ARMA Model Derivations
Random Walk Model

Consider a time series variable y, that follows the process: y; = y;_1 + &, where &; is a White
Noise error term:

Ve =Yi-1 T &
E(Et) =0

Var(e,) = o
Cov(es, er—s) =0 foralls #0

If we backdate the original equation one period, y;_1 = y;_, + &_1, and substitute into the
original equation for y,_;:

Ye =Ye—2t &t &

t
Ve = z &
i=1

Repeated substitution gives:

And

EG) =), Ee)=0

t
Var(y,) = z Var(g) = to?
i=1

Because ¢; is independent White Noise.
Cov(ye,Ye-s) =E(er + &g+t &g+ &) (g5 + -+ &)

When we multiply the two parts of this expression, any term where the time periods do not
match, e.g., E (et_l-et_ ]-) with i # j, goes to zero, again because ¢ is White Noise. The equation
then reduces to:

Cov(yt' yt—s) = E(SL?—S) + - +E(512) = (t — S)O'2

Because the variance and autocovariances of y; depend on t, this type of Random Walk variable
is not stationary.



AR(1) Model

Now consider a simple AR(1) model: y; = ¢y;_1 + &, where again, &, is a White Noise error
term and ¢, is the (constant) AR parameter.

Backdate this equation one period: y;_; = ¢1V;_» + &1 and substitute into the original
equation:

Ve = O1(P1ye2 +&1) + &
Expanding and rearranging:
Ve =&+ P11+ Ty,
By repeated substitution we can invert the AR(1) form into an infinite MA form to give:
Ve =& + P11 + Pier o + Pie_z +
And:

E(y)=0
vart =Y g

For y, to be stationary, we require Var(y,) < oo. If |¢p;| < 1, or equivalently, ¢p? < 1, the
1

SO:
1-¢%’

infinite sum in the variance equation reduces to

2

% =
ar(yt) 1— ¢12
Note that because E(y,) = 0, Var(y,) = E(y?).

For y; to be stationary, we also require it autocovariances, Cov(y;, y;_s) to be independent of t.
Because E(y;) = 0, Cov(y;, Ye—s) = E(¥:yi—s)- For the first autocovariance,

EWeye-1) = E[(1Ye-1 + €)Vee1] = G1EWE1) + E(e_1r)
In the first portion: ¢,E(y2 1), E(yZ,) = Var(y,).
In the last portion:
E(Ve-18) = E[(€r-1 + P1602 + ez + Pie s+ )] =0

Because all the €'s are from different time periods. The first autocovariance then reduces to:

¢102

E(ye,ye-1) = -2

For the second autocovariance, write y, = ¢p2y,_, + ¢p1&_1 + &, then:

E(eye-2) = E[(@Fye—z + D181 + €)Ve2]



Which reduces to:

pio’
EQuyi2) =7—3
tr Yt-2 1-¢2
Generally,
pi0°
EQuyi-s) =—

Thus, the autocovariance function (ACF) for the simple AR(1) model does not depend on t, only
on the level of displacement, s. Because we required |¢p;| < 1, the ACF will dampen as we raise
¢4 to higher and higher powers. If ¢p; > 0, the ACF will exhibit one-sided dampening from the
positive side:

AR(1) variable with a positive coefficient
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If ¢; < 0, the ACF will exhibit oscillating dampening starting from the negative side.
AR(1) variable with a negative coefficient

08-
Lag

For the Partial Autocorrelation Function (PACF), the first autocorrelation is simply ¢;. After
controlling for the effect of y;_4, all other partial autocorrelations (e.g. t-2, t-3, etc.) should drop
to effectively zero.



MA(1) Model
Now consider a simple MA(1) model: y, = 0,&_1 + &, giving
E(y)) =0
Var(y,) = E(y¢) = 0*(1+ 6%)
To get the ACF, we need E (y;y;_s). For the first autocovariance:
E(yeyi-1) = E[(016c-1 + &) (016, + &_1)] = 026,
For the second autocovariance (and all others):
E(tyt—2) = E[(016¢-1 + €)(016, 3+ &) =0
Generally,

0-291 S:].}
0 s>1

EQuye-s) = {
So, provided 0, is finite, the MA process is stationary and the ACF drops off abruptly.
To get the PACF, backdate and rearrange the original equation to get:
€-1= Ye-1 — 0162
Substituting for &;_; in the original equation:

Vi = 0111 — 0765 + &

By repeated substitution to eliminate all the lagged ¢ terms, we can invert the MA(1) form into
an infinite AR form to give:

Ve =01Vt 1 — 07y 2 + 07y 3 — 07y 4y ..+ &

In order for this to be stable (whereby events in the distant past don’t have an infinite impact on
what we observe today), we require |6;| < 1. Thus, if 8; > 0, the PACF for an MA(1) process
will exhibit oscillating dampening starting from the positive side:

MA(1) variable with a positive coefficient
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And if 6, < 0, the PACF will exhibit one sided dampening from the negative side:

MA(1) variable with a negative coefficient
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