
VIZA 654 / CPSC 646 – The Digital Image

Course Notes

Donald H. House
Visualization Laboratory
College of Architecture
Texas A&M Universtiy

2 Sept 2002

Contents

Preface v

1 Digital Image Basics 1
1.1 What is a Digital Image? 1
1.2 Bitmaps and Pixmaps . 3

1.2.1 Bitmap - the simplest image storage mechanism . . 3
1.2.2 Pixmap - Representing Grey Levels or Color 5

1.3 The RGB Color Space . 8

2 Simple Image File Formats 1
2.1 Introduction . 1
2.2 PPM file format . 1

2.2.1 PPM header block 3
2.3 Homework Nuts and Bolts 4

2.3.1 OpenGL and PPM 4
2.3.2 Logical shifts, and, or 6
2.3.3 Dynamic memory allocation 7
2.3.4 Reading from the image file 8
2.3.5 C command-line interface 9

3 Display Devices 1
3.1 CRT’s - Cathode Ray Tubes 1

3.1.1 Vacuum tube basics 1
3.1.2 CRT’s . 2

3.2 Framebuffers . 5
3.3 Gamma Correction . 8

4 Color 1
4.1 What is Color? . 1

4.1.1 Physical vs. physiological models 1

i

ii CONTENTS

4.1.2 Color as a contextual phenomenon 3
4.1.3 Tri-stimulus theory 4

4.2 HSV Color Space . 4
4.3 CIE Color Space . 5

5 Simple Image File Compression Schemes 1
5.1 Run-Length Encoding . 2

5.1.1 Silicon Graphics Iris RGB File Format 3
5.1.2 SoftImage Picture Files 6

5.2 Color Tables . 9
5.3 Lempel–Ziv–Welch Encoding 10

5.3.1 The LZW encoding algorithm 11
5.3.2 LZW Decoding Algorithm 11
5.3.3 GIF - Graphics Interchange File Format 15

6 The PostScript Page Description Language 1
6.1 Basic Notions of the PostScript Language 4
6.2 Structure of PostScript Language 4
6.3 PostScript Language Syntax and Semantics 5
6.4 Execution of PostScript Programs 6

6.4.1 Procedure definition and execution 7
6.4.2 Control flow . 8

6.5 Graphics in PostScript . 10
6.5.1 Graphics State . 10
6.5.2 Working with Text 13

7 Compositing 1
7.1 Alpha . 2
7.2 The Over Operator . 3
7.3 Associated Colors . 5
7.4 Operations on Associated-Color Images 5
7.5 Other Compositing Operations 7

8 Filtering 1
8.1 Global Filters . 2

8.1.1 Normalization . 2
8.1.2 Histogram equalization 4

8.2 Local Filters . 6
8.2.1 Construction of local neighborhoods 7
8.2.2 Median filter . 8
8.2.3 Convolution . 10
8.2.4 Important convolution filters 14

CONTENTS iii

9 Image Warps 1
9.1 Forward Map . 2
9.2 Inverse Map . 3
9.3 Warping Artifacts . 5
9.4 Affine Maps or Warps . 6
9.5 Composing affine warps . 9
9.6 Forward and Inverse Maps 10
9.7 Perspective Warps . 12

10 Inverse Projective Maps and Bilinear Maps 1
10.1 Projective Maps . 1
10.2 Inverse Projective Maps . 2
10.3 Bilinear Interpolation . 4

10.3.1 Algebra of Bilinear Map 6
10.4 Scanline Approach to Inverse Mapping 8
10.5 Homework Nuts and Bolts: Projective Transformation . . . 10

10.5.1 Building the transformation matrix M 10
10.5.2 Constructing the output pixmap 10
10.5.3 Finding the inverse transformation 11
10.5.4 Constructing an edge table for the inverse map . . . 11
10.5.5 Painting in the output image 12
10.5.6 Data structures and algorithms 13

11 Filtering to Avoid Artifacts 1
11.1 The Warping Process . 1
11.2 Sampling and Reconstruction 1
11.3 Resampling and Aliasing . 2
11.4 Sampling and Filtering . 4
11.5 The Warping Pipeline . 4
11.6 Filtering as Convolution . 5
11.7 Ideal vs. Practical Filter Convolution Kernels 7

11.7.1 The Ideal Low Pass Filter 7
11.7.2 Practical Filter Kernels 9
11.7.3 Practical Convolution Filtering 10

11.8 Antialiasing: Spatially Varying Filtering and Sampling . . . 13
11.8.1 The Aliasing Problem 13
11.8.2 Adaptive Sampling 15
11.8.3 Spatially Variable Filtering 17
11.8.4 MIP Maps and Pyramid Schemes 20

iv CONTENTS

12 Scanline Warping Algorithms 1
12.1 Scanline Algorithms . 1
12.2 Separable Scanline Algorithms 3

12.2.1 Separation of projective warps 5
12.2.2 Paeth-Tanaka rotation algorithm 6

12.3 Mesh Warp Algorithm . 10
12.3.1 Separable mesh warp 10
12.3.2 Mesh Warp Using Spline Interpolation 12

13 Morphing 1
13.1 Morphing Algorithms . 3

13.1.1 A Scanline Morphing Algorithm 3
13.1.2 Triangle Mesh Warp Morph 4
13.1.3 Feature Based Morph 4

14 Frequency Analysis of Images 1
14.1 Sampling, Aliasing and Reconstruction 1
14.2 Frequency Analysis . 3

14.2.1 Fourier series . 3
14.2.2 Fourier transform . 4
14.2.3 Discrete Fourier transform 8
14.2.4 Discrete Fourier Transform of an image 9
14.2.5 A demonstration of frequency based image construction 11

