SAS[®] Certification Review: Base Programming for SAS[®]9

Course Notes

SAS[®] Certification Review: Base Programming for SAS[®]9 Course Notes was developed by Michele Ensor. Additional contributions were made by Kent Reeve, Lori Rothenberg, Lorilyn Russell, Larry Stewart, and Su Chee Tay. Editing and production support was provided by the Curriculum Development and Support Department.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

SAS[®] Certification Review: Base Programming for SAS[®]9 Course Notes

Copyright © 2013 SAS Institute Inc. Cary, NC, USA. All rights reserved. Printed in the United States of America. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

Book code E2408, course code LWCRB/CRB, prepared date 27Mar2013.

LWCRB 004

ISBN 978-1-61290-698-0

Table of Contents

Cou	rse Description	vi
Prer	requisites	vii
Chap	ter 1 Introduction	1-1
1.1	Specifics about the SAS Base Programming Exam	1-3
1.2	Specifics about This Review Course	1-10
1.3	SAS Fundamental Concepts	1-14
1.4	Answers to Questions	1-31
Chap	ter 2 Working with SAS Data Sets	2-1
2.1	Reading and Creating Data Sets	2-3
2.2	Selecting Observations	2-29
2.3	Sorting Observations with the SORT Procedure	2-42
2.4	Combining Data Sets	2-45
2.5	Answers to Questions	2-57
Chap	ter 3 Working with Raw Data and Microsoft Excel Files	3-1
3.1	Reading Raw Data Files: Part 1	
3.2	Reading Raw Data Files: Part 2	3-16
3.3	Controlling When a Record Loads	
3.4	Reading Microsoft Excel Files	
3.5	Answers to Questions	
Chap	ter 4 Creating Variables	4-1
4.1	Creating Variables with the Assignment Statement	4-3

4.2	Creating Variables Conditionally	
4.3	Creating Accumulator Variables	4-19
4.4	Answers to Questions	
Chapt	er 5 Manipulating Data	5-1
5.1	Using Functions to Manipulate Data	
5.2	Converting Character and Numeric Data	
5.3	Processing Data with DO Loops	5-41
5.4	Processing Data with Arrays	
5.5	Answers to Questions	5-59
Chapt	er 6 Generating Reports	6-1
6.1	Creating Detail Reports with the PRINT Procedure	6-3
6.2	Creating Formats with the FORMAT Procedure	
6.3	Creating Frequency Tables with the FREQ Procedure	
6.4	Creating Summary Reports with the MEANS Procedure	
6.5	Directing Reports to External Files with ODS	
6.6	Answers to Questions	6-46
Chapt	er 7 Additional Information	7-1
7.1	More Specifics about the SAS Base Programming Exam	
7.2	Additional Preparation Resources	7-6
7.3	Test-Taking Strategies	7-9
Арреі	ndix A Exercises and Solutions	A-1
A.1	Exercises	A-3
Cl	napter 1	A-3

C	hapter 2	A-4
C	hapter 3	A-7
C	hapter 4	A-11
C	hapter 5	A-14
C	hapter 6	A-18
A.2	Solutions	A-24
C	hapter 1	A-24
C	hapter 2	A-25
C	hapter 3	A-26
C	hapter 4	A-27
C	hapter 5	A-29
\mathbf{C}	hapter 6	A 21
C		A-31
Appe	ndix B Practice Exam	B-1
		B-1
Appe	ndix B Practice Exam	B-1 B-3
Appe B.1	ndix B Practice Exam	В-1 В-3 В-6
Appe B.1 B.2	ndix B Practice Exam SAS Fundamental Concepts Working with SAS Data Sets	B-1 B-3 B-6 B-12
Appe B.1 B.2 B.3	ndix B Practice Exam SAS Fundamental Concepts Working with SAS Data Sets Working with Raw Data and Microsoft Excel Files	B-1 B-3 B-6 B-12 B-20
Appe B.1 B.2 B.3 B.4	ndix B Practice Exam SAS Fundamental Concepts Working with SAS Data Sets Working with Raw Data and Microsoft Excel Files Creating Variables	B-1 B-3 B-6 B-12 B-20 B-26
Appe B.1 B.2 B.3 B.4 B.5	ndix B Practice Exam SAS Fundamental Concepts Working with SAS Data Sets Working with Raw Data and Microsoft Excel Files Creating Variables Manipulating Data	B-3 B-3 B-6 B-12 B-20 B-26 B-31

Course Description

This course provides a review of the majority of topics in the SAS[®] Base Programming Exam for SAS[®]9. It addresses the five exam content areas: Accessing Data, Creating Data Structures, Managing Data, Generating Reports, and Handling Errors.

To learn more...

For information about other courses in the curriculum, contact the SAS Education Division at 1-800-333-7660, or send e-mail to training@sas.com. You can also find this information on the Web at support.sas.com/training/ as well as in the Training Course Catalog.

For a list of other SAS books that relate to the topics covered in this Course Notes, USA customers can contact our SAS Publishing Department at 1-800-727-3228 or send e-mail to sasbook@sas.com. Customers outside the USA, please contact your local SAS office.

Also, see the Publications Catalog on the Web at support.sas.com/pubs for a complete list of books and a convenient order form.

Prerequisites

Before attending this course, you should

- be an experienced programmer with knowledge of the five exam content areas
- have taken SAS[®] Programming 1: Essentials and SAS[®] Programming 2: Data Manipulation Techniques or have equivalent experience.

Chapter 1 Introduction

1.1	Specifics about the SAS Base Programming Exam	1-3
1.2	Specifics about This Review Course	.1-10
1.3	SAS Fundamental Concepts	.1-14
1.4	Answers to Questions	.1-31

1-2 Chapter 1 Introduction

1.1 Specifics about the SAS Base Programming Exam

SAS Foundation Credentials and Exams

SAS offers the following credentials and exams in the SAS Foundation area:

Credentials	Certification Exams
SAS Certified Base Programmer for SAS [®] 9	➢ SAS Base Programming for SAS [®] 9
SAS Certified Advanced Programmer for SAS [®] 9	 SAS Base Programming for SAS[®]9 SAS Advanced Programming for SAS[®]9
SAS Certified Clinical Trials Programmer Using SAS®9	 Clinical Trials Programming Using SAS[®]9 OR SAS Base Programming for SAS[®]9 Clinical Trials Programming Using SAS[®]9 Accelerated Version

SAS Base Programming Exam for SAS®9

The intended candidate for the SAS Base Programming Exam is someone with current SAS programming **experience** in the following five content areas:

- 1. Accessing Data
- 2. Creating Data Structures
- 3. Managing Data
- 4. Generating Reports
- 5. Handling Errors

In addition, the candidate must be familiar with the enhancements and new functionality available in SAS[®]9.

8

Accessing Data Use FORMATTED and LIST input to read raw data files. Use INFILE statement options to control processing when you read raw data files.

- Use various components of an INPUT statement to process raw data files, including column and line pointer controls and trailing @ controls.
- Combine SAS data sets.
- Access Microsoft Excel workbooks.

2. Creating Data Structures

- Create temporary and permanent SAS data sets.
- Create and manipulate SAS date values.
- Export data to standard and comma-delimited raw data files.
- Control which observations and variables in a SAS data set are processed and output.

11

3. Managing Data

- Investigate SAS libraries using utility procedures.
- Sort observations in a SAS data set.
- Use assignment statements in the DATA step.
- Modify variable attributes using options and statements in the DATA step.
- Accumulate subtotals and totals using DATA step statements.
- Use SAS functions to manipulate character data, numeric data, and SAS date values.
- Use SAS functions to convert character data to numeric and vice versa.
- Process data using DO loops and SAS arrays.
- Validate and clean data.

4. Generating Reports

- Use the PRINT procedure to generate list reports.
- Use Base SAS procedures to generate summary reports and frequency tables.
- Enhance reports through the use of labels, SAS formats, user-defined formats, titles, footnotes, and SAS reporting options.
- Use ODS statements to direct reports to external files.

13

5. Handling Errors

- Identify and resolve programming logic errors.
- Recognize and correct syntax errors.
- Examine and resolve data errors.

🛕 Exam details are subject to change at any time. 🛕

Multiple-Choice Questions There is only one correct answer.	
For example:	
Which city is the headquarters for SAS?	
 A. Boston B. Cary ← one correct answer C. Detroit D. San Francisco 	
19	

Given th	ne following data set:	
State	City	
MA	Boston	Support information
NC	Cary	might appear prior
MI	Detroit	to the question.
CA	San Francisco	
A. Bost	-	he second observation?

	Short-Answer Questions
	All short-answer questions contain a question with explicit instructions for entering the answer. Support information can appear before the question.
	For example:
	What is the maximum length for a SAS variable name?
	Enter your numeric answer explicit instructions
	32 ← correct answer
21	

1.2 Specifics about This Review Course

SAS Certification Review: Base Programming for SAS[®]9

This course is a review of the majority of the topics in the SAS Base Programming Exam for SAS[®]9.

re·view1: to view or see again2: to examine or study again

This course assumes prior knowledge of the topics.

SAS Certification Review: Base Programming for SAS[®]9

This course is a review of the majority of the topics in the SAS Base Programming Exam for SAS[®]9.

ma·jor·i·ty

1 : a number or percentage equaling more than half of a total

The certification exam can include topics beyond those topics discussed in this course.

25

SAS Certification Review: Base Programming for SAS[®]9

This review course will

- refresh your mind on some details that you might have forgotten
- include topics with which you might have limited experience
- familiarize you with SAS terminology
- determine in what areas you need to do additional studying
- help you determine whether you are ready to take the exam
- provide practice for answering SAS questions.

30

Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Practice Exam in This Course (Appendix B)

The practice exam contains 50 questions in six sections.

Chapter	Section	Questions	Time Limit
1	SAS Fundamental Concepts	5	9 minutes
2	Working with SAS Data Sets	9	15 minutes
3	Working with Raw Data and Excel Files	9	15 minutes
4	Creating Variables	9	15 minutes
5	Manipulating Data	9	15 minutes
6	Generating Reports	9	15 minutes
Ren	nember: Refer to the certification w actual number of question		

31

1.3 SAS Fundamental Concepts

Refer to Exercise 1 for Chapter 1 in Appendix A.

Q

SAS Statements

How many statements are in the PROC SORT step?

 Global Statements Global statements are used anywhere in a SAS program stay in effect until changed or canceled, or until you end your SAS session. 	
<pre>glob statem libname project 'C:\workshop\winsas\lwcrb'; proc sort data=work.enroll out=project.enroll; by last; run;</pre>	

Global Statements	Q	
What are some additional examples of global statements?		
 DATA TITLE LABEL FORMAT OPTIONS FOOTNOTE 		

_

-

46

48

Г

SAS Data Sets A SAS data set has these characteristics: is a SAS file stored in a SAS library that SAS creates and processes contains data values that are organized as a table of observations (rows) and variables (columns) contains descriptor information such as the data types and lengths of the variables

1	Danny	Brown	CO		15684
2	William	Johnson		22	17318
3	Samantha	McCormick	CA	47	16674
4	Tina	Stewart	TΧ	53	14287

SAS Libraries

A SAS library is a collection of one or more SAS files, including SAS data sets, that are referenced and stored as a unit.

- In a directory-based operating environment, a SAS library is a group of SAS files that are stored in the same directory.
- In z/OS (OS/390), a SAS library is a group of SAS files that are stored in an operating environment file.

data-set

53

libref

and underscores.

 libref is the logical name that is associated with the physical location of the SAS library. data-set is the data set name, which can be up to 32 characters long, must begin with a letter or an underscore, and can contain letters, digits,

Temporary and Permanent SAS Data Sets

A *temporary* SAS data set is one that exists only for the current SAS session or job.

- The **Work** library is a temporary data library.
- Data sets held in the Work library are deleted at the end of the SAS session.

A *permanent* SAS data set is one that resides on the external storage medium of your computer and is not deleted when the SAS session terminates.

 Any data library referenced with a LIBNAME statement is considered a permanent data library by default.

57

Variables

Data values are organized into columns called variables.

Variables have attributes, such as name and type, that enable you to identify them and that define how they can be used.

VIEV	VTABLE: Proje	ect.Enroll			
	first_name	last	state2	_age_	enrolldate
1	Danny	Brown	CO		1568
2	William	Johnson		22	17318
3	Samantha	McCormick	CA	47	16674
4	Tina	Stewart	ΤX	53	1428

	a SAS varia up to 32 cha		na	
	gin with a le		0	erscore (_)
can con	tain only lett	ers, digits	(0-9), or	underscores.
		,,		,
first name	last	state2	age	anvalldata

Г

59

Variable Names Which of the following variable names is valid? A. street# B. zip_code C. 2address D. last name

Variable Types: Character Character variables are stored with a length of 1 to 32,767 bytes with 1 character equaling 1 byte. VIEWTABLE: Project.Enroll first_name last state2 enrolldate age Danny Brown CO 15684 1 2 William Johnson 22 17318 47 16674 3 Samantha McCormick. CA Tina Stewart TΧ 53 14287 4 8 bytes 9 bytes 2 bytes Character variables can contain letters (A-Z), numeric digits (0-9), and other special characters (_, #, %, &,...). 63

Variable Types: Numeric

Numeric variables are stored as floating-point numbers with a default byte size of 8.

	first_name	last	state2	_age_	enrolldate
1	Danny	Brown	CO		15684
2	William	Johnson		22	17318
3	Samantha	McCormick	CA	47	16674
4	Tina	Stewart	ΤX	53	14283

To be stored as a floating point number, the numeric value can contain numeric digits (0-9), plus or minus sign, decimal point, and E for scientific notation.


```
A. -6
```

- B. -7
- C. 6
- D. 8

Missing Data

Missing data is a value that indicates that no data value is stored for the variable in the current observation.

- A missing numeric value is displayed as a single period (.).
- A missing character value is displayed as a blank space.

TAL	VTABLE: Proje				
	first_name	last	state2	_age_	enrolldate
1	Danny	Brown	CO		15684
2	William	Johnson		22	1731
3	Samantha	McCormick	CA	47	16674
4	Tina	Stewart	TΧ	53	1428

of a SAS d		ure sho	ws the d	escriptor portion
proc cor	ntents data	=proj	ect.en	coll;
run;				
Alphabai	tic List of Vari		d Attaibud	
Atphabe	LIC LIST OF VARI	abres an	a ALLIIDU	.65
#	Variable	Туре	Len	
4		Num	8	
5	enrolldate	Num	8	
	enrolldate first_name		-	partial output

75

SAS Log

The SAS log is a record of your submitted SAS program.

1.4 Answers to Questions

Question Slide Number	Answer
39	No
43	three statements
46	2., 5., and 6.
51	B.
55	two permanent data sets (temp.enroll and project.enroll)
60	B.
65	B.
68	B.
72	D.
75	C.
79	CONTENTS misspelledDATA= missing

1-32 Chapter 1 Introduction

Chapter 2 Working with SAS Data Sets

2.1	Reading and Creating Data Sets	2-3
2.2	Selecting Observations	2-29
2.3	Sorting Observations with the SORT Procedure	2-42
2.4	Combining Data Sets	2-45
2.5	Answers to Questions	2-57

2-2 Chapter 2 Working with SAS Data Sets

2.1 Reading and Creating Data Sets

D. 6

Compilation Phase

During the compilation phase, SAS does the following:

- checks the syntax of the SAS statements
- translates the statements into machine code
- identifies the name, type, and length of each variable

The following three items are potentially created:

- input buffer
- program data vector (PDV)
- descriptor information

Input Buffer	
The <i>input buffer</i> is a logical area in memory into which SAS reads each record of a raw data file when SAS executes an INPUT statement.	
 This buffer is created only when the DATA step reads raw data. 	
 When the DATA step reads a SAS data set, SAS reads the data directly into the program data vector. 	
2	

Program Data Vector (PDV)

The *program data vector* is a logical area in memory where SAS builds a data set, one observation at a time.

Along with data set variables and computed variables, the PDV contains the following two automatic variables:

- the _N_ variable, which counts the number of times the DATA step begins to iterate
- the _ERROR_ variable, which signals the occurrence of an error caused by the data during execution The value of _ERROR_ is either 0 (indicating no errors exist) or 1 (indicating that one or more errors occurred).

<section-header><image><section-header><section-header><text><text><list-item><list-item><list-item>

Descriptor Information

The *descriptor portion* is information that SAS creates and maintains about each SAS data set, including data set attributes and variable attributes.

Examples of descriptor information include the following:

- the name of the data set
- the date and time that the data set was created
- the names, data types (character or numeric), and lengths of the variables

19

4

2

20

saleprice

type

<pre>data work.newprice; set golf.supplies; saleprice=price*0.75; run; Partial Descriptor Information (Variable Attribut # Variable Type Len 1 mfg Char 6</pre>	Des	criptor Info	ormatio	n	
# Variable Type Len	5	set golf.su saleprice=p	pplies;		
		•		,	ble Attributes)
3 price Num 8	1	mfg	Char	6	

Num

Char

8

<pre>data work.newprice; set golf.supplies; saleprice=price*0.75; run;</pre>					Next steps: Eliminate variables. Add dollar signs. Add column headings Use the debugger.			
VIEV	YTABLE: G	olf.Supplies	Input Data Set	VIEW	TABLE	: Work.Newprice	Output D	ata Set
	mfg	type	price		mf	ig type	price	saleprice
1	Crew	Distance	8.1	1	Crew	Distance	8.1	6.075
	Crew	Spin	8.25	2	Crew	Spin	8.25	6.1875
2		Titanium	9.5	3	Crew	Titanium	9.5	7.125
3	Crew							10.0105
3 4	Hi-fly	×12000	13.75	4	Hi-fly		13.75	
3 4 5	Hi-fly Hi-fly	×12000 ×22000	14.6	5	Hi-fly	×22000	14.6	10.95
3 4 5 6	Hi-fly Hi-fly White	×12000 ×22000 Strata	14.6 10.6		Hi-fly White	×22000 e Strata	14.6 10.6	10.3125 10.95 7.95
3 4 5	Hi-fly Hi-fly	×12000 ×22000	14.6 10.6 12.3	5	Hi-fly	×22000 e Strata	14.6	10.95 7.95
3 4 5 6	Hi-fly Hi-fly White	×12000 ×22000 Strata	14.6 10.6	5	Hi-fly White	×22000 e Strata e Aero	14.6 10.6	10.95

run;		ata=work.new		· ·
	Obs	Type of Ball	Sale Price	
	1	Distance	\$6.08	
	2	Spin	\$6.19	
	3	Titanium	\$7.13	
	4	X12000	\$10.31	
	5	X22000	\$10.95	
	6	Strata	\$7.95	
	7	Aero	\$9.23	
	8	XL	\$10.88	
	9	Flite	\$12.15	

The DATA step debugger consists of windows and a group of commands that provide an interactive way to identify logic and data errors in DATA steps.

PUTLOG Statement

46

The PUTLOG statement can be used to write messages to the SAS log to help identify logic errors.

Refer to Exercise 1 for Chapter 2 in Appendix A.

Implicit Output By default, at the end of each iteration, every DATA step contains an implicit OUTPUT statement that tells SAS to write observations to the data set or data sets that are being created. Input Data Set VIEWTABLE: Work.Scores data work.total; test2 name test1 set work.scores; Kent 73 7 total=test1+test2; Mary 89 94 86 Sally 75 run; 95 92 Thon Output Data Set VIEWTABLE: Work.Total implicit output test2 name test1 total Kent 73 79 152 Mary 89 94 183 Sally 161 75 86 92 95 18 49

OUTPUT Statement without arguments causes the current observation to be written to all data sets that are named in the DATA statement. data work.total; set work.scores; total=test1+test2; output; run;

OUTPUT Statement Placing an explicit OUTPUT statement in a DATA step overrides the implicit output, and SAS adds an observation to a data set only when an explicit OUTPUT statement is executed. Input Data Set VIEWTABLE: Work.Scores data work.rotate; test1 test2 set work.scores; name 73 Kent 79 test=test1; Mary 89 94 2 output; 75 86 Sally 3 test=test2; 92 95 Thomas drop test1 test2; Output Data Set ŕun; VIEWTABLE: Work.Rotate name test Kent 73 Mary 89 no implicit output Sally 75 92 Thomas 56

DROP= and KEEP= Options

- The DROP= data set option excludes the variables for writing to a specific output data set.
- The KEEP= data set option specifies the variables for writing to a specific output data set.

```
data work.total(keep=name total test1 test2)
    work.first(drop=test1 test2)
    work.second(keep=name total test);
    set work.scores;
    total=test1+test2;
    output work.total;
    test=test1;
    output work.first;
    test=test2;
    output work.second;
run;
```

outp test	l=test1 ut work =test1;	.total	;	VIEW	TABLE: Work	First Output	Data Set test
test	ut work =test2; ut work	:		1 2	Kent Mary Sallv	152 183 161	7 8 7
run;			,	4	Thomas	187	9

2.2 Selecting Observations

Expression

An *expression* is a sequence of operands and operators that forms a set of instructions that define a condition for selecting observations.

