chi-Square test of independence can be used to whether the two factors are independent of one another
- Mathematically, the test is identical to the test of Homogeneity

7

INDEPENDENCE TEST						1
		A ₁	A ₂		Ak	Row Totals
	B ₁	O ₁₁	O ₁₂		O _{1k}	n _{B1}
or B	B_2	O ₂₁	O ₂₂		O _{2k}	n _{B2}
acto						
4	Bm	O_{m1}	O _{m2}		O _{mk}	n _{Bm}
Colum	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					

- Compare each observed cell frequency count Oij to its expected frequency under the null E_{ij}
- Example

8

TIME SERIES DATA

- Consider the random variable Y that is observed over some time interval t
- The time interval could be days, weeks, months, years, etc.
- For simplicity, index $t = \{1, 2, \dots, T\}$
- Unlike cross-sectional data, there is a natural order to time-series data, Y_{t+1} naturally follows Y_t
- This natural ordering can present special estimation issues as well as interpretations related to periodic change and growth

ECMT 461 INTRODUCTION TO ECONOMIC DATA ANALYSIS

Lecture 20 Craig T. Schulman

1

LINEAR REGRESSION

- Sample Correlation r_{xy} provides a measure of the degree of association between two variables X and Y
- Linear Regression is a method of "explaining" the observed variation in some variable Y that is believed to be related in some way to the variable X
- Y is denoted the "Dependent" variable
- X is denoted the "Explanatory" variable
- Express Y as a function of X: Y = f(X)

2

BIVARIATE REGRESSION MODEL

- "Bivariate" because there are two variables ${\tt X}$ and ${\tt Y}$
- Assume the relationship between X and Y is linear in the population parameters β_0 and β_1 and the random error term ε

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

- Where β_0 is the intercept and β_1 is the slope of the regression line
- Error $\boldsymbol{\epsilon}$ is the difference between the observed Y and the regression line

BIVARIATE REGRESSION MODEL

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

- The regression intercept β_0 measures the conditional mean of the dependent variable Y: The mean of Y after accounting for the mean effect of X
- The regression slope β_1 measures the marginal effect of X on Y: If X changes by 1 unit, the regression predicts that Y will change by β_1 units
- HW 8 Example

4

HYPOTHESIS TESTS

• Given the Normal Distribution assumption we can test hypotheses about the Least Squares parameters as follows:

$$H_0: \ \beta_1 = k$$
$$t_{calc} = \frac{b_1 - k}{S_{b_1}}$$

versus
$$t_{n-2,\frac{\alpha}{2}}$$
 or $t_{n-2,\alpha}$

5

CORRELATION ANALYSIS

• For the Bivariate Regression model (that includes an intercept)

$$b_1 = \frac{S_Y}{S_X} r_{XY}$$

• So the test of the hypothesis H_0 : $\beta_1 = 0$ is a direct test of the hypothesis H_0 : $\rho_{XY} = 0$.

ONE-WAY ANOVA

• The Null Hypothesis is that the sub-groups all have the same mean:

 $H_0: \ \mu_1 = \mu_2 = \dots = \mu_k$

 Versus the Alternative Hypothesis that at least one of the sub-group means is different.
 H_A: μ_i ≠ μ_i for at least one pair, μ_i, μ_j

7

ONE-WAY ANOVA

- Under the Alternative Hypothesis when we let each sub-group have a different mean, we have the *within group sum of squares*
 - SSW with Degrees of Freedom (DF): n K
 Where n is the total number of observations across all sub-groups and K is the number of sub-groups

$$SSW = \sum_{i=1}^{K} SS_i = \sum_{i=1}^{K} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2$$

8

ONE-WAY ANOVA

• Under the Null Hypothesis, when we force all the sub-groups to have the same means, we have the *total sum of squares, SST*.

$$SST = \sum_{i=1}^{K} \sum_{j=1}^{n_i} (x_{ij} - \bar{\bar{x}})^2$$

• The "extra" error associated with forcing the null hypothesis to be true is the *between group* sum of squares, SSG

• SSG with DF: K - 1
$$SSG = \sum_{i=1}^{N} n_i (\bar{x}_i - \bar{x})^2$$

ONE-WAY ANOVA

• Both SSW and SSG are distributed as Chi-Square. Our test of the Null that all the subgroups have the same mean will then use an F statistic:

$$F_{calc} = \frac{SSG/(K-1)}{SSW/(n-K)} \sim F_{(K-1),(n-K)}$$

• Excel Examples

10

TWO-WAY ANOVA WITHOUT REPLICATION

- Under the Alternative Hypothesis, where we allow the means to vary over both Groups and Blocks, we have the *error sum of squares*, SSE
 - SSE with DF: (*K* − 1)(*H* − 1)
- The "extra" error created when we force the Group means to be the same gives us the between Groups sum of squares, SSG
 SSG with DF: K - 1
- The "extra" error created when we force the Block means to be the same gives us the *between Blocks sum of squares, SSB* SSB with DF: H - 1