14.3 The Sampling Theorem . 12
14.4 Ideal Low-Pass Filter . 14
14.5 Fast Fourier Transform . 17

Preface

This book would never have been born without the frustrating, volatile, yet
somehow wonderful Visualization Sciences Program at Texas A&M Uni-
versity. This program brings artists, scientists, designers and engineers
together in a unified curriculum, dedicated to building a core expertise in
all aspects of electronic visualization, from image making, to animation, to
the science of computer graphics, to videography. Our Program demands
that students not only learn to use the latest high-end software for com-
puter graphics production but that they both learn how it works and to do
their own algorithm and software development. Our hope is to turn out re-
searchers, developers, artists and designers who have a real appreciation for
not only their own specialty but the broad foundations on which their work
is based. Students admitted to the program all have shown real excellence
in one of the fields of mathematics, computer science, art or design. They
have also shown a proclivity and talent for the other aspects of the field,
even if they may not have had much earlier formal training. Thus, there is
an abundance of talent, at various levels of development. As a computer
scientist teaching in this program, my constant challenge is to stimulate, en-
courage and develop latent technical talents in the artists while at the same
time challenging, stretching and expanding the knowledge of the computer
scientists.

The reality of today’s world is demanding that images move. Making
or admiring a single image is not really where it is at in computer graphics
these days. The hot topics are animation, morphs, integration of CG with
live action, virtual reality – all with an emphasis on action. It is also
true that much of the commercial computer graphics work today is not
done by three-dimensional animation, but by image manipulation. How
are computers used in movie making? Much of the time they are used
to manipulate, process, modify, compose, warp, and otherwise manhandle
images. 3D computer animation has its uses, and very powerful ones at
that, but this has not diminished the use of computers to simply work on
the images themselves.

v

vi PREFACE

This book, then, is my attempt to collect together a wide variety of both
practical and theoretical information on digital images within the context
of Computer Graphics, covering their handling, storage, transmission, ma-
nipulation and display. This material has been used successfully for eight
years now in a course for our students. It is intended to be taught as a
project course, with each subject area accompanied by an assignment that
requires the students to actually implement algorithms, or experiment with
tools and techniques. Students should have access to computers with a
good program development environment, supporting the OpenGL or simi-
lar graphics standard. They should also have access to PhotoShop or Gimp,
and some means of recording reasonable image hardcopy. An ideal system
would have a good quality color printer, a 35mm film recorder, and means
of recording sequences of images on videotape; although the course can
be run well with just the medium quality color printer and the tools and
patience to shoot slides from the screen.

The course should be of interest to students majoring in computer sci-
ence, the biological and physical sciences, engineering, art, architecture, and
design. Recommended background would be computer science through the
second course (typically Data Structures), and enough mathematical so-
phistication to understand the concepts of functions, vector algebra and
linear transformations in two dimensions.

It is the common wisdom in the Image Processing community that it
to really understand the processing of digital images one needs to under-
stand the transformation of images to the frequency domain using fourier
analysis. This relegates the study of images to advanced students, with a
solid foundation in complex analysis. This book, however, departs from this
path, recognizing that there is a wealth of interesting and useful material
regarding digital images that does not require such background, and in fact
an algorithmic approach can be taken. Instead of starting with frequency
domain analysis, the book reserves this material to the final chapters. It
attempts to build a strong intuitive foundation, based on the idea that
a digital image is a two-dimensional collection of uniform samples, taken
through a point-spread function, from a (hypothetical) continuous two-
dimensional image. Image reconstruction for display and/or resampling is
done through another point-spread function. Without frequency domain
analysis it is not possible to present a mathematically rigorous argument
for chosing one point-spread function shape over another or for discovering
what sampling rate is adequate to prevent artifacts. However, it is possible
to make very strong intuitive arguments for good shapes and rates that will
work well while minimizing artifacts. In fact an argument can be made,
that the approach taken in this book builds a strong intuitive sense of good
practice in working with images, that will greatly enhance the student’s

vii

appreciation for the deep insights that are gained when digital images are
studied using fourier analysis.

The course, as it stands, would make an excellent first course in Com-
puter Graphics in a Computer Science program. It can be placed in the
curriculum so that it preceeds a traditional course in 3D Modeling and
Graphics. If this course were made a prerequisite for the 3D course it
would be possible to make the 3D course much more focused on the nu-
merous issues in 3D modeling and graphics that sometimes get lost in a
one semester stand-alone course. It would also be possible to design the
curriculum so that both courses function independently, which has certain
administrative advantages. 3D graphics demands a sophisticated knowl-
edge of data-structures and algorithms, and thus is best taught as an ad-
vanced computer science elective. In this course, on the other hand, the
algorithms are considerably easier to implement and understand. Yet, the
visual results can be as interesting and compelling as those obtained in a
3D graphics course, and the potential audience for the course can be much
broader.

viii PREFACE

Chapter 1

Digital Image Basics

1.1 What is a Digital Image?

To understand what a digital image is, we have to first realize that what
we see when we look at a “digital image” is actually a physical image
reconstructed from a digital image. The digital image itself is really a data
structure within the computer, containing a number or code for each pixel
or picture element in the image. This code determines the color of that
pixel. Each pixel can be thought of as a discrete sample of a continuous
real image.

It is helpful to think about the common ways that a digital image is
created. Some of the main ways are via a digital camera, a page or slide
scanner, a 3D rendering program, or a paint or drawing package. The
simplest process to understand is the one used by the digital camera.

Figure 1.1 diagrams how a digital image is made with a digital camera.
The camera is aimed at a scene in the world, and light from the scene is
focused onto the camera’s picture plane by the lens (Figure 1.1a). The
camera’s picture plane contains photosensors arranged in a grid-like array,
with one sensor for each pixel in the resulting image (Figure 1.1b). Each
sensor emits a voltage proportional to the intensity of the light falling on it,
and an analog to digital conversion circuit converts the voltage to a binary
code or number suitable for storage in a cell of computer memory. This
code is called the pixel’s value. The typical storage structure is a 2D array
of pixel values, arranged so that the layout of pixel values in memory is
organized into a regular grid with row and column numbers corresponding
with the row and column numbers of the photosensor reading this pixel’s
value (Figure 1.1c).