- Operands are the following:
 - constants (character or numeric)
 - variables (character or numeric)
 - SAS functions

• Operators are symbols that request a comparison, logical operation, or arithmetic calculation.

79

Operands

- A *constant* is a fixed value such as a number, quoted character string, or date constant.
 - If the value is numeric, do not use quotation marks.
 - If the value is character, use quotation marks.
 - A SAS date constant is a date (DDMMMYYYY) in quotation marks followed by the letter D.
- A variable is a variable coming from a data set, a variable created in an assignment statement, or an automatic variable created by the DATA step.
- A SAS *function* is a routine that performs a computation or system manipulation on arguments and returns a value. Chapter 5

Comparison Operators

Comparison operators compare a variable with a value or with another variable.

Opera	tors	Definition
EQ	=	equal to
NE	^= ~= ¬=	not equal to
GT	>	greater than
GE	>=	greater than or equal to
LT	<	less than
LE	<=	less than or equal to
IN		equal to one of a list

81

82

Operands and Comparison Operators Which of the following is not a valid expression? A. qtr1 <= qtr2 B. address = ' ' C. sales gt 6400 D. name ne Mary Ann</pre>

Operat	ors	Definition
AND	&	logical and
OR	I	logical or
NOT	۸	logical not

Arithmetic Operators

Arithmetic operators indicate that an arithmetic calculation is performed.

Operators	Definition
**	exponentiation
*	multiplication
1	division
+	addition
-	subtraction
If a missing value is an opera operator, the result is a miss	

88

Special WHERE Operators

The WHERE statement can use special WHERE operators.

Operators		Definition
BETWEEN – AND		an inclusive range
CONTAINS	?	a character string
LIKE		a character pattern
SOUNDS LIKE	=*	spelling variation
IS NULL		missing value
IS MISSING		missing value
SAME AND ALSO		augments an expression


```
Expression Examples
```

```
sales > 100000
sales eq .
name = 'Smith'
name = ' '
sales gt 100000 and name = 'Smith'
sales gt 100000 or name = 'Smith'
revenue >= 150 and revenue <= 999
revenue between 150 and 999
revenue not between 150 and 999
month contains 'uary'
birthdate > '11JUL1968'd
upcase(state) = 'TX'
```


Subsetting IF Statement

The subsetting IF statement causes the DATA step to continue processing only those observations in the program data vector that meet the condition of the expression.

```
data work.newprice;
   set golf.supplies;
   saleprice=price*0.75;
   if saleprice > 10;
   run;
```

Subsetting IF Statement

- If the expression is *true* for the observation, SAS continues to execute the remaining statements in the DATA step, including the implicit OUTPUT statement at the end of the DATA step. The resulting SAS data set (or data sets) contains a subset of the original SAS data set.
- If the expression is *false*, no further statements are processed for that observation, the current observation is not written to the data set, the remaining program statements in the DATA step are not executed, and SAS immediately returns to the beginning of the DATA step.

IF-THEN DELETE Statement

The IF-THEN DELETE statement causes the DATA step to stop processing those observations in the program data vector that meet the condition of the expression.

```
data work.newprice;
  set golf.supplies;
  saleprice=price*0.75;
  if saleprice <= 10 then delete;
run;
```

If the expression is *true* for the observation, the current observation is not written to a data set, and SAS returns immediately to the beginning of the DATA step for the next iteration.

2.3 Sorting Observations with the SORT Procedure

Refer to Exercise 4 for Chapter 2 in Appendix A.

Q

BY Statement

What are the two problems associated with the following program?

118

2.4 Combining Data Sets

Concatenating

If more than one data set name appears in the SET statement, the resulting output data set is a concatenation of all the data sets that are listed.

SAS reads all observations from the first data set, then all from the second data set, and so on, until all observations from all the data sets are read.

Concatenating				
How many observations and data set work.thirdqtr?	d varia	bles ar	e in the o	output
<pre>data work.thirdqtr;</pre>	VIEW	/TABLE: W	ork.Oct	Input Data Se
set work.oct		region	date	sales
work.nov	1	East	17075	1600000
work.dec;	2	West	17075	2100000
run;	VIEW	TABLE: W	ork.Nov	Input Data Se
		region	date	sales
	1	East	17106	
	2	West	17106	2600000
	VIEW	TABLE: W	ork.Dec	Input Data Se
		region	date	sales
	1	East	17136	3100000
		West	17136	3000000

Concatenating	-
How many observations and data set work.thirdqtr1 ?	variables are in the output
<pre>data work.thirdqtr1; set work.oct1 work.nov1 work.dec1;</pre>	VIEWTABLE: Work.Oct Input Data Set region sales 1 East 1600000 2 West 2100000
run;	VIEWTABLE: Work.Nov
	region sales 1 East 2500000 2 West 2600000
	VIEWTABLE: Work.Dec1
	area sales 1 East 3100000 2 West 3000000

Concatenating

At compile time, SAS puts the variable information from the first data set into the PDV, and then puts the variable information from the second into the PDV, and so on.

		data com set d run;			onA di	vis	ionB	;				
_				_ c	division/	۸					divisio	nB
	#	Variable	T	уре	Len		#	Va	ariable	Тур	e Len	Т
	1 2	name state	-	har har	10 2		1 2		ame ocation	Cha Cha		
	ſ	name		sta	ite	loc	atior	ı	ERROR	_	_N_	
		\$ 10		\$2	2	\$2			N	3	N 8	
126												

Interleaving

Use a single SET statement with multiple data sets and a BY statement to interleave the specified data sets.

The observations in the new data set are arranged by the values of the BY variable or variables. Then, within each BY group, they are arranged by the order of the data sets in which they occur.

Merging

- The MERGE statement joins observations from two or more SAS data sets into single observations.
- The BY statement specifies the common variables to match-merge observations. The variables in the BY statement must be common to all data sets.

 The data sets listed in the MERGE statement must be sorted in the order of the values of the variables that are listed in the BY statement, or they must have an appropriate index.

da ru	by name profit=	evenue e	-		
VIE	WTABLE: Work.Re	Input Data	Set	VIEWTABLE: Work.	Input Data Set
	name	revenue		name	expense
1	Joy	15000	←	1 Joy	18000
2	Margaret	26000	←>[2 Margaret	20000
3	Michael	18000	←>[3 Michael	19000
4	Tony	25000	←→[4 Tony	19000
- 7			Output Data Se	et	
VIE	WTABLE: Work.Co	ombine			
VIE	WTABLE: Work.Co	revenue	expense	profit	
VIE		1	expense 18000	profit -3000	
VIE 1 2	name	revenue			_
1	Joy	revenue 15000	18000	-3000	

da ru	by mon profit	monre th; =reve	evenue i	monexper	nse;	
VIEV	WTABLE: Work.	10N	ut Data Set			Input Data Se
						and Manaumanne
1	Rillu	Apr	revenue 5500			ork.Monexpense
1	Billy	Apr	5500	>	month	expense
1 2 3		Apr Apr	5500 6000		month 1 Apr	expense 5000
1 2 3 4	Billy Janet	Apr	5500		month	expense
3 4	Billy Janet Billy Janet	Apr Apr May May 10ncombi	5500 6000 5500 5000		month Apr May utput Data Se	expense 5000 5500
3 4	Billy Janet Billy Janet VTABLE: Work.t name	Apr Apr May May May	5500 6000 5500 5000 ne revenue	expense	month Apr May utput Data Se profit	expense 5000 5500
3 4 VIEV 1	Billy Janet Billy Janet VTABLE: Work.t Billy	Apr Apr May May May May Apr	5500 6000 5500 5000 ne revenue 5500	expense 5000	month Apr May utput Data Se profit 500	expense 5000 5500
3 4	Billy Janet Billy Janet VTABLE: Work.t name	Apr Apr May May May	5500 6000 5500 5000 ne revenue	expense	month Apr May utput Data Se profit	expense 5000 5500

IN= Option

The IN= option creates a variable that indicates whether the data set contributed data to the current observation.

```
data combine1;
merge revenue1(in=rev)
expense1(in=exp);
by name;
profit=revenue-expense;
run;
```

Within the DATA step, the value of the variable is 1 if the data set contributed to the current observation, and 0 if the data set did not contribute to the current observation.

me by	combine: rge reve expe name; ofit=rev						
name	revenue	expense	profit	rev	exp	_ERROR_	_N_
\$ 10	N 8	N 8	N 8	N 8	N 8	N 8	N8
Caroline	25000	19000	6000	1	1	0	1
Caroline Jack	25000 18000	19000	6000	1	1 0	0 0	1
		19000 20000	6000 6000				
Jack	18000			1	0	0	2

Possibl	le Scenarios
<pre>if rev=1 and exp=1; if rev and exp;</pre>	Matches only
<pre>if rev=1 and exp=0; if rev and not exp;</pre>	Nonmatches from revenue1
<pre>if rev=0 and exp=1; if not rev and exp;</pre>	Nonmatches from expenses1
<pre>if rev=1; if rev;</pre>	All observations from revenue1 (matches and nonmatches)
<pre>if exp=1; if exp;</pre>	All observations from expenses1 (matches and nonmatches)
<pre>if rev=0 or exp=0; if not rev or not exp;</pre>	Nonmatches from revenue1 and expenses1

2.5 Answers to Questions

Question Slide Number	Answer
3	1. golf.supplies
	2. work.newprice
8	B.
14	D.
17	B.
34	C.
38	B.
43	Α.
50	Yes
54	C.
59	D.
66	C.
73	B.
76	Α.
82	D.
86	D.
89	1. and 3.
92	C.
94	B.
98	B.
102	B.
115	No
118	DATA step is not using the sorted data set.The BY statement of the DATA step is not specifying the correct sort order.

(Continued on the next page.)

Question Slide Number	Answer
122	Six observations and three variables
124	Six observations and three variables
129	No
132	B.
137	Α.
142	Five observations (three matches and two nonmatches)
145	А.
149	А.

Chapter 3 Working with Raw Data and Microsoft Excel Files

3.1	Reading Raw Data Files: Part 1	3-3
3.2	Reading Raw Data Files: Part 2	3-16
3.3	Controlling When a Record Loads	3-32
3.4	Reading Microsoft Excel Files	3-38
3.5	Answers to Questions	3-42

3-2 Chapter 3 Working with Raw Data and Microsoft Excel Files

3.1 Reading Raw Data Files: Part 1

```
Particular State Action of the data set being created?
Particular State S
```


	ich of the following is <i>not</i> an input style for the INPUT tement?
Α.	list input
	column input
	delimited input
D.	formatted input

Chloe Travis	2 11/10/1995 2 1/30/1998	30 \$5Running Musi \$2Baseball Nin \$0Soccer Paint	c Gymnastics tendo Reading	
values i colui	n the INPUT mn input atted input	ways can des ⁻ statement:	scribe a rec	cord's
input	012 bdato 023 allo	-8 sibling e mmddyy10 wance comm hobby2 \$. ←	formatted

can be in standard or nonstandard form.

- must be separated with a delimiter
- can be in standard or nonstandard form.

	PDV:								
	name	siblings	bdate	allowance	hobby1	hobby2	hobby3	_ERROR_	_N_
	\$8	N 8	N 8	N 8	\$8	\$8	\$8	N 8	N 8
1	18								

		Ex(Ph				0	n						i	ní	Ei:	Le E @ @	, na 12 23	me b a	ds \$ da 11	it	da 1- e wa	8 mn nc	s nd	il Id	y co	y1 on	LO nm	a2	2.			\$;			
Tra Jen	iv: in:	e is ifer t Bı	2 0	1/ 8/	30	/1	99	98		2Ba	ase	eba	ĭ1	N:	int	en	do	nas Re anc	ad	i		I	np	out	F	Ra	w I	Dat	ta	Fil	e					
C 1	n	1 0	e		Γ				2		1	1	1	1	0	1	1	9	9		5	:	\$	5	1	R	u	n		n						
PD	v	:																		-										-						
nam \$8	-		si	bl:	inç N	-	b		ite 18	al	110	war N	nce V 8	hobby1 \$8				hobby2 \$8				hobby3 \$8					_ ^{EI}		ROR_ N 8		-	N_ 8				
Chloe 2 130						97				5	Running				Mu	Music			Gymnasti					0			0		1							
22															•						d tl stat						2)V	,							

	ecutio ase	n	<pre>data work.kids; infile 'kids.dat'; input name \$ 1-8 siblings 10 @12 bdate mmddyy10. @23 allowance comma2. hobby1 \$ hobby2 \$ hobby3 \$; run;</pre>					
	2 11/10, 2 1/30/ 0 8/21/ uffer:	1998 \$	5Running M 2Baseball OSoccer Pa	Nintendo	Reading	Input Raw	/ Data File	
Chl.	• e	2	11/	10/1	995	\$ 5 R	u n n	
PDV:								
name	siblings	bdate	allowance	hobby1	hobby2	hobby3	_ERROR_	_N_
\$8	N 8	N 8	N 8	\$8	\$8	\$8	N 8	N 8
Chloe	2	13097	5	Running	Music	Gymnasti	0	1
24	returns to	the to	p of the D	ATA step				

Execut Phase	ion	i:	<pre>data work.kids; infile 'kids.dat'; input name \$ 1-8 siblings 10 @12 bdate mmddyy10. @23 allowance comma2. hobby1 \$ hobby2 \$ hobby3 \$ run;</pre>					
Chloe 2 11/ Travis 2 1/3 Ennifer 0 8/2 Input Buffer:		Baseball	Music Gymr Nintendo ainting Da	Reading	Input Raw	/ Data File		
Chloe	2	11/	10/1	995	\$ 5 R	u n n		
PDV:								
name siblin \$ 8 N	ngs bdate 18 N 8	allowance N 8	hobby1 \$8	hobby2 \$8	hobby3 \$8	_ERROR_ N 8	_N_ N 8	
V U		NO	ΨŪ	ŶŬ	ŶŬ	0	2	
■ repeat	s the proce	ess until t	he end of	f file is de	tected	Ŭ		

da	ta work	kids:					
aa		'kids.da	at';				
		name \$ 1-		ngs 10			
	-	@12 bdate	e mmddyyl	LŌ.			
		@23 allow	wance cor	nma2.			
		hobby1 \$	hobby2 \$	hobby3	3\$;		
ru	n;	-	-	-			
Tra	avis 2	11/10/1995 1/30/1998 8/21/1999	\$2Baseball	. Nintendo	Readin	_	Raw Data
Tra	avis 2	1/30/1998	\$2Baseball	. Nintendo	Readin	9 Input	
Tra Jer	avis 2	1/30/1998 8/21/1999	\$2Baseball	. Nintendo	Readin	9 Input	
Tra Jer	avis 2 nnifer 0	1/30/1998 8/21/1999	\$2Baseball	. Nintendo	Readin	9 Input	utput Data
Tra Jer	AVIS 2 nnifer 0 WTABLE: Wor	1/30/1998 8/21/1999 *k.Kids sblings 2	\$2Baseball \$0Soccer P	Nintendo Painting D allowance) Readin Dancing	9 Input	utput Data
Tra Jer	Avis 2 nnifer 0 WTABLE: Wor	1/30/1998 8/21/1999 rk.Kids sblings	\$2Baseball \$0Soccer P bdale	Nintendo Painting D allowance 5	Readin	9 Input	Raw Data utput Data hobby3 Gymnasti Reading

- A note that describes the error is printed in the
- SAS log.The input record (contents of the input buffer) being read is displayed in the SAS log.
- The values in the SAS observation (contents of the PDV) being created are displayed in the SAS log.
- A missing value is assigned to the appropriate SAS variable.
- Execution continues.

DATALINES Statement

The DATALINES statement can be used with an INPUT statement to read data directly from the program, rather than data stored in a raw data file.

```
data work.kids;
input name $ 1-8 siblings 10
@12 bdate mmddyy10.
@23 allowance comma2.
hobby1 $ hobby2 $ hobby3 $;
datalines;
Chloe 2 11/10/1995 $5Running Music Gymnastics
Travis 2 1/30/1998 $2Baseball Nintendo Reading
Jennifer 0 8/21/1999 $0Soccer Painting Dancing
;
run;
```


Refer to Exercise 1 for Chapter 3 in Appendix A.

3.2 Reading Raw Data Files: Part 2

How many variables are numeric and, ideally, how many variables should be numeric?

- A. 1 numeric variable and 2 variables should be numeric.
- B. 1 numeric variable and 3 variables should be numeric.
- C. 2 numeric variables and 2 variables should be numeric.
- D. 3 numeric variables and 3 variables should be numeric.

44

- records
- can be in standard or nonstandard form.

Informats

Which statement is false regarding informats?

- A. When you use an informat, the informat contains a period (.) as a part of the name.
- B. The \$ indicates a character informat, and the absence of a \$ indicates a numeric informat.

Q

- C. An informat has a default width or specifies a width, which is the number of columns to read in the input data.
- D. When a problem occurs with a valid informat, SAS writes a note to the SAS log, assigns a missing value to the variable, and terminates the DATA step.

Informats		
Raw Data Value	Informat	SAS Data Value
\$12,345	COMMA7. DOLLAR7.	12345
\$12.345	COMMAX7. DOLLARX7.	12345
€12.345	EUROX7.	12345
Australia	\$11.	Australia
Australia	\$CHAR11.	Australia
au	\$UPCASE2.	AU
01/01/1960	MMDDYY10.	0
31/12/60	DDMMYY8.	365
31DEC1959	DATE9.	-1

List Input

With list input, variable names in the INPUT statement are specified in the same order that the fields appear in the input data records.

```
input name $ 1-8 siblings 10
@12 bdate mmddyy10.
@23 allowance comma2.
hobby1 $ hobby2 $ hobby3 $;
```

To read with list input, data values

- must be separated with a delimiter
- can be in standard or nonstandard form.

	appear The de	ut ust specify the variables in the order that they in the raw data file, left to right. fault length for variables is 8 bytes. e (blank) is the default delimiter.
	pointer control	Moves the input pointer to a specified column in the input buffer.
	variable	Names a variable that is assigned input values.
	\$	Indicates to store a variable value as a character value rather than as a numeric value.
	÷.	Reads data values that need the additional instructions that informats can provide but are not aligned in columns.
58	informat	Specifies an informat to use to read the variable values.