11

TWO-WAY ANOVA WITHOUT REPLICATION

• To test the Null Hypothesis that the means are the same across Groups we use:

$$F_{calc} = \frac{SSG/(K-1)}{SSE/(K-1)(H-1)} vs. F_{\alpha,(K-1),(K-1)(H-1)}$$

• To test the Null Hypothesis that the means are the same across Blocks we use:

$$F_{calc} = \frac{SSB/(H-1)}{SSE/(K-1)(H-1)} vs. F_{\alpha,(H-1),(K-1)(H-1)}$$

CORRELATION ANALYSIS

• We can also construct a test statistic based on the sample correlation coefficient r_{XY} to test the hypothesis H_0 : $\rho_{XY} = 0$

$$t_{calc} = \frac{r_{XY}\sqrt{n-2}}{\sqrt{1-r_{XY}^2}}$$

versus $t_{n-2,\alpha}$ or $t_{n-2,\alpha/2}$

13

2 GROUP CORRELATION TEST

- An alternative (and more straightforward) test of differences in correlations across two subgroups uses Fisher's z_r transformation
- Suppose you have the sample correlation coefficient for the first group r_1 based on n_1 observations, and similarly for the second group, r_2 based on n_2 observations. First calculate the z_r transformations

$$z_{r_1} = \frac{1}{2} \ln \left[\frac{1+r_1}{1-r_1} \right] \quad z_{r_2} = \frac{1}{2} \ln \left[\frac{1+r_2}{1-r_2} \right]$$

14

2 GROUP CORRELATION TEST

- To test the null hypothesis $H_0:\,\rho_1=\rho_2$ construct the calculated Z-statistic

$$Z_{calc} = \frac{Z_{r_1} - Z_{r_2}}{\sqrt{\frac{1}{n_1 - 3} + \frac{1}{n_2 - 3}}}$$

• And compare to Z_{α} for a one-tailed test or $Z_{\alpha/2}$ for a two-tailed test

MULTI-GROUP CORRELATION TEST

• To test a hypothesis of equal correlations across multiple groups: H_0 : $\rho_1 = \rho_2 = \cdots = \rho_k$ we can use Fisher's z_r transformation to construct a Chi-Square test statistic

$$\chi_{calc}^{2} = \sum_{j=1}^{k} \left[(n_{j} - 3) z_{r_{j}}^{2} \right] - \frac{\left[\sum_{j=1}^{k} (n_{j} - 3) z_{r_{j}} \right]^{2}}{\sum_{j=1}^{k} (n_{j} - 3)}$$

- Compared to the Chi-Square distribution with k-1 degrees of freedom

16

CHI-SQUARE GOODNESS OF FIT TEST

- The assumptions underlying the Chi-Square goodness-of-fit test are as follows:
- Categorical/nominal data representing mutually exclusive categories are used in the analysis
- The data represent a sample of n independent observations
- The expected frequency of each category (or cell) is 5 or greater

Category	Observed Frequency Count	Expected Frequency Count
C_1	O_1	E_{1}
C_2	O_2	E_2
Ск	OK	E_{K}
Total Obs.	n	
		·,

TEST STATISTIC

• Under these assumptions we can formulate a Chi-Square test statistic as follows

$$\chi^{2}_{calc} = \sum_{i=1}^{K} \frac{(O_{i} - E_{i})^{2}}{E_{i}} \sim \chi^{2}_{(K-1)}$$

• Against a one-tailed upper alternative

19

HOMOGENEITY TEST

- For a random variable X, suppose you have k independent samples denoted X₁, X₂, ..., X_k
- Each of these samples can be categorized into one of **m** mutually exclusive categories C_1, C_2, \dots, C_m
- Is the distribution of observations among the **m** categories homogeneous (the same) across the **k** samples?
- This can be presented in the form of a contingency table

20

	co	NTIN	GEN	сү т	`ABLE	;
			San	npie		
		X1	X_2		Xk	Row Totals
so	C1	O ₁₁	O_{12}		O _{1k}	n_{C_1}
corie	C_2	O ₂₁	O_{22}		O _{2k}	n_{C_2}
ateg						
0	Cm	O _{m1}	O _{m2}		Omk	n_{C_m}
Column Totals		<i>n</i> _{X1}	n_{X_2}		n_{X_k}	n

• Where

- + O_{ij} is the *frequency count* for category i in sample j
- n_{X_i} is the sample size for sample X_j
- n_{C_i} is the total frequency count for category i
- **n** is the overall sample size

HOMOGENEITY TEST

- To construct our test statistic, we need to compare each observed cell frequency count, O_{ij} to the *expected* frequency count, E_{ij} under the null hypothesis of homogeneity – that the categories are proportionally similar across all the samples
- As with the Goodness of Fit test, we require each expected cell frequency to be greater than 5

22

HOMOGENEITY TEST

• The expected cell frequency under the null hypothesis is calculated by

$$E_{ij} = \frac{n_{C_i} n_{X_j}}{n}$$

• And the Chi-Square test statistic is then

$$\chi_{calc}^{2} = \sum_{i=1}^{m} \sum_{j=1}^{k} \frac{\left(O_{ij} - E_{ij}\right)^{2}}{E_{ij}} \sim \chi_{(m-1)(k-1)}^{2}$$

23

INDEPENDENCE TEST

- Consider a random variable that can be categorized in two dimensions – or across two categorical factors
- The Chi-Square test of independence can be used to whether the two factors are independent of one another
- Mathematically, the test is identical to the test of Homogeneity

INDEPENDENCE TEST

		A ₁	A_2	 Ak	Row Totals	
	B_1	O ₁₁	O ₁₂	 O _{1k}	n _{B1}	
or B	B_2	O ₂₁	O ₂₂	 O _{2k}	n _{B2}	
act				 		
-	B_{m}	O_{m1}	O_{m2}	 O _{mk}	n _{Bm}	
Colum	n Totals	nAl	n _{A2}	 n _{Ak}	n	

• Compare each observed cell frequency count Oij to its expected frequency under the null E_{ij}