1

2 CHAPTER 1. DIGITAL IMAGE BASICS

Figure 1.1: Capturing a 2D Continuous Image of a Scene

Since each photosensor has a finite area, as indicated by the circles in
Figure 1.1b, the reading that it makes is a weighted average of the intensity
of the light falling over its surface. So, although each pixel is conceptually
the sample of a single point on the image plane of the camera, in reality it
represents a spread of light over a small area centered at the sample point.
The weighting function that is used to describe how the weighted average is
obtained over the area of the sample is called a point spread function. The
exact form of the point spread function is a complex combination of pho-
tosensor size and shape, focus of the camera, and photoelectric properties
of the photosensor surface. Sampling through a point spread function of a
shape that might be encountered in a digital camera is shown in diagram
form in Figure 1.2.

A digital image is of little use if it cannot be viewed. To recreate the
discretely sampled image from a real continuous scene, there must be as
reconstruction process to invert the sampling process. This process must
convert the discrete image samples back into a continuous image suitable
for output on a device like a CRT or LCD for viewing, or a printer or film
recorder for hardcopy. This process can also be understood via the notion
of the point spread function. Think of each sample (i.e. pixel) in the digital
image being passed back through a point spread function that spreads the

1.2. BITMAPS AND PIXMAPS 3

Figure 1.2: Sampling Through a Point-Spread Function

pixel value out over a small region.

box tent gaussian hat

Typical Point Spread Functions:
sample
 points

Figure 1.3: Some Typical Point-Spread Functions

1.2 Bitmaps and Pixmaps

1.2.1 Bitmap - the simplest image storage mechanism

A bitmap is a simple black and white image, stored as a 2D array of bits
(ones and zeros). In this representation, each bit represents one pixel of
the image. Typically, a bit set to zero represents black and a bit set to one
represents white. The left side of Figure 1.4shows a simple block letter U
laid out on an 8 × 8 grid. The right side shows the 2-dimensional array of
bit values that would correspond to the image, if it were stored as a bitmap.
Each row or scanline on the image corresponds to a row of the 2D array,
and each element of a row corresponds with a pixel on the scanline.

Although our experience with television, the print media, and computers
leads us to feel that the natural organization of an image is as a 2D grid of

4 CHAPTER 1. DIGITAL IMAGE BASICS

1 1 1 1 1 1 1 1
1 1 0 1 1 0 1 1
1 1 0 1 1 0 1 1
1 1 0 1 1 0 1 1
1 1 0 1 1 0 1 1
1 1 0 1 1 0 1 1
1 1 0 0 0 0 1 1
1 1 1 1 1 1 1 1

Figure 1.4: Image of Black Block Letter U and Corresponding Bitmap

dots or pixels, this notion is simply a product of our experience. In fact,
although images are displayed as 2D grids, most image storage media are
not organized in this way. For example, the computer’s memory is organized
into a long linear array of addressable bytes (8 bit groups) of storage. Thus,
somewhere in the memory of a typical computer, the block letter U of
Figure 1.4 might be represented as the following string of contiguous bytes:

11111111 11011011 11011011 11011011 11011011 11011011 11000011 11111111

Since the memory is addressable only at the byte level, the color of each
pixel (black or white) must be extracted from the byte holding the pixel’s
value. And, since the memory is addressed as a linear array, rather than as
a 2D array, a computation must be made to determine which byte in the
representation contains the pixel that we wish to examine, and which bit
in that byte corresponds with the pixel.

The procedure print_bitmap() in Figure 1.5 will print the contents of
the image stored in the array named bitmap. We assume that the image
represented by bitmap contains exactly width * height pixels, organized
into height scanlines, each of length width. In other words, the number
of pixels vertically along the image is height, and the number of pixels
horizontally across the image is width. The print_bitmap() procedure
assumes that each scanline in memory is padded out to a multiple of 8 bits
(pixels), so that it exactly fits into an integer number of bytes. The variable
w gives the width of a scanline in bytes.

Another issue is that the representation of groups of pixels in terms of
lists of ones and zeros is extremely difficult for humans to deal with cogni-
tively. To convince yourself of this, try looking at a group of two or more
bytes of information, remembering what you see, and then writing down
the numbers from memory. To make the handling of this binary encoded
information more manageable, it is convenient to think of each group of 4
bits as encoding a hexadecimal number. The hexadecimal numbers are the
numbers written using a base of 16, as opposed to the usual decimal num-

1.2. BITMAPS AND PIXMAPS 5

void print_bitmap(unsigned char *bitmap, int width, int height){

int w = (width + 7) / 8; // number of bytes per scanline

int y; // scanline number
int x; // pixel number on scanline
int byte; // byte number within bitmap array
int bit; // bit number within byte
int value; // value of bit (0 or 1)

for(y = 0; y < height; y++){ // loop for each scanline
for(x = 0; x < width; x++){ // loop for each pixel on line
byte = y * w + x / 8;
bit = 7 - x % 8;
value = bitmap[byte] >> bit & 1; // isolate bit
printf("%1d", value);

}
printf("\n");

}
}

Figure 1.5: Procedure to Print the Contents of a Bitmap

bers that use base 10, or the binary numbers of the computer that use base
2. Since 16 is the 4th power of 2, each hexadecimal digit can be represented
exactly by a unique pattern of 4 binary digits. These patterns are given in
table Table 1.1, and because of their regular organization they can be easily
memorized. With the device of hexadecimal notation, we can now display
the internal representation of the block letter U, by representing each 8-bit
byte by two hexadecimal digits. This reduces the display to:

FF DB DB DB DB DB C3 FF

1.2.2 Pixmap - Representing Grey Levels or Color

If the pixels of an image can be arbitrary grey tones, rather than simply
black or white, we could allocate enough space in memory to store a real
number, rather than a single bit, for each pixel. Then arbitrary levels of
grey could be represented as a 2D array of real numbers, say between 0 and
1, with pixel color varying smoothly from black at 0.0 through mid-grey at

6 CHAPTER 1. DIGITAL IMAGE BASICS

Table 1.1: Hexadecimal Notation

Binary Hexadecimal Decimal
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 A 10
1011 B 11
1100 C 12
1101 D 13
1110 E 14
1111 F 15

0.5 to white at 1.0. However, this scheme would be very inefficient, since
floating point numbers (the computer equivalent of real numbers) typically
take 32 or more bits to store. Thus image size would grow 32 times from
that needed to store a simple bitmap. The pixmap is an efficient alternative
to the idea of using a full floating point number for each pixel. The main
idea is that we can take advantage of the eye’s finite ability to discriminate
levels of grey.