		10	12	0		
	1 \$2,34		•	· .		
	n \$222,			Input Rav	Data File	
Sai	μ γ ΖΖΖ ,	545 F	TOLIUA			
in	out nam	e\$s	alary:	comma10	. state	\$;
	•		_			
VIEW	TABLE: Work.Ex					
	1		atata			
1	name	salary	state			
1	name Ted	salary 234	5 Georgia			
1	name	salary 234				
1	name Ted	salary 234	5 Georgia			
1	name Ted Sam	salary 234 22234	5 Georgia 5 Florida			
1 2	name Ted Sam	salary 234 22234	5 Georgia 5 Florida	comma10	. state	\$;
1 2 ing	name Ted Sam	salary 234 22234	5 Georgia 5 Florida	comma10	. state	\$;
_	Ted Sam	salary 234 22234 e\$s	5 Georgia 5 Florida	comma10	. state	\$;
_	name Ted Sam	salary 234 22234 e\$s	5 Georgia 5 Florida	comma10	. state	\$;
_	Ted Sam	salary 234 22234 e\$s	5 Georgia 5 Florida	comma10	. state	\$;
_	name Ted Sam Put nam	salary 234 22234 e \$ s xample	5 Georgia 5 Florida	comma10	. state	\$;

Q : Modifier with an Informat ----|----10----|----20 Ted 1DEC07 Georgia Input Raw Data File Sam 21DEC2007 Florida input name \$ bdate date9. state \$; What is the result of state based on the above INPUT statement? B. orgia A. Georgia C. rgia Florida Florida Florida 65

DS	D Option
Tra	oe/2/"11/10/1995"/\$5/Running/Music/Gymnastics vis/2/"1/30/1998"/\$2/Baseball/Nintendo/Reading nifer/0/"8/21/1999"//Soccer/Painting/Dancing
C	quoted values missing data / delimiter
Wh	ich statement will correctly read the raw data file?
А.	infile 'kids5a.dat' dsd;
В.	infile 'kids5a.dat' dlm='/';
C.	infile 'kids5a.dat' dsd dlm='/';
D.	infile 'kids5a.dat' dsd, dlm='/';

MISSOVER Option

The MISSOVER option prevents an INPUT statement from reading a new input data record if it does not find values in the current input line for all the variables in the statement.

data work.kids6;
<pre>infile 'kids6.dat' missover;</pre>
input name \$
siblings
bdate : mmddyy10.
allowance : comma2.
hobby1 : \$10.
hobby2 : \$10.
hobby3 : \$10.;
run;

77

MISSOVER Option

When an INPUT statement reaches the end of the current input data record, variables without any values assigned are set to missing with the MISSOVER option.

	name	siblings	bdate	allowance	hobby1	hobby2	hobby3
1	Chloe	2	13097	5	Running	Music	Gymnastic
2	Travis	2	13909	2	Baseball	Nintendo	
3	Jennifer	0	14477	0	Soccer		

78

Refer to Exercise 2 for Chapter 3 in Appendix A.

3.3 Controlling When a Record Loads

D. One observation is created with each DATA step iteration.

Line-Pointer Controls

The / line-pointer control advances the pointer to column 1 of the next input record.

```
data work.kids8;
infile 'kids8.dat';
input name $ 1-8
siblings 10
/ @1 bdate mmddyy10.
@12 allowance comma2.
/ hobby1:$10.
hobby2:$10.
hobby3:$10.;
run;
```

Line-Pointer Controls

The #n line-pointer control advances the pointer to column 1 of record n.

```
data work.kids8;
infile 'kids8.dat';
input #1 name $ 1-8
siblings 10
#2 @1 bdate mmddyy10.
@12 allowance comma2.
#3 hobby1:$10.
hobby2:$10.
hobby3:$10.;
run;
```


	0:								
	Sing	le Tra	alling	j @			In	put Raw Data	File
	Trav	is IL	. Base	ball	5 \$5Runn Nintendo \$0Soco	Readi	ng		
	infi inpu if s	state='	ds9.c \$ 1- IN' t	8 sta hen	te \$ 10-				
ru	else in;	- h	obby1 @13	.:\$10. hobby:	hobby2:	\$10. h	obby3:\$	e comma2 10.; bbby3:\$10 Output Data	.;
ru	else in;	- h e input	obby1 @13	.:\$10. hobby:	hobby2:	\$10. h .obby2:	obby3:\$;10.; bby3:\$10	.;
ru	else in;	h input	obby1 @13 <mark>ork.Kid</mark>	.:\$10. hobby:	hobby2: 1:\$10. h	\$10. h .obby2:	obby3:\$ \$10. hc hobby2	510 . <i>;</i> bbby3 : \$10 Output Data	.;
ru	else in;	TABLE: W	obby1 @13 ork.Kid	bdate	hobby2: 1:\$10. h	\$10. h obby2: hobby1	obby3:\$ \$10. hc hobby2 Music	10.; bbby3:\$10 Output Data hobby3 Gymnastics	.;

Single Trailing @	Q
Which statement is <i>false</i> concerning the single tra	iling @?
A. In the INPUT statement, the single trailing @ n the last item before the semicolon.	nust be
B. SAS releases a record held by a single trailing an INPUT statement without a trailing @ exect	•
C. The single trailing @ prevents the next INPUT statement from automatically releasing the cur record.	rent input
D. The single trailing @ holds the input record for execution of the next INPUT statement across of the DATA step.	

Refer to Exercise 3 for Chapter 3 in Appendix A.

3.4 Reading Microsoft Excel Files

SAS/ACCESS LIBNAME Statement

With the SAS/ACCESS Interface to PC File Formats, the LIBNAME statement can be used to access Microsoft Excel workbooks.

```
libname myxls 'customers.xls';
```

```
proc contents data=myxls._all_;
run;
```

This enables you to reference a worksheet directly in a DATA step or SAS procedure, and to read from and write to an Excel worksheet as if it were a SAS data set.

SAS/ACCESS LIBNAME Statement

Worksheet names appear with a dollar sign at the end of the name.

	Dir	ectory	
En Ph	bref gine ysical Nam er	MYXLS EXCEL e custo Admin	omers.xls
#	Name	Member Type	DBMS Member Type
1 2	Females\$ Males\$	DATA DATA	TABLE TABLE

SAS/ACCESS LIBNAME Statement

SAS name literals enable special characters to be included in data set names.

The CONTENTS Procedure					
Data Set Name Member Type Engine Created Last Modified Protection Data Set Type	MYXLS.'Females\$'n DATA EXCEL	Observations Variables Indexes Observation Length Deleted Observations Compressed Sorted	6 0 0 NO NO		
Label Data Representation Encoding	Default Default				

A SAS name literal is a name token that is expressed as a string within quotation marks, followed immediately by the letter n.

106

SAS/ACCESS LIBNAME Statement

If SAS has a library reference name assigned to an Excel workbook, the workbook cannot be opened in Excel.

```
libname myxls 'customers.xls';
proc contents data=myxls._all_;
run;
proc print data=myxls.'females$'n;
run;
data work.usfemales;
   set myxls.'females$'n;
   where country='US';
run;
```


3.5 Answers to Questions

Question Slide Number	Answer
4	1. kids.dat
	2. work.kids
9	С.
15	Α.
19	D.
27	C.
33	The variable hobby1 is being read in as numeric.
36	Α.
44	B.
49	Α.
51	D.
55	B.
65	B.
67	Α.
74	C.
83	Α.
88	Yes
93	D.
97	А.
103	С.
108	B.

Chapter 4 Creating Variables

4.1	Creating Variables with the Assignment Statement	.4-3
4.2	Creating Variables Conditionally	.4-8
4.3	Creating Accumulator Variables	1-19
4.4	Answers to Questions	1-25

4-2 Chapter 4 Creating Variables

4.1 Creating Variables with the Assignment Statement

- Operands are
 - constants (character or numeric)
 - variables (character or numeric).
- Operators are
 - symbols that represent an arithmetic calculation or concatenation
 - a SAS function.

6

7

average = mean(jan, feb, mar);

Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Operators

- Arithmetic operators indicate that an arithmetic calculation is performed.
- A concatenation operator concatenates character values.
- A SAS function performs a computation or system manipulation on arguments and returns a value.

```
total = price * quantity;
cityst = city !! state;
product = upcase(product);
average = mean(jan, feb, mar);
```


			i						
		a newpr							
		-	f.suppl						
		-	ce = pr			75;			
		saletyp	e = '25	୫ c	ff';				
						dallar	·o ?.		
	1 1	format]	price s	are	price	dollai	:8.Z;		
	run	;							
								1	
/IEV	VTABLE: G	olf.Supplies		VIEV	VTABLE: Wo	rk.Newnrice		_	
IEV	VTABLE: G	olf.Supplies	price	VIEV	WTABLE: Wo	rk.Newprice	price	saleprice	saletype
TEV 1		1 1	price 8.1	VIEV	1	-	price \$8.10		saletype 25% off
1	mfg	type		-	mfg	type		\$6.08	21
1	mfg Crew	type Distance	8.1	1	mfg Crew	type Distance	\$8.10	\$6.08 \$6.19	25% off
1 2 3	mfg Crew Crew	type Distance Spin	8.1 8.25	1	mfg Crew Crew	type Distance Spin	\$8.10 \$8.25	\$6.08 \$6.19 \$7.13	25% off 25% off
1 2 3 4	mfg Crew Crew Crew	type Distance Spin Titanium	8.1 8.25 9.5	1 2 3	mfg Crew Crew Crew	type Distance Spin Titanium	\$8.10 \$8.25 \$9.50	\$6.08 \$6.19 \$7.13 \$10.31	25% off 25% off 25% off
1 2 3 4 5	Crew Crew Crew Crew Hi-fly	type Distance Spin Titanium X12000	8.1 8.25 9.5 13.75	1 2 3 4	Crew Crew Crew Crew Hi-fly	type Distance Spin Titanium X12000	\$8.10 \$8.25 \$9.50 \$13.75	\$6.08 \$6.19 \$7.13 \$10.31 \$10.95	25% off 25% off 25% off 25% off
1 2 3 4 5 6	mfg Crew Crew Crew Hi-fly Hi-fly	type Distance Spin Titanium X12000 X22000	8.1 8.25 9.5 13.75 14.6	1 2 3 4 5	mfg Crew Crew Crew Hi-fly Hi-fly	type Distance Spin Titanium X12000 X22000	\$8.10 \$8.25 \$9.50 \$13.75 \$14.60	\$6.08 \$6.19 \$7.13 \$10.31 \$10.95 \$7.95	25% off 25% off 25% off 25% off 25% off
11 2 3 4 5 6 7 8	mfg Crew Crew Crew Hi-fly Hi-fly White	type Distance Spin Titanium X12000 X22000 Strata	8.1 8.25 9.5 13.75 14.6 10.6	1 2 3 4 5 6	mfg Crew Crew Crew Hi-fly Hi-fly White	type Distance Spin Titanium X12000 X22000 Strata	\$8.10 \$8.25 \$9.50 \$13.75 \$14.60 \$10.60	\$6.08 \$6.19 \$7.13 \$10.31 \$10.95 \$7.95 \$9.23	25% off 25% off 25% off 25% off 25% off 25% off

4.2 Creating Variables Conditionally

Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

	ice=price*0.75;
	statement
he statement can be any executa	ble SAS statement.
Examples:	
status = 'Unknown'	count + 1
cotal = sum(num1, num2, num3)	delete

if mfg='Crew' then saleprice=price*0.75;

else if mfg='Hi-fly' then saleprice=price*0.70;

```
else if mfg='White' then saleprice=price*0.90;
```

- Using IF-THEN statements without the ELSE statement causes SAS to evaluate all IF-THEN statements.
- Using IF-THEN statements *with* the ELSE statement causes SAS to execute the IF-THEN statements until SAS encounters the first true statement. Subsequent IF-THEN statements are not evaluated.

ELSE Statements if mfg='Crew' then saleprice=price*0.75; else if mfg='Hi-fly' then saleprice=price*0.70; else saleprice=price*0.90; The final ELSE statement can be coded without an IF-THEN statement to direct all previous false conditions into the final condition.

32

IF-THEN DO / ELSE DO Statements

The IF-THEN DO statement executes *a group of statements* for observations that meet specific conditions.

```
if mfg='Crew' then do;
    pct=0.75;
    saleprice = price * pct;
    saletype = '25% off';
end;
else if mfg='Hi-fly' then do;
    pct=0.70;
    saleprice = price * pct;
    saletype = '30% off';
end;
else do;
    pct=0.90;
    saleprice = price * pct;
    saletype = '10% Storewide Sale';
end;
...
```


33

Refer to Exercise 2 for Chapter 4 in Appendix A.

SELECT / WHEN / OTHERWISE Statements

An alternative to IF-THEN statements is SELECT / WHEN / OTHERWISE statements.

- The SELECT statement begins a SELECT group.
- SELECT groups contain WHEN statements that identify SAS statements that are executed when a particular condition is true.
- A SELECT group must use at least one WHEN statement.
- An optional OTHERWISE statement specifies a statement to be executed if no WHEN condition is met.
- An END statement ends a SELECT group.

SELECT / WHEN / OTHERWISE Statements

select(mfg); when('Crew') saleprice=price*0.75; when('Hi-fly') saleprice=price*0.70; when('White') saleprice=price*0.90; end;

Based on the partial program above, what is the result if an observation has a value of **mfg='X-treme**'?

4.3 Creating Accumulator Variables

An <i>accumulator v</i> expression.	<i>ariable</i> is a vai	riable that add	ls on an
Partial Output			
Maine County	Population 2000	Total Population	Total Counties
Androscoggin	103,793	103,793	1
Aroostook	73,938	177,731	2
Cumberland	265,612	443,343	3
Franklin	29,467	472,810	4
Hancock	51,791	524,601	5
Kennebec	117,114	641,715	6
Knox	39,618	681,333	7
Lincoln	33,616	714,949	8
Oxford	54,755	769,704	9
Penobscot	144,919	914,623	10

Sum Statement The accumulator variable has the following characteristics: must be a numeric variable is automatically set to 0 before SAS reads the first observation is retained from one iteration to the next The expression is defined with the following features: is any SAS expression is evaluated and the result added to the accumulator variable is ignored if missing

Accumulator Variable for BY Groups

In order to create an accumulator variable for BY groups, the beginning and end of each BY group must be determined.

			Total
County	Town	Population	Populatio
Androscoggin	Auburn	23203	23203
Androscoggin	Lewiston	35690	58893
Cumberland	Brunswick	21172	21172
Cumberland	Portland	64249	85421
Cumberland	Scarborough	16970	102391
Cumberland	South Portland	23324	125715
Kennebec	Augusta	18560	↓ 18560
Penobscot	Bangor	31473	↓ 31473
York	Biddeford	20942	1 20942
York	Sanford	20806	<mark>↓</mark> 41748
	ac	cumulator vari	able by Cou
		ournalition van	

BY-Group ProcessingIn the DATA step, SAS identifies the beginning and end
deach BY group by creating two temporary variables for
DATA. variables:Image: step of the step of th

Q

BY-Group Processing

- The **FIRST.** variable is set to 1 when an observation is the first in a BY group. Otherwise, it equals 0.
- The **LAST.** variable is set to 1 when an observation is the last in a BY group. Otherwise, it equals 0.

County	Population	first.County	last.County
Androscoggin	23203	1	0
Androscoggin	35690	0	1
Cumberland	21172	1	0
Cumberland	64249	0	0
Cumberland	16970	0	0
Cumberland	23324	0	1
Kennebec	18560	1	1

61

BY-Group Processing

Which of the following is *false*?

- A. **First.County**=1 and **Last.County**=0 means the observation is the first one in the BY group.
- B. **First.County=**0 and **Last.County=**1 means the observation is the last one in the BY group.
- C. **First.County=**0 and **Last.County=**0 means the observation is the first and the last one in the BY group.
- D. **First.County=**0 and **Last.County=**0 means the observation is neither the first nor the last one in the BY group.

BY-Group Processing

The following program resets the accumulator variable at the beginning of each BY group and outputs only at the end of each BY group.

TotalPopul	own; county ation+ ounty=1	then TotalPopu Population; ; 1Population;	Lation=0;
run;		County	TotalPopulation
	1	Androscoggin	58893
	2	Cumberland	125715
	3	Kennebec	18560
	4	Penobscot	31473
	5	York	41748

Refer to Exercise 3 for Chapter 4 in Appendix A.

se	<pre>lata CityDonate; set Donations; by State City;</pre>						
· · · · · ·		st.City=1 the	n TotalDonad	tion=0;			
То	talDo	onation+Donat	ion;				
	if last.City=1;						
📕 if	last	City=1;					
if run;	last	c.City=1;					
	last	_	donation	TotalDonation			
		-	donation 4000				
	state	city					
run ; 1	state NC NC	city Charlotte	4000	1500			

4.4 Answers to Questions

Question Slide Number	Answer
4	6.
11	C.
17	А.
24	C.
27	No
30	B.
39	C.
43	ERROR: Unsatisfied WHEN clause and no OTHERWISE clause.
49	B.
56	Yes
62	С.

4-26 Chapter 4 Creating Variables

Chapter 5 Manipulating Data

5.1	Using Functions to Manipulate Data	5-3
5.2	Converting Character and Numeric Data	5-34
5.3	Processing Data with DO Loops	5-41
5.4	Processing Data with Arrays	5-51
5.5	Answers to Questions	5-59

5-2 Chapter 5 Manipulating Data

5.1 Using Functions to Manipulate Data

Character Fun	ctions	
	Character	
SUBSTR	CAT	LOWCASE
SCAN	CATS	UPCASE
LEFT	CATT	PROPCASE
RIGHT	CATX	FIND
TRIM	TRANWRD	COMPRESS
STRIP	LENGTH	COMPBL

Refer to Exercise 1 for Chapter 5 in Appendix A.

7

8

SUBSTR Function

If the SUBSTR function returns a value to a variable that was not yet assigned a length, by default, the variable length is determined by the length of the first argument.

VIN (17 bytes)	Assignment Statement Using SUBSTR Function	New Variable (17 bytes)
	<pre>Make = substr(VIN,2,1);</pre>	F
1 <u>F</u> 1 <u>JF27W</u> 86J <u>178227</u>	<pre>Features = substr(VIN,4,5);</pre>	JF27W
	<pre>SequenceNumber = substr(VIN,12);</pre>	178227
If you omit the lengt of the expression.	h, SAS extracts the rem	ainder

Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

LENGTH Function

The *LENGTH function* returns the length of a non-blank character string, excluding trailing blanks, and returns 1 for a blank character string.

Level=substr(Title, length(Title), 1);

In this example, the **Level** variable is equal to the last character of the **Title** variable.

	Name	Title	Level	
	Sue	Trainer 1	1	
	Pat Tim	Consultant 3 Analyst 2 Consultant 2	3 2	
	Lou	Consultant 2	2	
11				

SCAN Function

If the SCAN function returns a value to a variable that was not yet assigned a length, by default, the variable is assigned a length of 200.

Q

SCAN Function

What must be added to the following program to control the byte size of the variables **Six** and **Two**?

```
data test;
Sentence=
    'This is a test, a very short test.';
Six=scan(Sentence,6,' ');
Two=scan(Sentence,2,',');
run;
```

n you onnit the deminiter, a default ins	t of delimiters is used
ASCII environment: blank . < (+ EBCDIC environment: blank . < (+	&!\$ *) ; ^ - / , % &!\$ *) ; ¬ - / , % ¢
Sentence (36 byte	s)
This+is an(ex-tremely)**cr	azy**test!
Assignment Statement Using the SCAN Function	New Variable (200 bytes)
- (2) 0)	is
Two = scan(Sentence,2);	

SCAN Function

- Leading delimiters before the first word in the character string do not affect the SCAN function.
- If there are two or more contiguous delimiters, the SCAN function treats them as one.
- If *n* is greater than the number of words in the character string, the SCAN function returns a blank value.
- If n is negative, the SCAN function selects the word in the character string starting from the end of the string.

What are the new variable values?	
Sentence (38 bytes))
\$%This+is an(ex-tremely)**c:	razy**test!
Assignment Statement Using the SCAN Function	New Variable (200 bytes)
One = scan(Sentence,1);	
Six = scan(Sentence,6);	
<pre>Eight = scan(Sentence,8);</pre>	
MinusTwo = scan(Sentence,-2));

LEFT and RIGHT Functions

If the LEFT or RIGHT function returns a value to a variable that was not yet assigned a length, the variable length is determined by the length of the argument.

Var (13 bytes)	Assignment Statement Using the LEFT or RIGHT Function	New Variable (13 bytes)
3 leading blanks	NewVar1 = left(Var);	ZOOLOGY 6 trailing blanks
3 trailing blanks	NewVar2 = right(Var);	6 leading blanks

	RIGHT Functions	Q
Var (13 bytes)	Assignment Statement Using the LEFT or RIGHT Function	New Variable (13 bytes)
3 leading blanks zooLogy 3 trailing blanks	<pre>NewVar3 = substr(left(Var),1,3);</pre>	
22		

Concatenation Operator

Name = First Middle Last =	n Name \$ 2 = 'Jones, = left(sc = left(s = scan(nam	Mary Ann, can(Name,2 scan(Name, me,1,',');	3,','));
First	Middle	Last	
(10 bytes) Mary Ann	(10 bytes) Sue	(10 bytes) Jones	
-			
FullName (3	0 bytes)		
Mary Ann	Sue J	ones	
۲ 2 bla n	iks 7 blanks	5 blanks	

STRIP Function

The *STRIP function* removes leading and trailing blanks from character expressions.

. ____

This example does not use the LEFT function when creating the First and Middle variables.

