1. We determined that male burials in Group 2 at the ErnestWitte site were more likely to have grave goods than females. Create a data set that includes only the Group 1 graves (use the Data | Active data set | Subset active data set or type the command: EWG1 <- subset(ErnestWitte, subset=Group==1)) and see if the same conclusion applies to those burials. Because the sample size is smaller, you will probably have to select Fisher's exact test. What do you conclude? Also test for a difference in the presence of pathologies. They were not significantly different for Group 2. What about Group 1?

2. Compute the measures of association for 2 x 2 tables that we discussed in class (phi, contingency, Cramer's V and the odds ratio). Interpret the results.

3. We have analyzed the size of the houses at the Snodgrass site and shown that they are larger inside the white wall than outside. Now we need to see if the artifacts found in the houses are different. The data set gives the counts of a number of artifacts. Create presence/absence variables for three artifact categories: Points, Ceramics, and Discs/Earplugs/Effigies. Load the data set and then go to Data | Manage variables in active data set | Compute a new variable. To create the Discs/Earplugs/Effigies variable put DEE as the variable name and factor(ifelse(Discs+Earplugs+Effigies>0, "Present", "Absent")) the Expression to compute box. Now create the other two variables (they each involve a single variable so the express is easier). Compute chi square statistics (you can use Rcmdr) using Inside with each of the new variables. What are your results?

4. Compute the measures of association for 2 x 2 tables that we discussed in class (phi, contingency, Cramer's V and the odds ratio). Interpret the results.

5. Load the Howells3Pops data set. If you type attributes(Howells3Pops), you will get the labels for each of the variable names. Create a correlation matrix for all of the metric variables with the command: cor(Howells3Pops[,3:18]) or by using the menus in Rcmdr (if you load the xtable package and re-create tohtmlI(), you can paste the result into Excel. All of the variable names end with L (Length), H (Height), or B (Breadth). All of the correlations are positive. This is due to the fact larger skulls tend to be larger on all of the measures. Also the correlations for a group (all the Length measures) tend to be higher than the correlations between measures of different groups. What is the smallest correlation? Check its significance.