It is a simple mathematical fact that in a group of n bits, the number of
distinct combinations of 1’s and 0’s is 2n. In other words, n bits of storage
will allow us to represent and discriminate among exactly 2n different values
or pieces of information. This relationship is shown in tabular form in
Table 1.2. If, in our image representation, we use 1 byte (8 bits) to represent
each pixel, then we can represent up to 256 different grey levels. This turns
out to be enough to “fool” the eye of most people. If these 256 different
grey levels are drawn as vertical lines across a computer screen, people will
think that they are seeing a smoothly varying grey scale.

The structure of a pixmap, then, is a 2D array of pixel values, with
each pixel’s value stored as a group of 2 or more bits. To conform to byte
boundaries, the number of bits used is typically 8, 16, 24 or 32 bits per

1.2. BITMAPS AND PIXMAPS 7

Table 1.2: Combinations of Bits

Bits # of Combinations Combinations

1 21 = 2 0, 1
2 22 = 4 00, 01, 10, 11
3 23 = 8 000, 001, 010, 011, 100, 101, 110, 111

...
8 28 = 256 00000000, 00000001, ... , 11111110, 11111111

pixel, although any size is possible. If we think of the bits within a byte
as representing a binary number, we can store grey levels between 0 and
255 in 8 bits. We can easily convert the pixel value in each byte to a grey
level between 0.0 and 1.0 by dividing the pixel value by the maximum grey
value of 255.

Assuming that we have a pixmap storing grey levels in eight bits per
pixel, the procedure print_greymap() in Figure 1.6 will print the contents
of the image stored in the array named greymap. We assume that the image
represented by greymap contains exactly width * height pixels, organized
into height scanlines, each of length width.

void print_greymap(unsigned char *greymap, int width, int height){

int y; // scanline number
int x; // pixel number on scanline
int value; // value of pixel (0 to 255)

for(y = 0; y < height; y++){ // loop for each scanline
for(x = 0; x < width; x++){ // loop for each pixel on line
value = greymap[y * width + x]; // fetch pixel value
printf("%5.3f ", value / 255.0);

}
printf("\n");

}
}

Figure 1.6: Procedure to Print the Contents of an 8 bit/pixel Greylevel
Pixmap

8 CHAPTER 1. DIGITAL IMAGE BASICS

1.3 The RGB Color Space

If we want to store color images, we need a scheme of color representa-
tion that will allow us to represent color in a pattern of bits (just like we
represented grey levels as patterns of bits). Fortunately, many such repre-
sentations exist, and the most common one used for image storage is the
RGB or Red-Green-Blue system. This takes advantage of the fact that we
can “fool” the human eye into “seeing” most of the colors that we can rec-
ognize perceptually by superimposing 3 lights colored red, green and blue.
The level or intensity of each of the three lights determines the color that
we perceive.

Red

Green

Blue Colored
Spot

Figure 1.7: Additive Color Mixing for the Red-Green-Blue System

If we think of red, green, and blue levels as varying from 0 (off) to 1
(full brightness), then a color can be represented as a red, green, blue triple.
Some example color representations using this on/off scheme are shown in
Figure 1.8. It is interesting and somewhat surprising that yellow is made
by combining red and green!

Now, we can extend this idea by allowing a group of bits to represent
one pixel. We can assign some of these bits to the red level, some to green,
and some to blue, using a binary encoding scheme like we used to store
grey level. For example, if we have only 8 bits per pixel, we might use three
for the red level, 3 for green, and 2 for blue (since our eye discriminates
blue much more weakly than red or green). Figure 1.9 shows how a muted
green color could be stored using this kind of scheme. The value actually

1.3. THE RGB COLOR SPACE 9

(1, 0, 0)=red (0, 1, 0)=green (0, 0, 1)=blue
(1, 1, 0)=yellow (0, 1, 1)=cyan (1, 0, 1)=magenta
(0, 0, 0)=black (1, 1, 1)=white (0.5, 0.5, 0.5)=grey

Figure 1.8: Example Colors Encoded as RGB Triples

stored is hexadecimal 59, which is then shown in binary broken into red,
green and blue binary fields. Each of these binary numbers is divided by
the maximum unsigned number possible in the designated number of bits,
and finally shown represented as a (RGB) triple of color primary values,
each on a scale of 0 – 1.

On a high end graphics computer, it is not unusual to allocate 24 bits
per pixel for color representation, allowing 8 bits for each of the red, green
and blue components. This is more than enough to allow for perceptually
smooth color gradations, and fits nicely into a computer whose memory is
organized into 8-bit bytes. If you read specifications for computer displays
or use graphics software, you will have noticed that many of these systems
use red, green, and blue levels between 0-255. These are obviously systems
that use an 8-bit per color primary representation.

5916 =
010 110 01
R G B

= (2/7, 6/7, 1/3) = (0.286, 0.757, 0.333)

Figure 1.9: 8-Bit Encoding of a Muted Green

Since the RGB system organizes color into three primaries, and allows
us to scale each primary independently, we can think of all of the colors that
are represented by the system as being organized in the shape of a cube, as
shown in Figure 1.10. We call this the RGB color cube, or the RGB color
space (when we add coordinate axes to measure R, G and B levels). Note
that the corners of the RGB color cube represent pure black and pure white,
the three primaries red, green and blue, and the 3 secondary colors yellow,
cyan and magenta. The diagonal from the black corner to the white corner
represents all of the grey levels. Other locations within the cube correspond
with all of the other colors that can be displayed.