Fi: Mic La: Nar Nar Nar	ngth First rst = 'Ton ddle = ' st = 'Smit me1 = cat(me2 = cats me3 = catt	y'; Albert' h'; First, (First, (First,	; Middle, I Middle, Middle,	last); Last);	
First (*	10 bytes)	Middle (10 bytes)	Last (10 bytes)	
First (* Tony	10 bytes)	Middle (Alber		Last (10 bytes) Smith	
Tony	10 bytes) nriables (200 b	Alber			
Tony	nriables (200 b	Alber	t		anks
Tony New Va	riables (200 b Tony	Alber oytes) Albert	t 5 Smith (Smith	
Tony New Va Name1	riables (200 b Tony TonyAlbert	Alber oytes) Albert Smith	t Smith (CATS remove	Smith	

TRANWRD Function

If the TRANWRD function returns a value to a variable that was not yet assigned a length, by default, the variable is assigned a length of 200.

Sentence (31 bytes)

Functions are very hard to use.

Assignment Statement Using the TRANWRD Function	New Variable (200 bytes)
NewSentence1 =	Functions are very
<pre>tranwrd(Sentence, 'hard', 'easy');</pre>	easy to use.
NewSentence2 =	Functions are very
<pre>tranwrd(Sentence, 'hard', 'difficult');</pre>	difficult to use.

37

FIND Function		
<pre>num = find(string,substring);</pre>		
string character 37 bytes	substring character 4 bytes	num numeric 8 bytes
	WOOD	10
How much WOOD would a woodchuck chuck	wood	23
10 23		
40		

Refer to Exercise 2 for Chapter 5 in Appendix A.

Case Functions

If the case functions return a value to a variable that was not yet assigned a length, by default, the variable length is determined by the length of the first argument.

	name (16 bytes)	Assignment Statement Using Case Functions	New Variable (16 bytes)
		<pre>name1 = lowcase(name);</pre>	jane smith-jones
		name2 = upcase(name);	JANE SMITH-JONES
	Jane SMITH-JONES	<pre>name3 = propcase(name);</pre>	Jane Smith-Jones
		<pre>name4 = propcase(name, ' ');</pre>	Jane Smith-jones
Ę	53		

COMPBL and COMPRESS Functions

- The COMPBL function removes multiple blanks in a character string by translating each occurrence of two or more consecutive blanks into a single blank.
- The COMPRESS function returns a character string with specified characters removed from the string.

var (13 bytes)	Assignment Statement	New Variable (13 bytes)
	Var1=compbl(Var);	ABC - DEF GH
ABC - DEF GH	Var2=compress(Var);	ABC-DEFGH
ABC - DEF GR	Var3=compress(Var,'-');	ABC DEF GH
	Var4=compress(Var,'- ');	ABCDEFGH
56		

Var (13 bytes)	Assignment Statement	Var5 (13 bytes)
BC - DEF G	Var5=expression;	ABC DEF GH
Which expre	ssion creates the desired Var	variable?
	ssion creates the desired Var compress (Var , ' – '))	variable?

Date Functions					
Da	Date				
WEEKDAY	YEAR				
DAY	TODAY or DATE				
MONTH	MDY				
QTR	YRDIF				

D. **BirthDate** is numeric and **BirthWeekDay** is character.

 Function

 Given the following assignment statement:

 age=yrdif('05MAY1999'd,'10NoV1999'd,'AGE');

 What is an approximate value of age?

Truncation Fu	runcation Functions			
	Truncation			
	CEIL			
	FLOOR			
	INT			
	ROUND			
71				

Refer to Exercise 3 for Chapter 5 in Appendix A.

CEIL and FLOOR Functions

The *CEIL function* returns the smallest integer that is *greater* than or equal to the argument. The *FLOOR function* returns the largest integer that is *less* than or equal to the argument.

num	ce	i1	(num)	floc	or	(num)
2.75			3			2
-2.75	1	Ì	-2			-3
23.1234			24			23
-23.1234			-23			-24

If the argument is within 1E-12 of an integer, the function returns that integer.

Q

CEIL and FLOOR Functions

The following program is submitted:

```
data trunc;
    num=29; A=ceil(num); B=floor(num);
    output;
run;
```

What is the value of **A** and **B** in the final data set?

- A. A=29 and B=29
- B. A=30 and B=28
- C. **A**=30 and **B**=29
- D. A=29 and B=28

-23.1234

function returns that integer.

75

77

-23

If the argument is within 1E-12 of an integer, the INT

Q **INT Function** Yes or No: Are both of the following statements true? • The INT function has the same result as the FLOOR function if the value of the argument is positive. • The INT function has the same result as the CEIL function if the value of the argument is negative. num ceil(num) floor(num) int(num) 2.75 3 2 2 -2.75 -2 -3 -2 24 23 23.1234 23 -23.1234 -23 -24 -23

78

ROUND Function

The ROUND function rounds the first argument to the nearest integer when the second argument is omitted.

num	round (num)
2.75	3
-2.75	-3
23.1234	23
-23.1234	-23

ROUND Function

The ROUND function rounds the first argument to the nearest multiple of the second argument.

d3 = d4 =	= round = round	(1234.5 (1234.5	56789 , 56789 , 56789 , 56789 ,	.1);	
		•	,	• •	
run;	- round	1(1234.:	56789 ,	.001);	
	d2	d3	d4	.001); d5	d6

Descriptiv	ve Statistics Functions
MAX	Returns the largest value.
MEAN	Returns the arithmetic mean (average).
MIN	Returns the smallest value.
SUM	Returns the sum of the nonmissing arguments.
N	Returns the number of nonmissing numeric values.
NMISS	Returns the number of missing numeric values.
CMISS	Returns the number of missing numeric and character values.

<pre>lata math; var1=2;</pre>			
var2=6 ;			
var3=.; var4=4;			
maximum	= max(var1,		• •
	= mean (var1		
	<pre>= min(var1, sum(var1,va</pre>		
run ;			
maximum	average	minimum	total

Descriptive Statistics Functions

The argument list can consist of a variable list, which is preceded by OF.

	= max(of va = mean(of v	ar1-var4)	;
total =	= min(of va sum(of var1	• •	
	•	• •	
total =	•	• •	total

86

SAS Variable Lists

Numbered range lists	x1-x n	Specifies all variables from $\mathbf{x1}$ to $\mathbf{x}n$ inclusive. You can begin with any number and end with any number as long as you do not violate the rules for user-supplied variable names and the numbers are consecutive.
Name	xa	Specifies all variables ordered as they are ordered in the program data vector, from \mathbf{x} to \mathbf{a} inclusive.
range lists	x-numeric-a	Specifies all numeric variables from x to a inclusive.
	x-character-a	Specifies all character variables from x to a inclusive.
Name prefix lists	REV:	Specifies all the variables that begin with REV , such as REVJAN , REVFEB , and REVMAR .
	_ ^{ALL} _	Specifies all variables that are already defined in the current DATA step.
Special SAS name lists	_NUMERIC_	Specifies all numeric variables that are already defined in the current DATA step.
	CHARACTER	Specifies all character variables that are already defined in the current DATA step.

Descriptive Statistics Functions	Q
The following program is submitted:	
<pre>data math; var1=30; var2=15; var3=10; total = sum(var1-var3); run;</pre>	
What is the value of total ? A. 0 B. 20 C. 40 D. 55	

5.2 Converting Character and Numeric Data

Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Explicit Conversion Using SAS Functions

Explicit conversion using a SAS function

- produces desirable results
- does *not* write a message to the SAS log stating that the conversion occurred.

S	pecial
INPUT	PUT
character-to-numeric	numeric-to-character

Explicit Conversion Using SAS Functions

The INPUT function converts a character value to a numeric value.

- The second argument is a numeric informat.
- If the INPUT function returns a value to a variable that was not yet assigned a length, by default, the variable length is 8 bytes.

The PUT function converts a numeric value to a character value.

- The second argument is a numeric format.
- If the PUT function returns a value to a variable that was not yet assigned a length, by default, the variable length is determined by the width of the format.

Value of Character Variable		Value of Numeric Variable (8 bytes)
162400	input('162400',6.)	162400
\$162,400	input('\$162,400',comma8.)	162400
49275.937	input('49275.937',9.)	49275.937
+24	input('+24',3.)	24
-73.5	input('-73.5',5.)	-73.5
01234	input('01234',5.)	1234
52E3	input('52E3',4.)	52000
01/01/1960	input('01/01/1960',mmddyy10.)	0

100

Value of Numeric Variable (8 bytes)		Value of Character Variable	
162400	<pre>put(162400,dollar8.);</pre>	\$162,400	
49275.937	<pre>put(49275.937,comma10.3);</pre>	49,275.937	
-73.5	<pre>put(-73.5,5.1);</pre>	-73.5	
52E3	<pre>put(52E3,5.);</pre>	52000	
0	<pre>put(0,date9.);</pre>	01JAN1960	

	Hired	First	Last	SSN	- F	lire	d is ch	harac	ter
1	27MAR2003	Samatha	Jones	44444	444				
2	01SEP2006	Timothy	Peters	999999	999 5	SN	is nur	meric).
The fo	llowing	program	ı is subr	nitted:					
	et Pers	onner;							
Te	wHired mpSSN= wSSN=c	put (SSI	N,9.); ',subst		pSSN				
Te	mpSSN=	put (SSI	N,9.); ',subst subst	tr (Tem	IPSSN IPSSN	,4,	2),		
Te Ne run;	mpSSN=	put (SSI atx('-	N,9.); ',subst subst subst	tr (Tem tr (Tem	IPSSN IPSSN	,4,	2),		
Te Ne run; Data S	empSSN= ewSSN=c Set New	put (SSI atx ('- Person	N,9.); ',subst subst subst	tr (Tem tr (Tem tr (Tem SSN	IPSSN IPSSN	,4, ,6)	2),); TempSS		NewS:
Te Ne run; Data S	empSSN= ewSSN=c Set New red F 2003 Samat	put (SSI atx ('- Person	N,9.); ',subst subst subst nel:	tr (Tem tr (Tem tr (Tem	IPSSN IPSSN IPSSN	,4, ,6) ed	2),);	4 444	NewS 4-44-4 3-99-9

5.3 Processing Data with DO Loops

miles	pct	month	weeks	
0.9000 1.8270 2.7818 3.7653	0.03 0.03 0.03 0.03	1 1 1 1	1 2 3 4	3% weekly increase for month 1
35.1159 36.5205 37.9813 39.5006	0.04 0.04 0.04 0.04	2 2 2 2	1 2 3 4	4% weekly increase for month 2
41.4756 43.5494 45.7269 48.0132	0.05 0.05 0.05 0.05	3 3 3 3	1 2 3 4	5% weekly increase for month 3

Additional Specifications The specification in the DO statement can be a series of items separated by commas. The items can be either all numeric or all character constants, or might be variables. Character constants must be enclosed in quotation marks. The DO group is executed once for each value in the list. Examples: do month = 'JAN', 'FEB', 'MAR'; do count = 2,3,5,7,11,13,17; do i = var1, var2, var3;

do date = '01JAN2007'd, '25APR2007'd;

In a DO UNTIL loop, the condition is checked *before* the index variable is incremented.

In a DO WHILE loop, the condition is checked *after* the index variable is incremented.

	Combined Specification	ons
	The following program is sub	mitted:
	<pre>data training; miles=30; do weeks=1 to 30 unt miles+miles*0.02; output; end; run;</pre>	il(miles>50);
	The training data set has 26 last observation resembling the following:	observations with the miles weeks 50.202543431 26
134	What ended the DO loop? A. weeks=1 to 30	B. until(miles>50)

5.4 Processing Data with Arrays

Arrays

An *array* is a temporary grouping of SAS variables that are arranged in a particular order and identified by an array name.

- Arrays exists only for the duration of the current DATA step.
- Arrays are referenced by the array name and a subscript.
- The array name is not a variable.

An array is only a convenient way of temporarily identifying a group of variables. Arrays are often referenced in DO loops because more than one element in an array must be processed.

_	name				
	rianio	week1	week2	week3	week4
	Jack	25	32	48	33
2	Susan	10	12	10	10
	do week run{	run{4} we z = 1 to week} =			;
rur	do week run { end; drop we	<pre>x = 1 to week} = eek;</pre>	4;		;
	do week run { end; drop we ; /TABLE: Work	<pre>x = 1 to week} = eek;</pre>	4; run{wee	k}*1.10,	
	do week run { end; drop we	<pre>x = 1 to week} = eek;</pre>	4;		, week4 36,3

Defining and Referencing an Array

When an asterisk is used to specify the number of elements, SAS is to determine the subscript by counting the variables in the array.

```
data newprices;
   set sashelp.pricedata;
   array parray{*} price:;
   total=sum(of parray{*});
   do num = 1 to dim(parray);
     parray{num} = parray{num}*1.10;
   end;
run;
```

The DIM function in the iterative DO statement returns the number of elements in an array.

Creating Numeric Variables with an Array An array can be based on existing variables or new variables. data WeeklyDiff(drop=week); array based on set Weekly; existing variables array run{4} week1 - week4; array diff{3} diff21 diff32 diff43; array based on new variables do week = 1 to 3;diff{week} = run{week+1}-run{week}; end; run; week1 week2 week3 week4 diff21 diff32 diff43 name 33 1 Jack 25 32 48 7 16 -15 2 Susan 10 12 10 10 2 -2 148

	SAS	S crea	ates v	ariable	e nam		conc	with atenat			,
dat	se to ar: ar: do end fo:	t We tal= ray ray wee pct d;	ekly sum(run{ pctw k = wk{w	of we 4} we k{4}; 1 to eek}	eek1- eek1 4; = ru	week - wee	ek4; ek}/	tota-	existing array b new va	ased or g variat ased or riables	oles
		name	week1	week2	week3	week4	total	pctwk1	pctwk2	pctwk3	pctwk4
1	1	Jack	25	32	48	33	138	18%	23%	35%	24%
- 2	2	Susan	10	12	10	10	42	24%	29%	24%	24%
149											

Creating Character Variables with an Array

If an array is based on new character variables, the elements must be defined as character with a byte size.

Q **Creating Character Variables with an Array** data newnames(drop=i); set names; array first{3}; array newfirst{3} \$; do i=1 to 3; newfirst{i}=propcase(first{i}); end; run; What is the byte size of newfirst1-newfirst3 if a byte size is not specified in the ARRAY statement? A. 0 B. 7 (the byte size of first1-first3) C. 8 D. 18 151

5.5 Answers to Questions

Question Slide Number	Answer
9	D.
14	length Six Two \$ 22;
18	 One = This Six = crazy Eight = MinusTwo = crazy Two = crazy
22	ZOO (with 10 trailing blanks)
28	D.
33	D.
37	Α.
41	Α.
43	С.
54	No
57	А.
60	BirthQtr = 2
63	B.
69	0.5178
75	Α.
78	Yes
82	D.
87	B.
103	No
112	Α.
114	С.

(Continued on the next page.)

Question Slide Number	Answer
118	1. 3
	2. 6
	3. 18
121	Yes
125	B.
131	Yes
134	B.
143	D.
151	C.
155	C.

Chapter 6 Generating Reports

6.1	Creating Detail Reports with the PRINT Procedure	6-3
6.2	Creating Formats with the FORMAT Procedure	6-22
6.3	Creating Frequency Tables with the FREQ Procedure	6-30
6.4	Creating Summary Reports with the MEANS Procedure	6-35
6.5	Directing Reports to External Files with ODS	6-40
6.6	Answers to Questions	6-46

6-2 Chapter 6 Generating Reports

Q

6.1 Creating Detail Reports with the PRINT Procedure

PRINT Procedure

The *PRINT procedure* creates a report of the variables and observations in a SAS data set. You can create a variety of reports ranging from a simple listing to a highly customized report that groups the data and calculates totals and subtotals for numeric variables.

Partial Output

	Boot	and Sandal Report	
		Region=Asia	
		Total	Total
Subsidiary	Product	Inventory	Sales
Bangkok	Boot	\$9,576.00	\$1,996.00
Bangkok	Sandal	\$15,087.00	\$3,230.00
Seoul	Boot	\$160,589.00	\$60,712.00
Seoul	Sandal	\$21,483.00	\$4,978.00
Region		\$206,735.00	\$70,916.00
		ed by Tony Smith Chicago, IL	

PRINT Procedure

Which *two* of the following items *cannot* be accomplished with the PRINT procedure?

- 1. produce detail reports
- 2. produce summary reports
- 3. sort data values by one or more variables
- 4. produce column totals for numeric variables
- 5. replace variable values with formatted values
- 6. replace variable names with descriptive labels
- 7. choose only observations that meet a condition
- 8. select specific variables and control the order in which the variables appear

Refer to Exercise 1 for Chapter 6 in Appendix A.

NOOBS Option

The *NOOBS option* suppresses the column in the output that identifies each observation by number.

```
proc print data=sashelp.shoes noobs split='*';
```

By default, the PRINT procedure gives an observation column.

NOOB	S Opti	ion			
	Boot	and Sandal	Report		7
· Without N	DOBS ·	Region=Asia			
Obs Subsid	iary Pro	duct	Total Inventory	Total Sales	Partial Output
57 Bangka 59 Bangka 62 Seoul 65 Seoul		dal \$ t \$1	\$9,576.00 15,087.00 60,589.00 21,483.00	\$1,996.00 \$3,230.00 \$60,712.00 \$4,978.00	
Region			Boot and	Sandal Report	
	- Witl	h NOOBS	Regi	ion=Asia	
Partial	Subsi	idiary Pro	duct	Total Inventory	Total Sales
Output	Bang Bang Seou Seou	jkok Sar Jl Boo	dal	\$9,576.00 \$15,087.00 \$160,589.00 \$21,483.00	\$1,996.00 \$3,230.00 \$60,712.00 \$4,978.00
	Regi	Lon		\$206,735.00	\$70,916.00
11					

WHERE Statement

```
Examples:
```

```
where sales > 100000;
where sales eq .;
where name = 'Smith';
where name = ' ';
where sales ge 100000 and name = 'Smith';
where sales ge 100000 or name = 'Smith';
where revenue >= 150 and revenue <= 999;
where revenue between 150 and 999;
where revenue not between 150 and 999;
where month contains 'uary';
where birthdate > '11JJUL1968'd;
```

WHERE Statement

The following SAS program is submitted:

```
proc print data=sales;
  where month=2;
  where sales>100;
run;
```

Which of the following statements is *true* regarding the program?

Q

- A. Only the first WHERE statement will be used.
- B. Only the second WHERE statement will be used.
- C. Both WHERE statements will be used with a logical OR between the statements.
- D. Both WHERE statements will be used with a logical AND between the statements.

	BY statem report fo		ices a separate ′ group.	e section
	y region	_	3	
'art	ial Output			
Г		Boot a	nd Sandal Report	
		R	egion=Asia	
	Subsidiary	Product	Total Inventory	Total Sales
	Bangkok Bangkok Seoul Seoul	Boot Sandal Boot Sandal	\$9,576.00 \$15,087.00 \$160,589.00 \$21,483.00	\$1,996.00 \$3,230.00 \$60,712.00 \$4,978.00
	Region		\$206,735.00	\$70,916.00

Partial Ou	tout			
	ipui			1
	Regio	on=Western Europe -		BY Grou
		Total	Total	
Subsidiary	Product	Inventory	Sales	
Copenhagen	Boot	\$4,657.00	\$1,663.00	
Geneva	Boot	\$171.030.00	\$41,341.00	
Geneva	Sandal	\$3,529.00	\$736.00	
Heidelberg	Boot	\$301,779.00	\$65,610.00	
Heidelberg	Sandal	\$4,618.00	\$977.00	
Lisbon	Boot	\$341,911.00	\$76,349.00	
Lisbon	Sandal	\$24,253.00	\$1,650.00	
London	Boot	\$289,527.00	\$54,449.00	
London	Sandal	\$11,111.00	\$5,217.00	
Madrid	Boot	\$1,027.00	\$1,179.00	
Paris	Boot	\$41,506.00	\$19,196.00	
Paris	Sandal	\$23,816.00	\$1,520.00	
Rome	Boot	\$209,271.00	\$36,244.00	
Rome	Sandal	\$4,611.00	\$1,249.00	
Region		\$1,432,646.00	\$307,380.00 🗨	Subtot
		======================================	\$3,218,979.00	Grand Tot

PAGEBY Statement The *PAGEBY statement* puts each separate section of a BY group on separate pages.

pageby region;

The PAGEBY statement must name a variable that appears in the BY statement.