A pixmap storing RGB levels using eight bits per primary, with an ad-
ditional eight bits per pixel reserved, is called an RGBA (or Red, Green,
Blue, Alpha) pixmap. The procedure print_pixmap() in Figure 1.11

10 CHAPTER 1. DIGITAL IMAGE BASICS

White
(1,1,1)

Red
(1,0,0)

Green
(0,1,0)

Black
(0,0,0)

Magenta
(1,0,1)

Cyan
(0,1,1)

Yellow
(1,1,0)

Blue
(0,0,1)

G

B

R

Figure 1.10: RGB Color Cube

will print the contents of the RGBA image stored in the array named
pixmap. We assume that the image represented by pixmap contains exactly
width * height pixels, organized into height scanlines, each of length
width.

1.3. THE RGB COLOR SPACE 11

void print_pixmap(unsigned int *pixmap, int width, int height){

int y; // scanline number
int x; // pixel number on scanline
unsigned int value; // pixel as fetched from pixmap
int r, g, b; // RGB values of pixel (0 to 255)

for(y = 0; y < height; y++){ // loop for each scanline
for(x = 0; x < width; x++){ // loop for each pixel on line
value = pixmap[y * width + x]; // fetch pixel value
r = value >> 24;
g = (value >> 16) & 0xFF;
b = (value >> 8) & 0xFF;
printf("(%5.3f,%5.3f,%5.3f) ",

r / 255.0, g / 255.0, b / 255.0);
}
printf("\n");

}
}

Figure 1.11: Procedure to Print the RGB Values in a 32 Bit/Pixel RGBA
Pixmap

12 CHAPTER 1. DIGITAL IMAGE BASICS

Chapter 2

Simple Image File
Formats

2.1 Introduction

The purpose of this lecture is to acquaint you with the simplest ideas in
image file format design, and to get you ready for this week’s assignment -
which is to write a program to read, display, and write a file in the PPM
rawbits format.

Image file storage is obviously an important issue. A TV resolution
greyscale image has about 1/3 million pixels – so a full color RGB image
will contain 3 × 1/3 = 1 million bytes of color information. Now, at 1,800
frames (or images) per minute in a computer animation, we can expect to
use up nearly 2 gigabytes of disk storage for each minute of animation we
produce! Fortunately, we can do somewhat better than this using various
file compression techniques, but disk storage space remains a crucial issue.
Related to the space issue is the speed of access issue – that is, the bigger
an image file, the longer it takes to read, write and display.

But, for now let us start with looking at the simplest of formats, before
moving on to compression schemes and other issues.

2.2 PPM file format

The PPM, or Portable Pixmap, format was devised to be an intermediate
format for use in developing file format conversion systems. Most of you
know that there are numerous image file formats, with names like GIF,

1

2 CHAPTER 2. SIMPLE IMAGE FILE FORMATS

Targa, RLA, SGI, PICT, RLE, RLB, etc. Converting images from one
format to another is one of the common tasks in visualization work, since
different software packages and hardware units require different file formats.
If there were N different file formats, and we wanted to be able to convert
any one of these formats into any of the other formats, we would have to
have N × (N − 1) conversion programs – or about N2. The PPM idea is
that we have one format that any other format can be converted into and
then write N programs to convert all formats into PPM and then N more
programs to convert PPM files into any format. In this way, we need only
2 × N programs – a huge savings if N is a large number (and it is!).

The PPM format is not intended to be an archival format, so it does
not need to be too storage efficient. Thus, it is one of the simplest formats.
Nevertheless, it will still serve to illustrate features common to many image
file formats.

Most file formats are variants of the organization shown in Figure 2.1.
The file will typically contain some indication of the file type, a block of
header or control information, and the image description data. The header
block contains descriptive information necessary to interpret the data in
the image data block. The image data block is usually an encoding of the
pixmap or bitmap that describes the image. Some formats are fancier, some
are extremely complex, but this is the basic layout. Also, most (but not
all) formats have some kind of identifier – called the magic number – at the
start, that identifies the file type. Often the magic number is not a number
at all, but is a string of characters. But in any case, that is what it is called.

header

image
data

"magic
number"

Figure 2.1: Typical Image File Layout

In the PPM format, the magic number is either the ASCII character
string "P1", "P2", "P3", "P4", "P5", or "P6" depending upon the storage
method used. "P1" and "P4" indicate that the image data is in a bitmap.

2.2. PPM FILE FORMAT 3

These files are called PBM (portable bitmap) files. "P2" and "P5" are
used to indicate greyscale images or PGM (portable greymap) files. "P3"
and "P6" are used to indicate full color PPM (portable pixmap) files. The
lower numbers – "P1", "P2", "P3" – indicate that the image data is stored
as ASCII characters; i.e., all numbers are stored as character strings. This
is a real space waster but has the advantage that you can read the file
in a text editor. The higher numbers – "P4", "P5", "P6" – indicate that
image data is stored in a binary encoding – affectionately known as Portable
Pixmap rawbits format. In our study of the PPM format, we will look only
at "P6" type files.

2.2.1 PPM header block

The header for a PPM file consists of the information shown in Figure 2.2,
stored as ASCII characters in consecutive bytes in the file. The image
width and height determine the length of a scanline, and the number of
scanlines. The maximum color value cannot exceed 255 (8 bits of color
information) but may be less, if less than 8 bits of color information per
primary are available. In the header, all white-space (blanks, carriage re-
turns, newlines, tabs, etc.) is ignored, so the program that writes the file
can freely intersperse spaces and line breaks. Exceptions to this are that
following an end-of-line character (decimal 10 or hexadecimal 0A) in the
PPM header, the character # indicates the start of a text comment, and
another end-of-line character ends the comment. Also, the maximum color
value at the end of the header must be terminated by a single white-space
character (typically an end-of-line).