ID Statement

The *ID statement* specifies the variable(s) to print at the beginning of each row instead of an observation number.

When used with a BY statement, the ID statement eliminates the BY line and suppresses repetitious printing of the BY variable(s).

Partial Output

Region	Subsidiary	Product	Total Inventory	Total Sales
Western Europe	Copenhagen	Boot	\$4,657.00	\$1,663.00
	Geneva	Boot	\$171,030.00	\$41,341.00
	Geneva	Sandal	\$3,529.00	\$736.00
	Heidelberg	Boot	\$301,779.00	\$65,610.00
	Heidelberg	Sandal	\$4,618.00	\$977.00

			signs descript	ive labels
o varia	able name	s.		
lab	oel inve	ntory=	'Total*Inve	entory'
	sale	s='Tota	al*Sales';	_
artial	Output			
artial	Salpar	Boot and Sa	andal Report	
			·	
		Regior	n=Asia	
0bs	Subsidiary	Product	Total Inventory	Total Sales
	-			
57 59	Bangkok Bangkok	Boot Sandal	\$9,576.00 \$15,087.00	\$1,996.00 \$3,230.00
62	Seoul	Boot	\$160,589.00	\$60,712.00
65	Seoul	Sandal	\$21,483.00	\$4,978.00
			\$206,735.00	\$70,916.00

alues		atement	associates for	mats to variable
fo	rmat inv	entory	sales doll	ar14.2;
Partial	Output			
		Regior	n=Asia	
0bs	Subsidiary	Product	Total Inventory	Total Sales
005				
57 59 62	Bangkok Bangkok Seoul	Boot Sandal Boot	\$9,576.00 \$15,087.00 \$160,589.00	\$1,996.00 \$3,230.00 \$60.712.00
57 59	Bangkok	Sandal		

Stored Value	Format	Displayed Value
Washington	\$4.	Wash
1234.4567	8.0	1234
1234.4567	8.2	1234.46
1234.4567	comma8.2	1,234.46
1234.4567	dollar9.2	\$1,234.46

Partial		Regio	n=Western Europe -	
Output	Subsidiary	Product	Total Inventory	Total Sales
	Copenhagen	Boot	\$4,657.00	\$1,663.00
	Geneva	Boot	\$171,030.00	\$41,341.00
/hat minin	num widths a	are ^{dal}	\$3,529.00	\$736.00
		t	\$301,779.00	\$65,610.00
eeded to	complete the	dal	\$4,618.00	\$977.00
	tatement for	t	\$341,911.00	\$76,349.00
		dal	\$24,253.00	\$1,650.00
nis desired	output?	t	\$289,527.00	\$54,449.00
		dal	\$11,111.00	\$5,217.00
	Madrid	Boot	\$1,027.00	\$1,179.00
	Paris Paris	Boot Sandal	\$41,506.00	\$19,196.00
	Rome	Boot	\$23,816.00	\$1,520.00
	Rome	Sandal	\$209,271.00 \$4,611.00	\$36,244.00 \$1,249.00
			\$1,432,646.00	\$307,380.00
	Region			
	Region		\$1,432,040.00	4007,000.00

Stored Value	Format	Displayed Value		
	ronnat	Displayed value		
17332	mmddyy6.	061507		
17332	mmddyy8.	06/15/07		
17332	mmddyy10.	06/15/2007		
17332	date7.	15JUN07		
17332	date9.	15JUN2007		
17332	ddmmyy8.	15/06/07		
17332	worddate.	June 15, 2007		
17332	weekdate.	Friday, June 15, 2007		
17332	monyy7.	JUN2007		

Desired ro	birth	hired	retired	_
1	02/17/1941	05/01/1976	31DEC2006	
tatemen		e desired rep		
tatemen	t to obtain th	e desired rep	oort?	
tatemen	t to obtain th	e desired rep	oort?	
tatemen	t to obtain th	e desired rep	oort?	

LABEL and FORMAT Statements

LABEL and FORMAT statements assigned in a PROC step are considered *temporary* attributes (apply only for the duration of the step).

LABEL and FORMAT statements assigned in a DATA step are considered *permanent* attributes (stored in the descriptor portion).

	Alph	abetic	List	of Variabl	es and Attr.	ibutes
#	Variable	Туре	Len	Format	Informat	Label
6 2	Inventory Product	Num Char	8 14	DOLLAR12.	DOLLAR12.	Total Inventory
1	Region	Char	25			
7	Returns	Num	8	DOLLAR12.	DOLLAR12.	Total Returns
5	Sales	Num	8	DOLLAR12.	DOLLAR12.	Total Sales
4	Stores	Num	8			Number of Stores
3	Subsidiary	Char	12			

he FOOTNO7 t the bottom o		ent specifies up	to 10 lines of tex
footnote footnote2		d by Tony S go, IL';	mith';
artial Output			
Subsidiary	Product	Total Inventory	Total Sales
Bangkok Bangkok Seoul Seoul	Boot Sandal Boot Sandal	\$9,576.00 \$15,087.00 \$160,589.00 \$21,483.00	\$1,996.00 \$3,230.00 \$60,712.00 \$4,978.00
Region		\$206,735.00	\$70,916.00
		d by Tony Smith hicago, IL	

TITLE and FOOTNOTE Statements

The TITLE and FOOTNOTE statements are global statements, which means that the statements stay in effect until they are canceled or changed, or you end your SAS session.

The code title; cancels all titles. The code footnote; cancels all footnotes.

TITLE*n* or FOOTNOTE*n*

- replaces a previous title or footnote with the same number
- cancels all titles or footnotes with higher numbers.

TITLE and FOOTN	OTE Statements
The following SAS progr	am is submitted:
<pre>proc print data=shoes: title1 'Shoe Store title2 'Report One title3 'Accounting run; proc print data=shoes: title2 'Report Two run;</pre>	'; '; 2;
What titles appear in the	second procedure output?
A. Report Two	C. Report Two Accounting
B. Shoe Store Report Two	D. Shoe Store Report Two Accounting

bound to be a provide the statement of the statement is a global statement, which means that the options remain in effect until they are canceled or changed, or you end your SAS session. The OPTIONS statement is not usually included in a step. Some system options change the appearance of a report.

OPTIONS Statement

System Option	Description
DATE NODATE	Specifies that the date and the time that the SAS job was initialized appear in the top right corner of each page of output.
NODTRESET DTRESET	Specifies that the current date and the current time appear in the top right corner of each page of output.
NUMBER NONUMBER	Specifies that the page number appear in the top right corner of each page of output.
PAGENO=n	Specifies a beginning page number for the next page of output.
LS=n LINESIZE=n	Specifies the number of characters that can be printed on one page width of output.
PS=n PAGESIZE=n	Specifies the number of lines that can be printed per page of output.

Q

50

OPTIONS Statement

The following SAS program is submitted.

```
options nodate nonumber;
proc print data=shoes1;
run;
options pageno=1;
proc print data=shoes2;
run;
```

What is the result of the second report?

- A. The second report has a date and no page number.
- B. The second report has a date and a page number of 1.
- C. The second report has no date and no page number.
- D. The second report has no date and a page number of 1.

Refer to Exercise 2 for Chapter 6 in Appendix A.

6.2 Creating Formats with the FORMAT Procedure

FORMAT Procedure

The *FORMAT procedure* enables you to define your own formats for variable values.

```
proc format;
value $gender 'F' = 'Female'
'M' = 'Male'
other = 'Miscoded';
value wtrange low - <100 = 'Under 100 lbs'
100 - high = '100+ lbs';
run;
```

Formats determine how variable values are printed.

57

Refer to Exercise 3 for Chapter 6 in Appendix A.

Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Ranges

On the left side of the equal sign, you can have ranges.

```
proc format;
value $gender 'F' = 'Female'
'M' = 'Male'
other = 'Miscoded';
value wtrange low - <100 = 'Under 100 lbs'
100 - high = '100+ lbs';
run;
```

For character ranges, each string should be enclosed in quotation marks (example: $|\mathbf{A}| - |\mathbf{Z}|$).

	Ranges		
	Put < after the v in a range.	gn excludes values f alue if you exclude th value if you exclude	ne first value
	50 - 100	Includes 50	Includes 100
	50 - < 100	Includes 50	Excludes 100
	50 < - 100	Excludes 50	Includes 100
	50 < - < 100	Excludes 50	Excludes 100
7			

Example is a constant of the following code:

froc format;
 value group 0 - < 50 = 'First Half'
 50 - 100 = 'Second Half';
 run;

What will be the formatted value of 50.5?
A. 50.5
B. First Half
C. Second Half
D. missing value</pre>

What is wrong with the keyword in the following example?

va.	Lue 🖇	\$gender	'F'	=	'Female'
			'M'	=	'Male'
			'other'	=	'Miscoded';
run;					

run;

74

Creating and Using Formats Create format (no period in format name): proc format; value \$gender 'F' = 'Female' 'M' = 'Male' other = 'Miscoded'; value wtrange low - <100 = 'Under 100 lbs' 100 - high = '100+ lbs'; run; Use format (period in format name): options nodate nonumber ps=30 ls=64; proc print data=sashelp.class; var name sex weight; format sex \$gender. weight wtrange.;

Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

6.3 Creating Frequency Tables with the FREQ Procedure

The FREG) procedure pro	duces on	e-wav to n-	wav
	tables. By defa			2
• •	requency tables	•	-	
,				
	proc fr	eq data	=sashelp	.orsale
	run;			
ne-Way				
Table	The	FREQ Procedur	re	
	Pi	roduct Line		
Product_Li		roduct Line Percent	Cumulative Frequency	Cumulative Percent
 Children	ne Frequency 176	Percent	••••••••••	Percent 19.30
	ne Frequency 176	Percent	Frequency	Percent

TABLES Statement

The *TABLES statement* requests one-way to *n*-way frequency tables and statistics for those tables.

Product_Lir	ne Frequ	ency Per	Cumula cent Frequ	
Children Clothes & S Outdoors Sports	Shoes			shelp.ors _line yea
Year	Frequency	Year Percent	Cumulative Frequency	Cumulative Percent
1999 2000 2001 2002	228 228 228 228 228	25.00 25.00 25.00 25.00	228 456 684 912	25.00 50.00 75.00 100.00

Two-Way Tables The following program is submitted: proc freq data=sashelp.orsales ; tables quarter product_category year*product_line; run; Which of the following is *true* regarding the program? A. One frequency table is produced.

- B. Two frequency tables are produced.
- C. Three frequency tables are produced.
- D. Four frequency tables are produced.

		The FREQ P	rocedure			
Table of Product_Line by Year						
Product_ Line	Year	Frequency	Percent	Row Percent	Column Percen	
Outdoors	1999	28	6.25	25.00	25.00	
	2000	28	6.25	25.00	25.00	
	2001	28	6.25	25.00	25.00	
	2002	28	6.25	25.00	25.00	
	Total	112	25.00	100.00		
Sports	1999	84	18.75	25.00	75.00	
	2000	84	18.75	25.00	75.00	
	2001	84	18.75	25.00	75.00	
	2002	84	18.75	25.00	75.00	
	Total	336	75.00	100.00		
Total	1999	112	25.00		100.00	
	2000	112	25.00		100.00	
	2001	112	25.00		100.00	
	2002	112	25.00		100.00	
	Total	448	100.00			

	Default Statistics	Options to Eliminate Statistics
One-Way Tables	Frequency Percent Cumulative Frequency Cumulative Percent	NOPERCENT NOCUM
Two-Way Tables	Frequency Percent Row Percent Column Percent	NOFREQ NOPERCENT NOROW NOCOL

> Refer to Exercise 4 for Chapter 6 in Appendix A.

6.4 Creating Summary Reports with the MEANS Procedure

	1 - 1 - 1 -		,			
				computes desci	•	
			oss all o	bservations and	d within gro	ups
of obs	ervatio	ons.				
	proc	me	ans da	ta=sashelp.	prdsale	
	F .		ma	xdec=2 mean	stddev;	
	v	ar	predic	t actual;		
	c	las	s coun	try year;		
	run;					
			The	MEANS Procedure		
Country	Year	N Obs	The Variable		Mean	Std Dev
Country CANADA	Year 1993			Label	Mean 497.20	Std Dev 280.55
		Obs	Variable	Label		
		Obs	Variable	Label Predicted Sales	497.20	280.5

Statistics By default, the MEANS procedure creates a report with N (number of nonmissing values), MEAN, STDDEV, MIN, and MAX. proc means data=sashelp.prdsale; run; The MEANS Procedure Variable Label Ν Mean Std Dev Minimum Maximum 1000.00 1000.00 4.0000000 1440 1440 1440 507.1784722 287.0313065 3.0000000 ACTUAL Actual Sales **Predicted Sales** 490.4826389 285.7667904 PREDICT 0 QUARTER 2.5000000 1.0000000 Quarter 1440 1993.50 1993.00 1994.00 YEAR 0.5001737 Year MONTH Month 1440 12403.00 210.6291578 12054.00 12753.00 100

Statistics

In the PROC MEANS statement, you can specify which statistics to compute and the order in which to display them in the output.

	The MEANS	Procedure	
Variable	Label	Sum	Range
ACTUAL	Actual Sales	730337.00	997.000000
PREDICT	Predicted Sales	706295.00	1000.00
QUARTER	Quarter	3600.00	3.000000
YEAR	Year	2870640.00	1.000000
MONTH	Month	17860320.00	699.0000000

MAXDEC= Option

The *MAXDEC= option* in the PROC MEANS statement specifies the maximum number of decimal places to display the statistics in the output.

VVILIO	ut MAXDEC=	N	Mean	Std Dev	Minimum	Maximum
ACTUAL	Actual Sales	1440	507.1784722	287.0313065	3.0000000	1000.00
PREDICT	Predicted Sales	1440	490.4826389	285.7667904	0	1000.00
QUARTER	Quarter	1440	2.5000000	1.1184224	1.0000000	4.000000
YEAR	Year	1440	1993.50	0.5001737	1993.00	1994.00
MONTH	Month	1440 N	12403.00	210.6291578	12054.00	12753.00
MONTH		1440 N	12403.00 Mean	210.6291578	12054.00	12753.00 Maximun
With N						
With N Actual	AXDEC=2	N	Mean	Std Dev	Minimum	Maximun
MONTH	AXDEC=2 Actual Sales	N 1440	Mean 507.18	Std Dev 287.03	Minimum 3.00	Maximum 1000.00
With N Actual Predict	AXDEC=2 Actual Sales Predicted Sales	N 1440 1440	Mean 507.18 490.48	Std Dev 287.03 285.77	Minimum 3.00 0.00	Maximun 1000.00 1000.00

				ifies one or m proup the data		riables
Country	Year	N Obs	Variable	Label	N	Mean
CANADA	1993	240	PREDICT ACTUAL	Predicted Sales Actual Sales	240 240	497.20 504.25
	1994	240	PREDICT ACTUAL	Predicted Sales Actual Sales	240 240	473.71 524.88
GERMANY	1993	240	PREDICT ACTUAL	Predicted Sales Actual Sales	240 240	488.00 530.85
	1994	240	PREDICT ACTUAL	Predicted Sales Actual Sales	240 240	476.81 494.14
U.S.A.	1993	2p1	coc mea	ans data=sa maxdec=		

ading a	CLAS	S Sta	atement	adds the N O	DS COIU	imn.
		N				
Country	Year	Obs	Variable	Label	N	Mean
CANADA	1993	240	PREDICT	Predicted Sales Actual Sales	240 240	497.20 504.25
	1994	240	PREDICT	Pr Ad number of n		
GERMANY	1993	240	PREDICT	_{Pr} for the analy	vsis vari	able
			ACTUAL	Actual Sales	240	530.85
	1994	240		of observation		476.81 494.14
				ique combinati s variables	on of	515.68
U.S.A.	1993	240				
U.S.A.	1993	240	the clas	s variables		504.39
	1994		each un	ique combinati		

_

our	ntry val	ue o	f GERM	IANY. O	f those	e 20	ions with observat	
пу	15 0056	ervar	lions na	ve a valu		PRE		
/hic	h outpu	ut is (correct?					
		M						
	Country	N Obs	Variable	Label		N		
•	Country GERMANY		Variable PREDICT	Label Predicted	Sales	N 20		
		Obs			Sales			
		Obs			Sales			

Refer to Exercise 5 for Chapter 6 in Appendix A.

6.5 Directing Reports to External Files with ODS

DOS HTML Statement opens or closes the HTML destination, which produces HyperText Markup Language ites that are viewable with a web browser.
ods html file='gnp.html' style=default;
proc print data=sashelp.gnp;
...
proc means data=sashelp.gnp;
...
pods html close;

My Report								
DATE		hases of goods services	net exports of goods and services	gross nationa (\$billio				
1985Q1		784.4	-53.1		3925.6			
1985Q2		801.7	-74.3		3979			
1985Q3		840.2	-81.2		4047			
1985Q4		856.7	-103.2		4107.9			
			My Report					
	4.02		MEANS Procedure	(\$billions)				
		lysis Variable : GN	IP gross national product					
	Ana N	lysis Variable : GN Mean Si	IP gross national product	(\$billions) Maximum 4107.90				

<section-header><section-header><section-header>

6.6 Answers to Questions

Question Slide Number	Answer
5	2. and 3.
13	Α.
16	А.
19	B.
26	C.
30	3. and 6.
36	<pre>format inventory dollar14.2 sales dollar13.2;</pre>
38	C.
41	The MMDDYY8. format must be the MMDDYY10. format.A period must be added to the end of the DATE9 format.
47	B.
51	С.
62	ERROR: The quoted string '0' is not acceptable to a numeric format or informat.
65	Α.
68	C.
71	Keywords do not use quotation marks.
75	Character values are case sensitive.Missing period, \$testfmt.
78	D.
86	С.
91	С.
98	C.
106	B.
114	Α.

(Continued on the next page.)

Question Slide Number	Answer
118	 The extension of the file must be appropriate to the destination. HTML is missing in the statement to close the file. The RUN statement must be before the statement that closes the file.
122	C.
125	B.

6-48 Chapter 6 Generating Reports

Chapter 7 Additional Information

7.1	More Specifics about the SAS Base Programming Exam	7-3
7.2	Additional Preparation Resources	7-6
7.3	Test-Taking Strategies	7-9

7-2 Chapter 7 Additional Information

7.1 More Specifics about the SAS Base Programming Exam

SAS Base Programming for SAS[®]9 After completing the exam, you receive your score. PASSING SCORE: % YOUR SCORE: 100% GRADE: Pass Section Analysis Accessing Data 100% Creating Data Structures 100% 100% Managing Data 100% Generating Reports Handling Errors 100% The score report will display the percentage of items in each section that you answered correctly for your exam. These section scores are calculated on a per section basis and cannot be used in determining your total score.

GRADE: Pass

If you pass your exam and meet all requirements for this credential, you will receive an e-mail from SAS with instructions providing access to your certificate and logo.

These e-mails are sent to the e-mail address provided at exam registration.

Please **allow at least one week** from your exam date to receive your e-mail.

5

SAS Foundation Credentials and Exams

After you pass the SAS Base Programming Exam, consider taking other certification exams to earn additional SAS Foundation credentials.

	Credentials	Certification Exams
\checkmark	SAS Certified Base Programmer for SAS [®] 9	SAS Base Programming for SAS [®] 9
	SAS Certified Advanced	SAS Base Programming for SAS [®] 9
	Programmer for SAS®9	SAS Advanced Programming for SAS [®] 9
		Clinical Trials Programming Using SAS [®] 9
	SAS Certified Clinical Trials Programmer Using SAS®9	OR
		SAS Base Programming for SAS [®] 9
		 Clinical Trials Programming Using SAS[®]9 Accelerated Version
6		

8

Retaking the Exam

- A candidate can retake an exam five times in a 12-month period.
- A candidate must wait a minimum of 14 calendar days between attempts.
- Exams that do not comply with the retake examination policy will be considered invalid.
- Exam retakes require payment of the full exam fee and are not discounted.