P6 -- magic number
comment -- comment lines begin with
another comment -- any number of comment lines
200 300 -- image width & height
255 -- max color value

Figure 2.2: PPM Rawbits Header Block Layout

The PPM P6 data block begins with the first pixel of the top scanline
of the image (upper lefthand corner), and pixel data is stored in scanline
order from left to right in 3 byte chunks giving the R, G, B values for
each pixel, encoded as binary numbers. There is no separator between
scanlines, and none is needed as the image width given in the header block
exactly determines the number of pixels per scanline. Figure 2.3a shows a

4 CHAPTER 2. SIMPLE IMAGE FILE FORMATS

red cube on a mid-grey background, and Figure 2.3b gives the first several
lines of a hexadecimal dump (text display) of the contents of the PPM file
describing the image. Each line of this dump has the hexadecimal byte
count on the left, followed by 16 bytes of hexadecimal information from the
file, and ends with the same 16 bytes of information displayed in ASCII
(non-printing characters are displayed using the character !). Except for
the first line of the dump, which contains the file header information, the
ASCII information is meaningless, since the image data in the file is binary
encoded. A line in the dump containing only a * indicates a sequence of
lines all containing exactly the same information as the line above.

2.3 Homework Nuts and Bolts

2.3.1 OpenGL and PPM

Display of an image using the OpenGL library is done most easily using
the procedure glDrawPixels(), that takes an image pixmap and displays
it in the graphics window. Its calling sequence is

glRasterPos2i(0, 0);
glDrawPixels(width, height, GL_RGBA, GL_UNSIGNED_BYTE, Pixmap);

The call glRasterPos2i(0, 0) assures that the image will be drawn in
the window starting at the lower left corner (pixel 0 on scanline 0). The
width and height parameters to glDrawPixels() specify the width, in
pixels, of a scanline, and the height of the image, in number of scan-
lines. The GL_RGBA parameter indicates that the pixels are stored as RGBA
quadruples, with color primaries stored in the order red, green, blue, alpha,
and the GL_UNSIGNED_BYTE parameter indicates that each color primary is
stored in a single byte and treated as an unsigned number between zero
and 255. Finally, the parameter Pixmap is a pointer to an array of integers
(unsigned int *Pixmap) that is used to store the image’s pixmap. Since
an unsigned integer is 32 bits long, each element of the Pixmap array has
room for four bytes of information, exactly what is required to store one
pixel.

Please make special note of the following complications:

1. By default, OpenGL wants the image raster stored from the bottom
scanline of the image to the top scanline, whereas PPM stores the
image from the top scanline to the bottom.

2. Each 32 bit int in the pixmap stores 1 pixel value in the order R, G,
B, α. α is an opacity value that you can set to 0 for now. Each of R,
G, B, and α take 1 byte.

2.3. HOMEWORK NUTS AND BOLTS 5

a) red cube on a midgrey (0.5 0.5 0.5) background

000000 5036 0a33 3030 2032 3030 0a32 3535 0a7f P6!300 200!255!!
000010 7f7f 7f7f 7f7f 7f7f 7f7f 7f7f 7f7f 7f7f !!!!!!!!!!!!!!!!
*
009870 886d 6d92 5959 8a69 6984 7676 817d 7d80 !mm!YY!ii!vv!}}!
009880 7f7f 7f7f 7f7f 7f7f 7f7f 7f7f 7f7f 7f7f !!!!!!!!!!!!!!!!
*
009bf0 7f80 7e7e 9d41 41b5 0909 b211 11a9 2424 !!~~!AA!!!!!!!$$
009c00 9f3b 3b94 5454 8b68 6886 7272 827b 7b80 !;;!TT!hh!rr!{{!
009c10 7f7f 7f7f 7f7f 7f7f 7f7f 7f7f 7f7f 7f7f !!!!!!!!!!!!!!!!
*
009f70 7f7f 7f7f 7f82 7979 a72b 2bb9 0000 ba00 !!!!!!yy!++!!!!!
009f80 00ba 0000 b901 01b7 0606 b20f 0faf 1d1d !!!!!!!!!!!!!!!!
009f90 a532 3297 4d4d 8d62 6286 7272 827a 7a80 !22!MM!bb!rr!zz!
009fa0 7e7e 7f7f 7f7f 7f7f 7f7f 7f7f 7f7f 7f7f ~~!!!!!!!!!!!!!!
009fb0 7f7f 7f7f 7f7f 7f7f 7f7f 7f7f 7f7f 7f7f !!!!!!!!!!!!!!!!
*
00a2f0 7f7f 7f7f 7f7f 7f7f 7f8a 6969 b014 14ba !!!!!!!!!!ii!!!!
00a300 0000 ba00 00ba 0000 ba00 00ba 0000 ba00 !!!!!!!!!!!!!!!!
00a310 00ba 0000 ba00 00b9 0505 b60d 0daf 1d1d !!!!!!!!!!!!!!!!
00a320 a62f 2f9d 4141 915b 5b88 6d6d 8279 7980 !//!AA![[!mm!yy!
00a330 7e7e 7f7f 7f7f 7f7f 7f7f 7f7f 7f7f 7f7f ~~!!!!!!!!!!!!!!
00a340 7f7f 7f7f 7f7f 7f7f 7f7f 7f7f 7f7f 7f7f !!!!!!!!!!!!!!!!
*

b) several lines in a dump of PPM P6 red-cube image file

Figure 2.3: Example PPM P6 Data

6 CHAPTER 2. SIMPLE IMAGE FILE FORMATS

3. PPM stores pixel primaries in R, G, B order, and there is no provision
for an α value.

2.3.2 Logical shifts, and, or

Reading a PPM file and displaying it, requires you to pack the red, green
and blue information for a single pixel into one 32 bit unsigned integer.
When you have to write the file back out, it is necessary to unpack the
red, green and blue components. I recommend that you do this using the
following approach

int red, green, blue;
unsigned int pixel;

/* packing */
pixel = red << 24 | green << 16 | blue << 8;

/* unpacking */
red = (pixel >> 24);
green = (pixel >> 16) & 0xff;
blue = (pixel >> 8) & 0xff;

The operator <<, when used in an arithmetic expression, causes the bits
in the memory cell specified to the left of the << symbol to be shifted to
the left by the number of positions specified to the right of the << symbol.
0’s are shifted into the rightmost end of the cell to fill vacated positions.
Likewise, when used in an arithmetic expression, >> causes a shift to the
right by the specified number of bits, with 0’s shifted into the leftmost
end of the cell. The operator | specifies a logical or operation between
the value specified to its left and the value specified to its right. Similarly,
the operator & specifies a logical and operation between its left and right
operands. Both the logical or and and operations operate bit by bit between
corresponding bit positions in their two operands. A logical or of two bits
yields a 1 if either of the operand bits is a 1, otherwise it yields a 0. In
other words, if either one or the other or both operands are 1 the result
is 1. A logical and of two bits yields a 0 if either of the operand bits is a
0, otherwise it returns a 1. In other words, the result is 1 only if the left
operand and the right operand are 1. These operations are diagrammed in
Figure 2.4.

There are many practical uses of these logical operations, but for our
purposes, the most important is that they allow us to do selective oper-
ations on groups of bits (fields) within a byte or word. Logical or allows

2.3. HOMEWORK NUTS AND BOLTS 7

OR

0 | 0 = 0
0 | 1 = 1
1 | 0 = 1
1 | 1 = 1

AND

0 & 0 = 0
0 & 1 = 0
1 & 0 = 0
1 & 1 = 1

 01101010
& 00001111
 00001010

 01100000
| 00001010
 01101010

Figure 2.4: Logical or and and Operations

superposition of fields within a word, and logical and allows masking off of
fields, leaving only the values in the bit positions that have been logically
anded with 1 bits. Figure 2.5 gives a few examples to show how these logical
operations work. The examples use only 8 bits for simplicity, but the same
principles hold for a 32 bit quantity.

unsigned char a = 6; a: 00000110

unsigned char b = 10; b: 00001010

unsigned char c = 106; c: 01101010
unsigned char byte; byte: xxxxxxxx

a) starting values in variables a, b, c, and byte

byte = a << 4; byte: 01100000

byte = (a << 4) | b; byte: 01101010

byte = c & 0x0f; byte: 00001010

byte = (c >> 4) & 0x0f; byte: 00000110

b) examples of shifts, or, and

Figure 2.5: Logical Shift, Or and And Operations in C

2.3.3 Dynamic memory allocation

You will not know how big to make the pixmap storage array until you
have read the PPM Header information to get the image width and height.
Once you have that, in C++ simply do

unsigned long *Pixmap;
Pixmap = new unsigned long[width * height];

8 CHAPTER 2. SIMPLE IMAGE FILE FORMATS

or in traditional C simply do

unsigned long *Pixmap;
Pixmap = (unsigned long *)malloc(width * height * sizeof(long));

to allocate exactly enough space to store the image when it is read in.
Note that Pixmap will just be a big 1D array, not a 2D array nicely

arranged by scanline. Thus, your program will have to figure out where
each scanline starts and ends using image width.

2.3.4 Reading from the image file

Unless you are quite experienced with C++ I/O facilities for handling files,
I recommend that you use the file input/output routines from standard C,
rather than using the stream I/O facilities of C++. To make use of them
you will have to

#include <stdio.h>

Once you have opened a file for reading via

FILE * infile;
infile = fopen(infilename, "r");

you can read individual bytes from the file via

int ch;
ch = fgetc(infile);

Once you have opened a file for writing via

FILE *outfile;
outfile = fopen(outfilename, "w");

you can write individual bytes to the file via:

int ch;
fputc(ch, outfile);

For reading and writing ASCII data from the file, fscanf() and fprintf()
are very handy. Note: fscanf() ignores white-space.

2.3. HOMEWORK NUTS AND BOLTS 9

2.3.5 C command-line interface

The C command-line interface allows you to determine what was typed on
the command line to run your program. It works as follows – declare your
main() procedure like this:

int main (int argc, char *argv[]){
.
.
.

}

Unix parses the command line and places strings from it into the array
argv. It also sets argc to be the number of strings parsed. If the command
line were:

ppmview in.ppm out.ppm

then the argv and argc data structures would be built as shown in Fig-
ure 2.6. Thus, the file name of the input file would be given by argv[1],
and the output file by argv[2]. argv[0] contains the name of the program
itself.

3

p p m v i e w \0

i n . p p m \0

o u t . p p m \0

argc

argv

0

1

2

Figure 2.6: argc and argv data structures in C

10 CHAPTER 2. SIMPLE IMAGE FILE FORMATS

Chapter 3

Display Devices

3.1 CRT’s - Cathode Ray Tubes

Commonly called a picture tube, from the days when most people only
encountered them in their television sets, the cathode ray tube or CRT is
the primary device used to display digital images. Before the invention
of transistors, chips and integrated circuits, electronic devices depended
upon vacuum tubes as “electronic valves” and “switches”. Since CRT’s are
simply highly specialized vacuum tubes, it will be useful to understand the
basic concepts employed in vacuum tubes before studying studying CRT’s.