7.2 Additional Preparation Resources

Online Documentation

verview Exam Content Exam P	eparation Exam Registration Exam Day After the Exam	
	becoming a SAS Certified Professional. The below diagram illustrate redential's required examination. Be sure to check your local country	
which often include an exam voucher.		
SAS* Programming 1: Essentials		
SAS* Programming 2:		
Data Manipulation Techniques	SAS* Base Programming for	
OR Be an experienced programmer	SAS'9 Exam	
with knowledge of the five exam content areas.		
SAS* Certification Review: Base Programming for		
SAS'9		

Home Complete Catal	og SAS Press SAS Documentation New Books
Storeson he class Storeson he class Books Recommended by SAS: > Learning SAS by Example: A Programmer's Guide > Combining and Modifying SAS Data Sets: Examples, Second Edition	SAS Certification Prep Guide: Base Programming for SAS 9, Third Edition Price: 149 00 USD 808 pages ISBN: 978-1-60764-924-3 Publister: SAS Institute Copyright Date: July 2011 Description: New and experienced SAS users who want to prepare for the Base Programming for SAS 9 exam will find the Certification Prep Guide: Base Programming for SAS 9 to be an invaluable, convenient, and comprehensive res that covers all of the objective tested on the exam. Major topics include importing and exporting rave data files creating and modifying SAS data sets. and identifying and correcting data syntax and programming for effect on the enhancements and new functionality that are available in SAS 9. Each chapter includes a quiz on the chapter's contents. This guide provides you with a solid study resource at as a go-to reference for your library.

Online Documentation

Recommended documentation:

- SAS[®] 9.3 Language Reference: Concepts
- Step-by-Step Programming with Base SAS[®] Software
- Base SAS[®] 9.3 Procedures Guide
- Base SAS[®] 9.3 Procedures Guide: Statistical Procedures
- SAS® 9.3 Output Delivery System: User's Guide
- SAS[®] 9.3 Data Set Options: Reference
- SAS[®] 9.3 Formats and Informats: Reference
- SAS[®] 9.3 Functions and CALL Routines: Reference
- SAS[®] 9.3 Statements: Reference
- SAS[®] 9.3 System Options: Reference, Second Edition
- SAS/ACCESS[®] 9.3 Interface to PC Files: Reference

16

7.3 Test-Taking Strategies

Before the Exam

- Extend studying and reviewing sessions over days or weeks.
- Do not cram the night before.
- Practice answering multiple choice SAS questions.
- Practice exam questions under timed conditions.
- Determine a plan for how you will use the allotted exam time.
- Get a full night's sleep before the exam.
- Arrive early to the exam and take a moment to relax.
- Listen attentively to the instructions given by the staff.
- Read the exam directions carefully.

During the Exam

- Maintain a positive attitude.
- Read each question carefully and thoroughly.
- Formulate your answer before reading the options.
- Eliminate unlikely options first.
- Be sure to read all options before selecting one.
- Pace yourself so that you have enough time to answer every question.
- Leave no questions unanswered.

continued...

During the Exam

- Rely on your first impression.
- Do not be afraid to change an answer if you feel strongly about it.
- Do not be discouraged if you cannot answer a question.
- Skip questions that you cannot answer, and return to those questions after completing the remainder of the exam.
- Plan to finish early and have time for review.
- Return to difficult questions that you marked for review.

20

7-12 Chapter 7 Additional Information

Appendix A Exercises and Solutions

A.1	I Exercises	A-3
	Chapter 1	A-3
	Chapter 2	A-4
	Chapter 3	A-7
	Chapter 4	A-11
	Chapter 5	A-14
	Chapter 6	A-18
	•	
A.2	2 Solutions	
A.2		A-24
A.2	2 Solutions	 A-24 A-24
A.2	2 Solutions Chapter 1	 A-24 A-24 A-25
A.2	2 Solutions Chapter 1 Chapter 2	 A-24 A-24 A-25 A-26
A.2	2 Solutions Chapter 1 Chapter 2 Chapter 3	A-24 A-24 A-25 A-26 A-27

A.1 Exercises

Chapter 1

1. Fundamental Concepts

Answer TRUE or FALSE to the following sentences.

- **a.** _____ The two types of steps that can make up a SAS program are DATA and PROC.
- **b.** _____ A DATA step must use a SAS data set as input.
- c. _____ A statement always ends in a colon.
- **d.** _____ A global statement stays in effect for only the subsequent step.
- e. _____ The LIBNAME statement assigns a logical name to a SAS data library.
- **f.** _____ Data sets are referenced using a four-level name.
- g. _____ Data sets located in the Sasuser data library are considered temporary.
- h. _____ A variable name and the name of a data set can be up to 32 characters long.
- i. _____ By default, a variable name can contain special characters such as a dash (–).
- j. _____ A numeric variable is stored as 32 bytes by default.
- **k.** _____ A numeric variable can be stored with digits, decimal point, comma, minus sign, and E for scientific notation.
- **I.** A character variable is stored as 1 to 32,767 bytes.
- **m.** _____ A SAS date value represents the number of days between January 1, 1960, and a specific date.
- **n.** _____ A missing numeric value is represented with a zero.
- **o.** _____ A missing character value is represented with a blank.
- **p.** _____ The DESCRIPTOR procedure views the descriptor portion of a SAS data set.
- **q.** _____ A statement that starts with an asterisk is a SAS comment.
- r. _____ The SAS log contains messages starting with the words NOTE, SUGGESTION, and ERROR.

1. Input and Output Data Sets

The SAS data set **company.sales** has three variables (**product**, **price**, and **quantity**). A new data set **work.sales** must be created. The new data set needs to contain two variables (**product** and **total**). The variable **total** is the result of **price** multiplied by **quantity**.

Complete the following program based on the previous scenario:

data	;
set	;
keep	;
total =	;
run;	

2. Multiple Data Sets

The SAS data set **sashelp.class** has five variables (**name**, **sex**, **age**, **height**, and **weight**) and 19 observations (9 observations with **sex='F'** and 10 observations with **sex='M'**).

Answer the questions based on the previous information and the following program:

3. WHERE and Subsetting IF Statements

VIEWTABLE: Work.Sales								
	DATE	STATE	PRODUCT	actual	predict			
575	14184	Florida	DESK	1852	2043			
576	14214	Florida	DESK	1211	2146			
577	13515	Texas	SOFA	1151	465			
578	13546	Texas	SOFA	1630	103			

Below is a partial view of the work.sales data set:

A new data set, **work.subset**, must be created. The new data set should contain only observations with a state equal to Texas, a date less than January 1, 1998, and a difference greater than 1000.

Complete the following program as efficiently as possible based on the previous scenario:

data subset;	
set sales;	
where	;
difference=actual-predict;	
if	
	/
run;	

4. SORT Procedure

Answer the questions based on the following program:

5. DATA Step Merge

Below is the input data set work.employees:

VIEWTABLE: Work.Employees					
name id					
1	Troy	12649			
2	Melissa	38901			
3	Larry	49255			
4	Tonya	56391			

Below is the input data set work.salaries:

VIEWI	VIEWTABLE: Work.Salaries							
	idnum	salary						
1	12649	52000						
2	49255	75000						
3	56391	89000						
4	88376	66000						

Below is the output data set **work.empsal**:

VIEWTABLE: Work.Empsal							
name idnum salary							
1	Тгоу	12649	52000				
2	Larry	49255	75000				
3	Tonya	56391	89000				

Add the appropriate statement to the following program to create the output data set based on the input data sets:

1. Program Data Vector (PDV)

```
input state $ 1-2
    @5 date mmddyy10. @18 populat comma15.
    @35 city1 $ city2 $;
```

Given the previous INPUT statement, create the PDV that is created at compile time. Include the variable name, the variable type (char or num), and the variable byte size.

Name				
Туре				
Size				

2. Column, Formatted, and List Input

Below is the raw data file kids7.dat:

	-10	-20 30 41
Tina	Smith	15\$1,322!Tim!Tammy
Michael	McMurray	12\$532!Mary
Jackie	Jones	14\$1,000!Jim!John!Joyce

Below is the desired output data set, work.kids7:

VIEWTABLE: Work.Kids7									
	first last age savings sibling1 sibling2 sibling								
1	Tina	Smith	15	1322	Tim	Tammy			
2	Michael	McMurray	12	532	Mary				
3	Jackie	Jones	14	1000	Jim	John	Joyce		

Complete the following program based on the raw data file kids7.dat and the desired output data set work.kids7. Use column input for first, last, and age. Use list input for savings, sibling1, sibling2, and sibling3.

data work	<pre>c.kids7;</pre>	
infile	e 'kids7.dat'	;
input		
	- <u></u>	
		/
run;		

3. Definitions Applying to Raw Data Files

Place the appropriate letter before each item.

 DLM=	 : MODIFIER
 DSD	 /
 MISSOVER	 #N
 INFORMAT	

- a. A line-pointer control that advances the pointer to column 1 of the next input record
- **b.** An option that prevents an INPUT statement from reading a new input data record if it does not find values in the current input line for all the variables in the statement
- c. An option that specifies a delimiter to be used for LIST input
- d. Applies an informat to the field and ignores the width
- e. An option that treats two consecutive delimiters as a missing value
- **f.** A line-pointer control that advances the pointer to column 1 of record N
- g. An instruction that SAS uses to read data values into a variable

4. Reading Excel Files

The Excel workbook named **products.xls** contains four worksheets. Each sheet contains two columns: **category** and **name**.

C.) 🖬 🤊	- (°' -	- 🖨 🛕 🗧		products	xls [Comp	patibilit	y Mode] - Mi	icrosoft Excel			X
Ű	Home	Insert	Page Layout	Formul	as Data	Review	View	Developer	Get Started	0	- 🗖	х
	A1		-	f_{x}	'Catego	ry						≈
		A					В				С	
95	Golf			Propl	ay Execu	itive Bi-N	vletal C	Graphite				
96	Golf			Propl	ay Men's	: Tour Fo	orce Lp	o 7-Wood				
97	Golf			Propl	ay Men's	: Tour Fo	orce Lp	o Driver				
98	Golf			Propl	ay Men's	: Tour Fo	orce Ti	i 5w				
- 99	Golf			Propl	ay Stand	Black						
100	Golf			Propl	ay Wom	en's Tou	ır Forc	e7w				
101	Golf			Rose	finch Car	t81/2B	llack					
102	Golf			Rubb	y Men's (Golf Sho	ies w/C	Goretex				
103	Golf			Rubb	y Men's (Golf Sho	ies w/C	Goretex Pla	iin Toe			
104	Golf		Rubby Women's Golf Shoes w/Gore-Tex									
105	Golf			Score	Score Counter Scoreboard De Luxe							
106	Golf			Tee1	Tee18 Ascot Chipper						-	
14 4	🕨 🕨 🔤 Chil	dren 🏑	Outdoors 🧹	Clothes8	Shoes 🔒	Sports					•	0
Read	dy							100%	Θ	U—) .::

Find the five mistakes in the following program:

```
libname prod 'products'
proc contents data=prod.all;
run;
data work.golf;
   set prod.'sports$';
   where category='Golf';
run;
libname clear;
proc print data=work.golf;
run;
```

1. Assignment Statements

Answer TRUE or FALSE to the following comments based on the given assignment statement:

total = num1	+ num2 + num3;
	The variable total is a numeric variable.
	The values num1 , num2 , and num3 are constants.
	If num2 is missing, then total will be missing.
fullname = 'M	fs. or Mr.' name;
	The variable fullname is a numeric variable.
	The value 'Ms. or Mr.' is a constant.
	The value is an operator.
<pre>birthdate = '</pre>	12FEB1992'd;
	The variable birthdate is a character variable.
	The byte size of birthdate is 9 bytes.
	The value '12FEB1992'd is an operator.
phonenumber =	= '888-999-0000';
	The variable phonenumber is a character variable.
	The byte size of phonenumber is 8 bytes.
	The value '888-999-0000' is an operator.

2. IF-THEN DO / ELSE DO Statements

Answer the questions based on the following program:

```
data newprice;
  infile 'raw-data-file';
  input mfg $ type $ price;
  length saletype $ 18;
  if mfg='Crew' then do;
     pct=0.75;
      saleprice = price * pct;
      saletype = '25% off';
  end;
  else if mfg='Hi-fly' then do;
      pct=0.70;
      saleprice = price * pct;
      saletype = '30% off';
  end;
   else do;
     pct=0.90;
      saleprice = price * pct;
      saletype = '10% Storewide Sale';
  end;
  format price saleprice dollar8.2;
run;
```

a. How many DO blocks are in the program?

b. How many variables will be assigned values if an expression is true?

c. How many of those variables are numeric?

d. What is the byte size of **pct**?

e. What would be the byte size of saletype if the LENGTH statement were not part of the program?

f. How many ELSE statements are in the program?

g. Why is the word ELSE used?

h. Why are the DO blocks needed?

```
i. What stops each DO block?
```

j. Will the value of pct ever be missing in the data set?

3. Multiple BY-Group Variables

Given the following statement:

by state city;

Fill in the following table with the correct **Total Donation** for each BY group and the **FIRST.** and **LAST.** values:

State	City	Donation	Total Donation	first. State	last. State	first. City	last. City
NC	Charlotte	2000					
NC	Charlotte	9000					
NC	Charlotte	4000					
NC	Greenville	6000					
NC	Greenville	3000					
SC	Greenville	5000					
SC	Greenville	2000					
SC	Pelzer	5000					

The variable **Total Donation** represents a running total within each BY group.

1. Character Functions

Place the appropriate letter before each function.

 CATS	 PROPCASE
 CATX	 RIGHT
 COMPBL	 SCAN
 COMPRESS	 STRIP
 FIND	 SUBSTR
 LEFT	 TRANWRD
 LENGTH	 TRIM
 LOWCASE	 UPCASE

a. Concatenates character strings and removes leading and trailing blanks

- **b.** Selects a given word from a character expression
- c. Replaces or removes all occurrences of a word in a character string
- d. Converts all letters in an argument to lowercase
- e. Right-aligns a character expression
- f. Removes multiple blanks from a character string
- **g.** Searches a character expression for a string of characters with the capability of ignoring case and trimming trailing blanks
- h. Extracts a substring from an argument
- i. Converts all letters in an argument to uppercase
- j. Returns a character string with specified characters removed from the original string
- k. Removes trailing blanks from character expressions
- I. Returns an integer that represents the position of the rightmost non-blank character in a string
- m. Left-aligns a character expression
- n. Concatenates character strings, removes leading and trailing blanks, and inserts separators
- o. Converts all words in an argument to proper case
- p. Removes leading and trailing blanks from character expressions

2. FIND Function

The following program is submitted:

```
data tonguetwister;
length string $ 37;
string='How much WOOD would a woodchuck chuck';
num1=find(string,'wood');
num2=find(string,'wood','i');
num3=find(string,'wood ','t');
num4=find(string,'wood ','it');
num5=find(string,'WOOD ','it',15);
num6=find(string,'WOOD ','it',-15);
num7=find(string,'wood',40);
num8=find(string,'WOOD','i',-40);
run;
```

Fill in the following table with the correct value of **num1** through **num8**:

num1	num2	num3	num4	num5	num6	num7	num8

3. Truncation Functions

Fill in the following table based on the value of **num** and the truncation function:

num	ceil(num)	floor(num)	int(num)	round (num)
2.75				
-2.75				
23.1234				
-23.1234				

4. Automatic Data Conversions

Fill in the following tables with the converted value assuming automatic conversion:

Value of Character Variable		Value of Numeric Variable (8 bytes)
162400	\mathbf{N}	
\$162,400	Automatic character-to-numeric	
49275.937	conversion using the <i>W</i> . informat	
+24		
-73.5		
01234		
52E3		
01/01/1960		
Value of Numeric Variable (8 bytes)		Value of Character Variable (12 bytes)
162400	\mathbf{N}	
49275.937	Automatic numeric-to-character	
-73.5	conversion using the BEST12.	
52E3	format	
0		

5. DO Loops and Arrays

The following is the input data set, **Weekly**:

VIEWTABLE: Work.Weekly						
	name	week1	week2	week3	week4	
1	Jack	25	32	48	33	
2	Susan	10	12	10	10	

The following is the desired output data set, WeeklyRotate:

VIEWT	VIEWTABLE: Work.Weeklyrotate					
	name	week	miles			
1	Jack	1	25			
2	Jack	2	32			
3	Jack	3	48			
4	Jack	4	33			
5	Susan	1	10			
6	Susan	2	12			
7	Susan	3	10			
8	Susan	4	10			

Complete the following program to create the desired output data set:

data WeeklyRotate;	
set Weekly;	
array run	;
do	;
miles =	;
output;	
	;
drop week1 - we	ek4;
run;	

1. PRINT Procedure

Place the appropriate letter before each item.

 BY Statement	 PAGEBY Statement
 FOOTNOTE Statement	 SUM Statement
 FORMAT Statement	 TITLE Statement
 LABEL Statement	 VAR Statement
 NOOBS Option	 WHERE Statement
OPTIONS Statement	

- a. Puts each separate section of a BY group on separate pages
- b. Changes the value of one or more SAS system options
- c. Suppresses the column in the output that identifies each observation by number
- d. Specifies up to 10 lines of text at the top of output
- e. Subsets the input data set by specifying certain conditions that each observation must meet
- f. Assigns descriptive labels to variable names
- g. Produces a separate section of the report for each BY group
- h. Selects variables that appear in the report and determines the variables order
- i. Specifies up to 10 lines of text at the bottom of output
- j. Associates formats to variable values
- k. Totals values of numeric variables

2. PRINT Procedure

The following is the desired report (partial output):

	Predicted	versus Actual	Sales	
	Coun	try=Mexico		
		Predicted		
Country	Year	Sales	Actual Sales	
Mexico	1995	\$282	\$189	
Mexico	1995	\$276	\$266	
Mexico	1995	\$807	\$241	
Mexico	1995	\$782	\$451	
Mexico	1995	\$381	\$126	

Find the six syntax mistakes in the following program:

3. FORMAT Procedure

Answer the questions based on the following program:

```
proc format;
value $gender 'F' = 'Female'
'M' = 'Male'
other = 'Miscoded';
value wtrange low - <100 = 'Under 100 lbs'
100 - high = '100+ lbs';
run;
proc print data=sashelp.class;
var name sex weight;
format sex $gender. weight wtrange.;
run;
```

a.	How many formats are created in the PROC FORMAT step?
b.	Is \$GENDER a character or numeric format?
c.	Is WTRANGE a character or numeric format?
d.	What is the maximum length of a format name?
e.	What must start a character format name?
f.	What are the three keywords used in the VALUE statements?
g.	Does the less than (<) sign include or exclude values from ranges?
h.	Does the LOW keyword include a numeric missing value?
i.	What special character is used at the end of the format name when you use a format?
j.	Are these formats temporary or permanent?
k.	Does the PROC FORMAT step refer to the data set and the variable that will use the format?

4. FREQ Procedure

The following is the desired report:

F	Report On	е	
The F	FREQ Proc	edure	
Number o	of Variabi	le Levels	
Variable	Label		Levels
Product_Category	Product	t Category	12
Pro	duct Cate	egory	
Product_Category		Frequency	Percent
Assorted Sports Art:	icles	64	7.02
Children Sports		176	19.30
Clothes		240	26.32
Golf		32	3.51
Indoor Sports		48	5.26
Outdoors		112	12.28
Racket Sports		48	5.26
Running - Jogging		32	3.51
Shoes		48	5.26
Swim Sports		16	1.75
Team Sports		64	7.02
Winter Sports		32	3.51

Complete the following program to create the desired report:

```
options nodate nonumber ps=50 ls=74;
proc freq data=sashelp.orsales ______;
______;
title 'Report One';
run;
```

5. MEANS Procedure

The following is the desired report:

	The MEANS Proce	dure	
Analysis Va	riable : ACTUAL A	ctual Retail Sal	es
State/Province	N Obs	Sum	Median
Illinois	5760	410977	71
New York	1152	1705493	1445

Confidential

Complete the following program to create the desired report:

```
options nodate nonumber ps=18 ls=74;
proc means data=sashelp.prdsal2 ______;
where state in ('New York','Illinois');
_______;
label actual='Actual Retail Sales';
title 'Product Sales Report';
footnote 'Confidential';
run;
```

6. Output Delivery System

Fill in the blanks in the following program to complete the program and answer the questions:

ods listing;
ods html = 'steel.html';
<pre>ods file = 'steel.xml';</pre>
<pre>proc sort data=sashelp.steel out=steel; by date; run;</pre>
<pre>proc print data=steel; run;</pre>
<pre>proc freq data=steel; tables date; run;</pre>
ods _all;
ods listing;
a. How many destinations are open in the program?

b. How many reports are sent to the open destinations?

A.2 Solutions

Chapter 1

1. Fundamental Concepts

- **a.** <u>TRUE</u> The two types of steps that can make up a SAS program are DATA and PROC.
- **b.** <u>FALSE</u> A DATA step must use a SAS data set as input.
- c. <u>FALSE</u> A statement always ends in a colon.
- **d.** <u>FALSE</u> A global statement stays in effect for only the subsequent step.
- e. <u>TRUE</u> The LIBNAME statement assigns a logical name to a SAS data library.
- **f.** <u>FALSE</u> Data sets are referenced using a four-level name.
- **g.** <u>FALSE</u> Data sets located in the **Sasuser** data library are considered temporary.
- **h.** <u>TRUE</u> A variable name and the name of a data set can be up to 32 characters long.
- i. <u>FALSE</u> By default, a variable name can contain special characters such as a dash (–).
- **j.** <u>FALSE</u> A numeric variable is stored as 32 bytes by default.
- **k.** <u>FALSE</u> A numeric variable can be stored with digits, decimal point, comma, minus sign, and E for scientific notation.
- **I.** <u>TRUE</u> A character variable is stored as 1 to 32,767 bytes.
- **m.** <u>TRUE</u> A SAS date value represents the number of days between January 1, 1960 and a specific date.
- **n.** <u>FALSE</u> A missing numeric value is represented with a zero.
- **o.** <u>TRUE</u> A missing character value is represented with a blank.
- **p.** <u>FALSE</u> The DESCRIPTOR procedure views the descriptor portion of a SAS data set.
- **q.** <u>TRUE</u> A statement that starts with an asterisk is a SAS comment.
- **r.** <u>FALSE</u> The SAS log contains messages starting with the words NOTE, SUGGESTION, and ERROR.

1. Input and Output Data Sets

```
data work.sales;
   set company.sales;
   keep product total;
   total = price*quantity;
run;
```

2. Multiple Data Sets

- a. What is the input data set? sashelp.class
- **b.** How many output data sets are being created? two
- c. How many observations are in work.female? nine
- d. How many observations are in work.everyone? 19
- e. What variables are in work.female? name, sex, age, and weight

3. WHERE and Subsetting IF Statements

```
data subset;
   set sales;
   where state='Texas' and date<'01JAN1998'd;
   difference=actual-predict;
   if difference>1000;
run;
```

4. SORT Procedure

- a. What is the input data set? sashelp.shoes
- **b.** What is the output data set? **shoes**
- c. Where is the output data set stored? work
- d. How many variables are used to sort the data set? two
- e. Does the DESCENDING option apply to the region variable? yes
- f. Does the DESCENDING option apply to the product variable? no
- g. Which variable is considered the primary sort variable? region
- h. What other statements can be added to the SORT procedure? FORMAT, LABEL, and WHERE
- i. Does the SORT procedure create a report? no

5. DATA Step Merge

```
data empsal;
merge employees(in=emp rename=(id=idnum))
salaries(in=sal);
by idnum;
if emp=1 and sal=1;
run;
```

1. Program Data Vector (PDV)

Name	state	date	populat	city1	city2	_ERROR_	_N_
Туре	char	num	num	char	char	num	num
Size	2	8	8	8	8	8	8

2. Column, Formatted, and List Input

- 3. Definitions Applying to Raw Data Files
 - c. DLM=
 - e. DSD
 - **b.** MISSOVER
 - g. INFORMAT
- 4. Reading Excel Files

```
libname prod 'products.xls';
proc contents data=prod._all_;
run;
data work.golf;
   set prod.'sports$'n;
   where category='Golf';
run;
libname prod clear;
proc print data=work.golf;
run;
```

d. : MODIFIER

- a. /
- **f.** #*N*

Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1. Assignment Statements

total =	num1 + num2 + num3;
<u>TRUE</u>	The variable total is a numeric variable.
FALSE	The values num1 , num2 , and num3 are constants.
<u>TRUE</u>	If num2 is missing, then total will be missing.
fullnam	e = 'Ms. or Mr.' name;
<u>FALSE</u>	The variable fullname is a numeric variable.
TRUE	The value 'Ms. or Mr.' is a constant.
<u>TRUE</u>	The value is an operator.
birthda	te = '12FEB1992'd;
FALSE	The variable birthdate is a character variable.
FALSE	The byte size of birthdate is 9 bytes.
<u>FALSE</u>	The value '12FEB1992'd is an operator.

phonenumber = '888-999-0000';

<u>TRUE</u> The variable **phonenumber** is a character variable.

- <u>FALSE</u> The byte size of **phonenumber** is 8 bytes.
- <u>FALSE</u> The value '888-999-0000' is an operator.

2. IF-THEN DO / ELSE DO Statements

- **a.** How many DO blocks are in the program? three
- **b.** How many variables will be assigned values if an expression is true? three
- c. How many of those variables are numeric? two
- **d.** What is the byte size of **pct**? eight
- e. What would be the byte size of **saletype** if the LENGTH statement were not part of the program? seven
- f. How many ELSE statements are in the program? two
- **g.** Why is the word ELSE used? Subsequent ELSE statements are not evaluated after a true statement.
- h. Why are the DO blocks needed? executing three statements, not only one statement
- i. What stops each DO block? end;
- j. Will the value of pct ever be missing in the data set? no

State	City	Donation	Total Donation	first. State	last. State	first. City	last. City
NC	Charlotte	2000		1	0	1	0
NC	Charlotte	9000	15000	0	0	0	0
NC	Charlotte	4000		0	0	0	1
NC	Greenville	6000	0000	0	0	1	0
NC	Greenville	3000	9000	0	1	0	1
SC	Greenville	5000	7000	1	0	1	0
sc	Greenville	2000	7000	0	0	0	1
SC	Pelzer	5000	5000	0	1	1	1

3. Multiple BY-Group Variables

1. Character Functions

a.	CATS	0.	PROPCASE
n.	CATX	e.	RIGHT
f.	COMPBL	b.	SCAN
j.	COMPRESS	р.	STRIP
g.	FIND	h.	SUBSTR
m.	LEFT	c.	TRANWRD
l.	LENGTH	k.	TRIM
d.	LOWCASE	i.	UPCASE

2. FIND Function

num1	num2	num3	num4	num5	num6	num7	num8
23	10	23	10	23	10	0	23

3. Truncation Functions

num	ceil(num)	floor(num)	int(num)	round (num)
2.75	3	2	2	3
-2.75	-2	-3	-2	-3
23.1234	24	23	23	23
-23.1234	-23	-24	-23	-23

4. Automatic Data Conversions

Value of Character Variable		Value of Numeric Variable (8 bytes)
162400		162400
\$162,400	Automatic character-to-numeric	
49275.937	conversion using the W. informat	49275.937
+24		24
-73.5		-73.5
01234		1234
52E3		52000
01/01/1960		•
Value of Numeric Variable (8 bytes)		Value of Character Variable (12 bytes)
162400		162400
49275.937	Automatic numeric-to-character	49275.937
-73.5	conversion using the BEST12.	-73.5
52E3	format	52000
0		0

5. DO Loops and Arrays

```
data WeeklyRotate;
   set Weekly;
   array run{4} week1 - week4;
   do week = 1 to 4;
    miles = run{week};
    output;
    end;
   drop week1 - week4;
run;
```

1. PRINT Procedure

g.	BY Statement	a.	PAGEBY Statement
i.	FOOTNOTE Statement	k.	SUM Statement
j.	FORMAT Statement	d.	TITLE Statement
f.	LABEL Statement	h.	VAR Statement
c.	NOOBS Option	е.	WHERE Statement
b.	OPTIONS Statement		

2. PRINT Procedure

```
options nodate nonumber ps=30 ls=64;
proc print data=sashelp.prdsal2 noobs label;
where country='Mexico';
var country year predict actual;
by country;
sum predict actual;
label predict='Predicted Sales'
actual='Actual Sales';
format predict actual dollar12.;
title 'Predicted versus Actual Sales';
run;
```

3. FORMAT Procedure

- a. How many formats are created in the PROC FORMAT step? two (\$GENDER and WTRANGE)
- b. Is \$GENDER a character or a numeric format? character
- c. Is WTRANGE a character or a numeric format? numeric
- **d.** What is the maximum length of a format name? 32
- e. What must start a character format name? dollar sign (\$)
- f. What are the three keywords used in the VALUE statements? OTHER, LOW, and HIGH
- g. Does the less than (<) sign include or exclude values from ranges? exclude
- h. Does the LOW keyword include a numeric missing value? no
- i. What special character is used at the end of the format name when you use a format? period (.)
- j. Are these formats temporary or permanent? temporary
- k. Does the PROC FORMAT step refer to the data set and the variable that will use the format? no

4. FREQ Procedure

```
options nodate nonumber ps=50 ls=74;
proc freq data=sashelp.orsales nlevels;
   tables product_category / nocum;
   title 'Report One';
run;
```

5. MEANS Procedure

```
options nodate nonumber ps=18 ls=74;
proc means data=sashelp.prdsal2 maxdec=0 sum median;
where state in ('New York','Illinois');
var actual;
class state;
label actual='Actual Retail Sales';
title 'Product Sales Report';
footnote 'Confidential';
run;
```

6. Output Delivery System

```
ods listing;
ods html file = 'steel.html';
ods tagsets.excelxp file = 'steel.xml';
proc sort data=sashelp.steel out=steel;
  by date;
run;
proc print data=steel;
run;
proc freq data=steel;
  tables date;
run;
ods _all_ close;
ods listing;
```

BODY= can be used in place of FILE=.

- **a.** How many destinations are open in the program? three (LISTING, HTML, and EXCELXP)
- **b.** How many reports are sent to the open destinations? two (PROC PRINT and PROC FREQ)

Appendix B Practice Exam

B.1	SAS Fundamental Concepts	B-3
B.2	Working with SAS Data Sets	B-6
B.3	Working with Raw Data and Microsoft Excel Files	B-12
B.4	Creating Variables	B-20
B.5	Manipulating Data	B-26
B.6	Generating Reports	B-31
B.7	Scores	B-39
B.8	Answers	B-40

B-2 Appendix B Practice Exam

B.1 SAS Fundamental Concepts

Answer the **5 questions** in this section in **9 minutes** or less. Do not use your course notes.

After completing the questions, compare your answers with the correct answers in Section 8 of this appendix.

Complete the following table after you determine the number of questions that you answered correctly:

Section	Number of Questions	Numbers of Questions Answered Correctly	Percent Correct
SAS Fundamentals Concepts	5		
Percent Correct			
5 correct out of $5 = 100\%$			
4 correct out of $5 = 80\%$			
3 correct out of $5 = 60\%$			

2 correct out of 5 = 40%

1 correct out of 5 = 20%

- 1. Which of the following LIBNAME statements has the correct syntax?
 - a. libname monthly 'c:\monthly';
 - b. libname 'c:\monthly' monthly;
 - c. libname monthly='c:\monthly';
 - d. libname 'c:\monthly'=monthly;
- 2. Which of the following statements is true?
 - a. A libref can be 32 or fewer characters.
 - b. A variable name can be 32 or fewer characters.
 - c. Numeric variables are stored as 32 bytes by default.
 - d. Character variables are stored as 32 bytes by default.
- 3. A program was submitted and the SAS log is shown below.

```
169 data work.sales;
170
      set sashelp.orsales;
171
      drop quarter year;
172 run;
NOTE: There were 912 observations read from the data set SASHELP.ORSALES.
NOTE: The data set WORK.SALES has 912 observations and 6 variables.
173 /*
174 proc contents data=work.sales;
175
    run;
176 */
177 proc print data=work.sales;
178 run;
NOTE: There were 912 observations read from the data set WORK.SALES.
```

Which of the following is true regarding the CONTENTS procedure?

- a. The PROC CONTENTS step failed execution.
- b. The PROC CONTENTS step did not execute.
- c. The second note applies to the PROC CONTENTS step.
- d. The last note applies to the PROC CONTENTS step and the PROC PRINT step.

4. The following program is submitted:

```
proc contents data=temp.sales;
run;
```

Which is the result?

- a. a report showing the data portion of the temporary data set temp.sales
- b. a report showing the data portion of the permanent data set temp.sales
- c. a report showing the descriptor portion of the temporary data set temp.sales
- d. a report showing the descriptor portion of the permanent data set temp.sales
- 5. Which of the following statements is true concerning SAS date values?
 - a. The SAS date value for 05JAN1960 is 4.
 - b. The SAS date value for 03/24/1952 is a positive number.
 - c. A SAS date value represents the number of days between January 1, 1950, and a specified date.
 - d. The SAS date value for September 16, 1999, can be written as the SAS date constant '09/16/1999'd.

B.2 Working with SAS Data Sets

Answer the 9 questions in this section in 15 minutes or less. Do not use your course notes.

After completing the questions, compare your answers with the correct answers in Section 8 of this appendix.

Complete the following table after you determine the number of questions that you answered correctly:

Section	Number of Questions	Numbers of Questions Answered Correctly	Percent Correct
Working with SAS Data Sets	9		
Percent Correct			
9 correct out of $9 = 100\%$			
8 correct out of $9 = 89\%$			
7 correct out of $9 = 78\%$			
6 correct out of $9 = 67\%$			
5 correct out of $9 = 56\%$			
4 correct out of $9 = 44\%$			
3 correct out of $9 = 33\%$			
2 correct out of $9 = 22\%$			
1 correct out of $9 = 11\%$			

1. The following program is submitted:

```
data work.newsales;
   set work.sales;
   sales=price*quantity;
   <insert statement here>
run;
```

Which SAS statement will output observations with **product** equal to the character value Shorts and **sales** less than one million?

- a. if product eq Shorts and sales<1000000;
- b. if product='Shorts' and sales lt 1000000;
- c. where product=Shorts and sales lt 1000000;
- d. where product eq 'Shorts' and sales<1000000;
- 2. Which of the following is true regarding the SORT procedure?
 - a. The SORT procedure requires the BY statement.
 - b. The SORT procedure has the ability to create a report or a new data set.
 - c. The SORT procedure can only sort values based on character variables.
 - d. The SORT procedure sorts values by descending order unless the ASCENDING option is specified.
- 3. Which items are potentially created at compile time of a DATA step?
 - a. input buffer, data values, and report
 - b. raw data file, program data vector, and report
 - c. raw data file, data values, and descriptor information
 - d. input buffer, program data vector, and descriptor information

4. Given the input SAS data set salary1:

IDNUM	SALARY
12649	52000
49255	75000

Given the input SAS data set salary2:

ID	SALARY
56391	89000
88376	66000

The following program is submitted:

```
data salaryall;
    <insert statement here>
run;
```

Given the desired output SAS data set salaryall:

ID	SALARY				
12649	52000				
49255	75000				
56391	89000				
88376	66000				

Which statement will produce the desired output data set?

```
a. set salary2 salary1(rename id=idnum);b. set salary1 rename=(idnum=id) salary2;
```

```
c. set salary1(rename=(idnum=id)) salary2;
```

```
d. set salary1 salary2(rename=(id=idnum));
```

5. The following program is submitted:

```
data work.firsthalf work.thirdqtr work.misc;
  set sashelp.retail;
  if 1<=month<=6 then output work.firsthalf;
  else if 7<=month<=9 then output work.thirdqtr;
run;
```

Which of the following statements is true regarding the previous program with an observation having **month** equal to 12?

- a. The observation will be output to the work.firsthalf data set.
- b. The observation will be output to the **work.thirdqtr** data set.
- c. The observation will be output to the **work.misc** data set.
- d. The observation will not be output to any data set.
- 6. The following SAS program is submitted:

```
proc sort data=sashelp.class new=sortdata;
    by name descending age;
run;
```

What is the result?

- a. The program fails execution due to a syntax error with the NEW= option.
- b. The program fails execution due to a syntax error with the DESCENDING option.
- c. The program runs without errors and creates a new data set **work.sortdata** with the sorted observations.
- d. The program runs with warnings and overwrites the original data set **sashelp.class** with the sorted observations.

7. Given the input data set **products**:

CODE	PRODUCT
A123	Sandal
A234	Slipper
B345	Boot
B456	Sneaker

Given the input data set costs:

CODE	COST
A123	19.99
A234	9.99
B456	25.99

The following program is submitted:

```
data prodcost;
  merge products(in=p) costs(in=c);
  by code;
  if p and c;
run;
```

Which is the result?

- a. The program fails execution because of invalid IN= syntax.
- b. The program fails execution because the subsetting IF statement is incomplete.
- c. The program runs without errors or warnings and produces a data set with three observations and three variables.
- d. The program runs without errors or warnings and produces a data set with four observations and three variables.
- 8. The following program is submitted:

```
data work.orsales;
    set sashelp.orsales(firstobs=500 obs=700);
run;
```

How many observations are in the output data set work.orsales?

Enter your numeric answer.

9. The following program is submitted:

```
data work.sales;
   set sashelp.orsales;
   drop quarter year;
run;
```

Which of the following statements is true regarding the previous program?

- a. The variables quarter and year will not be in work.sales.
- b. The output data set will contain the variables N_ and ERROR_.
- c. The data set work.sales is the input data set and sashelp.orsales is the output data set.
- d. The output data set will have no observations because there is no OUTPUT statement.

B.3 Working with Raw Data and Microsoft Excel Files

Answer the 9 questions in this section in 15 minutes or less. Do not use your course notes.

After completing the questions, compare your answers with the correct answers in section 8 of this Appendix.

Complete the following table after you determine the number of questions that you answered correctly:

Section	Number of Questions	Numbers of Questions Answered Correctly	Percent Correct
Working with Raw Data and Excel Files	9		
Percent Correct			
9 correct out of $9 = 100\%$			
8 correct out of $9 = 89\%$			
7 correct out of $9 = 78\%$			
6 correct out of $9 = 67\%$			
5 correct out of $9 = 56\%$			
4 correct out of $9 = 44\%$			
3 correct out of $9 = 33\%$			
2 correct out of $9 = 22\%$			
1 correct out of $9 = 11\%$			

1. Given the raw data file **address.dat**:

```
Sue Smith
123 Main Street
San Diego CA 92625
Julie Brown
456 Monroe Road
Birmingham AL 35235
```

The following SAS program is submitted:

```
data work.address;
    infile 'address.dat';
    input first $ 1-9 last $ 10-14 / street $ 1-15 /;
    run;
```

How many observations are in the output data set work.address?

Enter your numeric answer.

2. Given the raw data file **2005pop.dat**:

```
----|----10---|----20---|----30
8,143,197 1 New York NY
3,844,829 2 Los Angeles CA
2,842,518 3 Chicago IL
```

The following SAS program is submitted:

```
data work.population;
infile '2005pop.dat';
input @2 POPULATION comma9.
@12 RANK 1.
@14 CITY $12.
@27 STATE $2;
run;
```

Which is the output data set work.population?

a.

POPULATION	RANK	CITY	STATE
8,143,197	1	New York	NY
3,844,829	2	Los Angeles	CA
2,842,518	3	Chicago	IL

b.

POPULATION	RANK	CITY	STATE
8,143,197		New York	NY
3,844,829		Los Angeles	CA
2,842,518		Chicago	IL

c.

POPULATION	RANK	CITY	STATE
8143197	1	New York	8
3844829	2	Los Angeles	3
2842518	3	Chicago	2

POPULATION	RANK	CITY	STATE
8143197	1	New York	NY
3844829	2	Los Angeles	CA
2842518	3	Chicago	IL

3. The Excel workbook **customers.xls** contains a worksheet named **Females** and a worksheet named **Males**.

Which program will read the Males worksheet to create a SAS data set?

a.

```
libname customer excel 'customers.xls';
data work.males;
  set customer.males;
run;
libname customer clear;
```

b.

```
libname customer excel 'customers.xls';
```

```
data work.males;
    set customer.males.worksheet;
run;
```

libname customer clear;

c.

```
libname customer excel 'customers.xls';
```

```
data work.males;
   set customer.males$;
run;
```

libname customer clear;

```
libname customer excel 'customers.xls';
data work.males;
  set customer.'males$'n;
run;
libname customer clear;
```

- 4. Which of the following is true regarding the DSD option when reading raw data files?
 - a. The DSD option sets the delimiter to a blank.
 - b. The DSD option treats two consecutive delimiters as a missing value.
 - c. The DSD option belongs in the INPUT statement after a forward slash.
 - d. The DSD option removes any delimiters located inside a set of quotation marks.
- 5. Given the raw data file **info.dat**:

John Louisville KY Lorna Columbia MO 65203

The following SAS program is submitted:

```
data info;
    infile 'info.dat';
    input name $ city $ state $ zipcode $;
run;
```

Which is the result?

- a. The program runs without errors or warnings and produces a data set with two observations and four variables.
- b. The program produces a warning of invalid data for **zipcode** in line 1 and produces a data set with two observations and four variables.
- c. The program produces a note that SAS went to a new line when the INPUT statement reached past the end of a line and produces a data set with one observation and four variables.
- d. The program produces an error that SAS went to a new line when the INPUT statement reached past the end of a line and produces an error that SAS stopped processing the step because of errors.

6. Given the raw data file revenue.dat:

```
Jan $13,000 above
Feb $900 below
Mar $27,000 above
```

The following SAS program is submitted:

```
data work.target;
    infile 'revenue.dat';
    <insert statement here>
run;
```

Given the desired output data set work.target:

MONTH	REVENUE	TARGET
Jan	13000	above
Feb	900	below
Mar	27000	above

Which statement will produce the desired output data set?

a. input MONTH \$ REVENUE TARGET \$;
b. input MONTH \$ REVENUE \$ TARGET \$;
c. input MONTH \$ REVENUE:dollar8. TARGET \$;
d. input MONTH \$ REVENUE dollar7. TARGET \$;

7. A DATA step was submitted and a portion of the SAS log is shown below.

```
601 data work.population;
602
      infile '2000pop.dat';
603
      input population 1-7
604
            rank 9
605
            state 24-25
606
            city $ 11-21;
607 run;
NOTE: Invalid data for state in line 1 24-25.
BULE:
        ----+----1----+----2----+----3----+----4----+----5-----
1
         8008278 1 New York
                               NZ 25
population=8008278 rank=1 state=. city=New York _ERROR_=1 _N_=1
NOTE: Invalid data for state in line 2 24-25.
2
         3694820 2 Los Angeles CA 25
population=3694820 rank=2 state=. city=Los Angeles ERROR =1
N =2
NOTE: Invalid data for state in line 3 24-25.
3
         2896016 3 Chicago
                               IL 25
population=2896016 rank=3 state=. city=Chicago _ERROR_=1 _N_=3
```

What is the cause of the notes about invalid data?

- a. NZ is not a valid state value.
- b. The variable state is not numeric data.
- c. The variable state is not located before CITY.
- d. The variable state is not located in positions 24 and 25.
- 8. Which LIBNAME statement will access the Excel workbook **products.xl**s, which contains the worksheet **Children**?
 - a. libname myexcel 'products.xls';
 - b. libname myexcel children 'products.xls';
 - c. libname myexcel 'products.xls' sheet='children';
 - d. libname myexcel workbook='products.xls' worksheet='children';

9. Given the raw data file **1990pop.dat**:

```
New York!7,322,564!Los Angeles!3,485,398
Chicago!2,783,726!Houston!1,630,553
```

The following SAS program is submitted:

```
data work.population;
   length CITY $ 12;
   <insert statements here>
run:
```

run;

Given the desired output data set **work.population**:

CITY	POPULATION
New York	7322564
Los Angeles	3485398
Chicago	2783726
Houston	1630553

Which statements will produce the desired output data set?

```
a. infile '1990pop.dat';
input CITY POPULATION:comma9. dlm='!' @;
```

- b. infile '1990pop.dat'; input CITY \$ POPULATION:comma9. dlm='!' @@;
- c. infile '1990pop.dat' dlm='!'; input CITY \$ POPULATION:comma9. @;
- d. infile '1990pop.dat' dlm='!'; input CITY POPULATION:comma9. @@;

B.4 Creating Variables

Answer the 9 questions in this section in 15 minutes or less. Do not use your course notes.

After completing the questions, compare your answers with the correct answers in Section 8 of this appendix.

Complete the following table after you determine the number of questions that you answered correctly:

Section	Number of Questions	Numbers of Questions Answered Correctly	Percent Correct
Creating Variables	9		
Percent Correct			
9 correct out of $9 = 100\%$			
8 correct out of $9 = 89\%$			
7 correct out of $9 = 78\%$			
6 correct out of $9 = 67\%$			
5 correct out of $9 = 56\%$			
4 correct out of $9 = 44\%$			
3 correct out of $9 = 33\%$			
2 correct out of $9 = 22\%$			
1 correct out of $9 = 11\%$			

1. The following SAS program is submitted:

```
data work.class;
   set sashelp.class(keep=name age);
   if age>=13 then group='Teen';
   if 11<=age<=13 then group='Pre-Teen';
run;
```

What is the value of **group** in the data set **work.class** if an observation has a value of **age** equal to 13?

- a. missing
- b. Teen
- c. Pre-
- d. Pre-Teen
- 2. A DATA step was submitted and a portion of the SAS log is shown below.

```
263 data new;
264 newvar = THIS IS A TEST;
--
388
76
ERROR 388-185: Expecting an arithmetic operator.
ERROR 76-322: Syntax error, statement will be ignored.
265 run;
NOTE: The SAS System stopped processing this step because of
errors.
WARNING: The data set WORK.NEW may be incomplete. When this
step was stopped there were 0 observations and 1
variables.
```

Which of the following actions resolves the error message?

- a. Put quotation marks around THIS IS A TEST.
- b. Put parentheses around THIS IS A TEST.
- c. Add commas between the words THIS IS A TEST.
- d. Add a FORMAT statement declaring newvar as character.

3. Which statement must be added to the DATA step in order for SAS to create the temporary **FIRST.** and **LAST.** variables?

Enter the keyword of the statement. Do not add leading or trailing spaces to your answer.

4. The following program is submitted:

```
data work.total;
    n1 = 4;
    n2 = .;
    n3 = 10;
    n4 = n1 + n2 + n3;
run;
```

What is the resulting value of **n4** in the data set **work.total**?

a. .

- b. 14
- c. 4 + . + 10
- d. n1 + n2 + n3

5. Given the SAS data set Work.Employees:

Name Jeff Dawn Mary Gene

The following SAS program is submitted:

```
data Work.EmployeeCount;
   set Work.Employees;
   Count=Count+1;
run;
proc print data=Work.EmployeeCount noobs;
run;
```

What is the result of the PRINT procedure?

a.

Name	Count			
Jeff				
Jeff Dawn				
Mary Gene				
Gene				

b.

Name	Count
Jeff	0
Dawn	0
Jeff Dawn Mary Gene	0
Gene	0

c.

Name	Count	
Jeff	1	
Dawn	1	
Mary	1	
Gene	1	

4. 		
Nam	e Count	
Jef	f 1	
Daw	n 2	
Mar	у З	
Gen	e 4	

6. The following program is submitted:

```
data personnel;
    hired='01MAR2003'd;
    name='William Smith';
run;
```

Which of the following is true regarding the variables created with the assignment statements?

- a. The variables hired and name are 8 bytes.
- b. The variables hired and name are character.
- c. The variable **hired** is 9 bytes and **name** is 13 bytes.
- d. The variable hired is numeric and name is character.

7. Given the SAS data set birth:

NAME	STATE
Tim	CA
Sue	IN
Bill	NY

The following SAS program is submitted:

```
data birthregion;
  set birth;
  if state='CA' then do;
    region='West';
  end;
  else if state='NY' then do;
    region='East';
run;
```

What is the result?

- a. The program fails execution because of invalid DO block syntax.
- b. The program fails execution because there is not a DO block for the state value of IN.
- c. The program runs without errors or warnings and produces a data set with two observations and three variables.
- d. The program runs without errors or warnings and produces a data set with three observations and three variables.

- 8. Which of the following is true regarding the sum statement?
 - a. The sum statement can be used only for variables being read in from a SET statement.
 - b. The sum statement initializes the variable to missing before the first iteration of the DATA step.
 - c. The sum statement automatically retains the variable value without using a RETAIN statement.
 - d. The sum statement produces an error if a missing value is added to the accumulator variable.
- 9. Which of the following is valid syntax for SELECT and WHEN statements?
 - a.

```
select(salary);
   when <100000 status='Non-Exec';
   when >=100000 status='Exec';
end;
```

b.

```
select(salary);
    when(<100000) status='Non-Exec';
    when(>=100000) status='Exec';
end;
```

c.

```
select;
  when salary<100000 status='Non-Exec';
  when salary>=100000 status='Exec';
end;
```

```
select;
when(salary<100000) status='Non-Exec';
when(salary>=100000) status='Exec';
end;
```

B.5 Manipulating Data

Answer the 9 questions in this section in 15 minutes or less. Do not use your course notes.

After completing the questions, compare your answers with the correct answers in Section 8 of this appendix.

Complete the following table after you determine the number of questions that you answered correctly:

Number of Questions	Numbers of Questions Answered Correctly	Percent Correct
9		
		Number of Questions Answered Correctly

1. Which statement has correct syntax for a DO statement?

```
a. do year = 2000 to 2005 while (amount < 1000000);</li>
b. do year = 2000 to 2005, while (amount < 1000000);</li>
c. do year = 2000 to 2005 or while (amount < 1000000);</li>
d. do year = 2000 to 2005 and while (amount < 1000000);</li>
```

2. A DATA step was submitted and a portion of the SAS log is shown below.

```
345 data numdates;
346 set chardates;
347 newhired=input(hired, date9);
-----
85
76
ERROR 85-322: Expecting a format name.
ERROR 76-322: Syntax error, statement will be ignored.
348 run;
NOTE: The SAS System stopped processing this step because of
errors.
```

Which of the following actions resolves the error message?

- a. Put quotation marks around **date9**.
- b. Put date9 before hired.
- c. Put a period at the end of **date9**.
- d. Delete the comma before date9.
- 3. The following SAS program is submitted:

```
data orders;
   set product.orders;
        <insert statement here>
run;
```

Which SAS statement returns observations containing the text GOLF, regardless of the case, in the variable **product name**?

- a. if find(product_name,'golf','t')>0;
- b. if find(product_name,'golf','t')=0;
- c. if find(product_name,'golf','i')=0;
- d. if find(product_name,'golf','i')>0;

4. The following SAS program is submitted:

```
data salesgoals(drop=i);
   set sales(keep=jan feb mar);
   array sales{3} jan feb mar;
   array goals{3} _temporary_ (130,170,170);
   array diff{3};
   <insert DO loop here>
run;
proc print data=salesgoals noobs;
run;
```

The following report is generated:

ja	n f	eb	mar	diff1	diff2	diff3
12	0 1	85	160	-10	15	- 10
11	51	60	180	-15	- 10	10

Which DO loop created the report?

a.

```
do i=1 to 3;
    diff{i}=sales{i}-goals{i};
end;
```

b.

```
do i=1 to 3;
    sales{i}=goals{i}-diff{i};
end;
```

c.

```
do array=1 to 3;
    sales=goals-diff;
end;
```

```
do array=1 to 3;
    diff{array}=sales{array}-goals{array};
end;
```

- 5. Which of the following is true regarding the SCAN function?
 - a. The SCAN function uses only two default delimiters (the blank and the comma) if a delimiter is not specified.
 - b. The SCAN function has an optional fourth argument, which is the direction (forward or backward) to read the string.
 - c. The SCAN function returns a missing value if the number of the word scanned is greater than the number of words in the character string.
 - d. If the SCAN function returns a value to a variable that was not yet assigned a length, the variable length is determined by the length of the first argument.
- 6. The following SAS program is submitted:

```
data investment;
    do year=1 to 5;
    invest+1000;
        do month=1 to 12 by 3;
            invest+50;
            output;
        end;
    end;
run;
```

How many observations are in the data set investment?

Enter your numeric answer.

- 7. Which assignment statement will produce a value for FULLNAME with a comma between LASTNAME and FIRSTNAME?
 - a. FULLNAME = CATS(',', LASTNAME, FIRSTNAME);
 b. FULLNAME = CATX(',', LASTNAME, FIRSTNAME);
 c. FULLNAME = CATS(LASTNAME, FIRSTNAME, ',');
 d. FULLNAME = CATX(LASTNAME, FIRSTNAME, ',');

8. A character array that contains three variables (**name1**, **name2**, and **name3**) with the values of Smith, Jones, and Westinghouse is requested.

Which ARRAY statement will create the desired array?

```
a. array name{3} $ ('Smith','Jones','Westinghouse');
b. array name(3) $ 12 ('Smith','Jones','Westinghouse');
c. array name1-name3 $ ('Smith' 'Jones' 'Westinghouse');
d. array name{3} name1-name3 ('Smith' 'Jones' 'Westinghouse');
```

9. The following SAS program is submitted:

```
data personnel;
    Phone = 6667778888;
    <insert statement here>
run;
proc print data=personnel;
run;
```

The following report is generated:

Obs	Phone	Area Code
1	6667778888	666

Which SAS statement created the report?

- a. AreaCode=substr(Phone,1,3);
- b. AreaCode=substr(Phone, 2, 3);
- c. AreaCode=substr(put(Phone,10.),1,3);
- d. AreaCode=substr(input(Phone,10.),1,3);

B.6 Generating Reports

Answer the 9 questions in this section in 15 minutes or less. Do not use your course notes.

After completing the questions, compare your answers with the correct answers in Section 8 of this appendix.

Complete the following table after you determine the number of questions that you answered correctly:

Section	Number of Questions	Numbers of Questions Answered Correctly	Percent Correct
Generating Reports	9		
Percent Correct			
9 correct out of $9 = 100\%$			
8 correct out of $9 = 89\%$			
7 correct out of $9 = 78\%$			
6 correct out of $9 = 67\%$			
5 correct out of $9 = 56\%$			
4 correct out of $9 = 44\%$			
3 correct out of $9 = 33\%$			
2 correct out of $9 = 22\%$			
1 correct out of $9 = 11\%$			

1. The following SAS program is submitted:

```
proc freq data=sashelp.shoes;
where region contains 'East' and
product in ('Sandal','Slipper');
<insert statement here>
title 'Sandal and Slipper Report';
run;
```

The following report is generated:

	Sandal a	and Slipper	Report		
	The	FREQ Procedu	ire		
	Table of	Region by F	roduct		
Region	Product	Frequency	Percent	Row Percent	Column Percent
Eastern Europe	Sandal	3	23.08	42.86	50.00
	Slipper	4	30.77	57.14	57.14
	Total	7	53.85	100.00	
Middle East	Sandal	3	23.08	50.00	50.00
	Slipper	3	23.08	50.00	42.86
	Total	6	46.15	100.00	
Total	Sandal	6	46.15		100.00
	Slipper	7	53.85		100.00
	Total	13	100.00		

Which SAS statement created the report?

- a. tables region product;
- b. tables region product / list;
- c. tables region*product / list;
- d. tables region*product / crosslist;

2. Given the following SAS program:

```
options nodate nonumber;
ods listing;
proc univariate data=sashelp.shoes;
var Sales Inventory;
label Sales='Sales Total'
Inventory='Number of Stores';
title 'Univariate Report';
run;
```

How many of the statements are global statements?

Enter your numeric answer.

3. Given the SAS data set marriage:

Name	Date
Thomas	15413
Susan	17000
Marsha	16529

The following SAS program is submitted:

The following report is generated:

Obs name date 2 Susan 07/18/2006

Which SAS statement created the report subsetting for date greater than or equal to January 1, 2006?

```
a. where date >= 01/01/2006;
```

```
b. where date >= '01jan2006';
```

- c. where date >= '01jan2006'd;
- d. where date >= 01/01/2006't;

4. Given the following program:

```
ods html file='report.html';
proc print data=retail;
run;
proc freq data=retail;
run;
<insert ODS statement here>
```

Which ODS statement must end the HTML file?

- a. ods end;
- b. ods close;
- c. ods html end;
- d. ods html close;

5. The following SAS program is submitted:

```
proc freq data=sashelp.cars;
    tables cylinders;
run;
```

The following report is generated:

			10:00 T	hursday, Novem	ber 12, 2009
		The FREQ Pr	ocedure		
Cylinders	Frequency	Percent	Cumulative Frequency	Cumulative Percent	
3	1	0.23	1	0.23	
4	136	31.92	137	32.16	
5	7	1.64	144	33.80	
6	190	44.60	334	78.40	
8	87	20.42	421	98.83	
10	2	0.47	423	99.30	
12	3	0.70	426	100.00	

The following report is desired:

		The FREQ Pr	ocedure	
Cylinders	Frequency	Percent	Cumulative Frequency	Cumulative Percent
3	1	0.23	1	0.23
4	136	31.92	137	32.16
5	7	1.64	144	33.80
6	190	44.60	334	78.40
8	87	20.42	421	98.83
10	2	0.47	423	99.30
12	3	0.70	426	100.00

Which OPTIONS statement will produce the desired report?

- a. options nodate page=1;
- b. options nodate pageno=1;
- c. options notime nodate number=1;
- d. options notime nodate pagenumber=1;

6. The following SAS program is submitted:

The following list report containing the character variable **name** and the numeric variables **date** and **amount** is generated:

0bs	name	date	amount
1	JACK	16MAY2007	\$123,830.23
2	SUE	17JUL2006	\$89,654.05

Which SAS statement created the report?

- a. format date date9. amount dollar11.2;
- b. format date ddmmyy9. amount dollar10.2;
- c. format date ddmmmyyyy9. amount comma11.2;
- d. format date date7. amount dollarcomma10.2;
- 7. The following SAS program is submitted:

```
proc means data=sashelp.orsales maxdec=0;
    class product_line;
    var total_retail_price / sum mean;
run;
```

What is the result?

- a. The program runs without errors or warnings and produces a summary table.
- b. The program fails execution because of invalid options in the VAR statement.
- c. The program fails execution because of an invalid option in the PROC statement.
- d. The program runs with warnings due to the order of the CLASS and VAR statements.

8. Given the SAS data set **dept** with two character variables:

Department	Answer		
Accounting	0		
IT	1		
Marketing	0		
Sales	5		

The following SAS program is submitted:

```
proc format;
value $yesno '0'='No'
'1'='Yes'
'other'='Unknown';
run;
proc print data=dept noobs;
format answer $yesno.;
run;
```

Which report is created?

a.

Department	Answer
Accounting	0
IT	1
Marketing	0
Sales	5

b.

Department	Answer
Accounting	No
IT	Yes
Marketing	No
Sales	Unknown

c.

Department	Answer
Accounting	No
IT	Yes
Marketing	No
Sales	5

Department	Answer
IT	Unknown Unknown Unknown
Sales	Unknown

9. Which program will create a file that can be opened in Microsoft Excel?

a.

```
ods rtf file='report.rtf';
proc freq data=sashelp.shoes;
   tables region;
run;
ods rtf close;
```

b.

```
ods excel file='report.xls';
proc freq data=sashelp.shoes;
   tables region;
run;
ods excel close;
```

c.

```
ods excelxp file='report.xml';
proc freq data=sashelp.shoes;
   tables region;
run;
ods excelxp close;
```

```
ods csvall file='report.csv';
proc freq data=sashelp.shoes;
   tables region;
run;
ods csvall close;
```

B.7 Scores

Section	Number of Questions	Numbers of Questions Answered Correctly	Percent Correct
SAS Fundamentals Concepts	5		
Working with SAS Data Sets	9		
Working with Raw Data and Excel Files	9		
Creating Variables	9		
Manipulating Data	9		
Generating Reports	9		
Total	50		

Complete the following table as you complete the sections:

Percent Correct

45-50 correct out of 50 = 90-100%

40-44 correct out of 50 = 80-89%

35-39 correct out of 50 = 70-79%

33-34 correct out of 50 = 65-69%

30-32 correct out of 50 = 60-64%

25-29 correct out of 50 = 50-59%

20-24 correct out of 50 = 40-49%

15-19 correct out of 50 = 30-39%

B.8 Answers

Question Number	B.1	B.2	B.3	B.4	B.5	B.6
1	А.	B.	2	C.	А.	D.
2	B.	А.	C.	А.	C.	3
3	B.	D.	D.	BY	D.	C.
4	D.	C.	B.	А.	А.	D.
5	А.	D.	C.	А.	C.	B.
6		А.	C.	D.	20	А.
7		C.	B.	А.	B.	B.
8		201	А.	C.	В	C.
9		А.	D.	D.	C.	D.