3.1.1 Vacuum tube basics

A simple vacuum tube has four active elements enclosed in an evacuated
tube, as shown in the schematic diagram of Figure 3.1. Wires extending to
the base of the tube allow a voltage to be applied to the heater coil, and
a second voltage across the cathode and plate. A control voltage can be
applied to the grid. The device can be thought of as a “valve” or a “switch”,
since small changes in control voltage can produce a large change in current
through the cathode/plate circuit. The tiny control voltage regulates like a
valve, or can turn the current on or off like a switch. Here is how it works:

1. The cathode is negatively charged, giving it an excess of electrons

2. The heater heats the cathode, imparting energy that causes the re-
lease of some of the excess electrons

3. The free electrons are attracted to the positively charged plate, re-
sulting in a current through the cathode/plate circuit

1

2 CHAPTER 3. DISPLAY DEVICES

4. Since the electrical charge on the grid is nearer to the cathode than
the plate is, it can prevent electrons from passing on to the plate or
“encourage” them. A more positive grid voltage attracts electrons,
increasing their acceleration towards the plate. A more negative grid
voltage inhibits electrons.

Control
Voltage

Cathode

Grid

Plate

- +

- +

Heater

plate current
controlled by small
changes in grid
voltage

Vacuum
envelope

Figure 3.1: Schematic Diagram of Vacuum Tube

3.1.2 CRT’s

A CRT or Cathode Ray Tube works on exactly the same principle as a
simple vacuum tube but the internal organization is somewhat different. A
schematic diagram showing the organization of a simple CRT is shown in
Figure 3.2. As the electrons travel from cathode to plate they are focused
into a beam and directed onto precise positions on the plate. In a CRT,
the plate is a glass screen, coated with phosphor. The phosphor on the
screen glows more or less brightly depending on the intensity of the beam
impinging on it.

The flow of electrons from cathode to plate works like in a regular
vacuum tube. However, focusing coils align the electrons into a beam, like
a lens focuses light into a beam. Steering coils push the beam left/right and
up/down so that it is directed to a particular spot on the screen. The grid
control voltage adjusts the intensity of the beam, and thus the brightness
of the glowing phosphor dot where the beam hits the screen.

A CRT can be used to display a picture in two different ways. The
electron beam can be directed to “draw” a line-drawing on the screen –
much like a high-speed electronic “Etch-a-Sketch”. The picture is drawn
over and over on the screen at very high speed, giving the illusion of a
permanent image. This type of device is known as a vector display, and was

3.1. CRT’S - CATHODE RAY TUBES 3

− +

heater

cathode grid

focusing and
steering
coils

control
voltage

������
������
������
������
������
������
������
������
������
������
������
������
������phosphor

coating

Figure 3.2: Schematic Diagram of CRT

quite popular for use in Computer Graphics and Computer Aided Design up
until the early 1980’s. By far the most popular type of CRT-based display
device today is the raster display. They work by scanning the electron beam
across the screen in a regular pattern of scanlines to “paint” out a picture,
as shown in Figure 3.3. As a scanline is traced across the screen by the
beam, the beam is modulated proportional to the intended brightness of
the corresponding point on the picture. After a scanline is drawn, the beam
is turned off, and brought back to the starting point of the next scanline.

The resulting pattern of scanlines is known as a raster. The NTSC
broadcast TV standard that is used throughout most of America uses 585
scanlines with 486 of these in the visible raster. The extra scanlines are
used to transmit additional information, like control signals and closed
caption titling, along with the picture. The NTSC standard specifies a
framerate of 30 frames per second, with each frame (single image) broadcast
as two interlaced fields. The first of each pair of fields contains every even
numbered scanline, and the second every odd numbered scanline. In this
way the screen is refreshed 60 times every second, giving the illusion of a
solid flicker-free image. In actuality, most of the screen is blank (or dark)
most of the time!

Please see Foley, vanDam, Feiner & Hughes for many more details on
CRT’s.

A color CRT works like a monochrome CRT, but the tube has three
separately controllable electron beams - we say it has three electron guns.
The screen has dots of red, green and blue colored phosphors, and each of
the three beams is calibrated to illuminate only one of the phosphor colors.
Thus, even though beams of electrons have no color, we can think of the
CRT as having red, green and blue electron guns. Colors are made using

4 CHAPTER 3. DISPLAY DEVICES

scanline

vertical
retrace

horizontal
retrace

Figure 3.3: Raster Scan Pattern

the RGB system, as optical mixing of the colors of the adjacent tiny dots
takes place in the eye.

Figure 3.4 shows the most typical triangular pattern or triad arrange-
ment of phosphors on the back of the glass screen of color CRT screens.
On the inside of the screen, an opaque shadow mask is placed between the
three electron guns and the phosphors to assure that each gun excites only
the phosphors of its appropriate color. High precision color CRT’s, that
require the ability to draw a fine horizontal scanline, use an inline rather
than a triad phosphor arrangement, to keep the scanline confined to a more
finely focused vertical area.

3.2 Framebuffers

A framebuffer is simply an array of computer memory, large enough to
hold the color information for one frame (i.e., one screenful), and display
hardware to convert the frame into control signals to drive a CRT. The
simple framebuffer schematized in Figure 3.5 holds a monochrome (black
& white) image in a bitmap. The circuitry that controls the electron gun
on the CRT loops through each row of the image array, fetching each pixel
value (1 or 0) in turn and using it to either turn on the electron gun for
white or turn it off for black. Of course the timing has to be such that
the memory fetches and conversion to grid voltages is synchronized exactly
with the trace of the beam across the corresponding screen scanline.

Figure 3.6 shows a greyscale framebuffer with three bits per pixel, that
uses a DAC (digital to analog converter) to convert numeric grey level to

3.2. FRAMEBUFFERS 5

green gun

blue gun

shadow mask

red gun

glass screen with
phosphor dot triads

Figure 3.4: Phosphor Triad Arrangement in Color CRT’s
redrawn from Meko website, The European Source for Display Data and
Market Research, http://www.meko.co.uk.

one of 23 = 8 different voltages.
Figure 3.7 introduces the notion of a look-up table. Each pixel value

from the framebuffer is used as an index into a table of 2n entries (8 in
the n = 3 example). Each table entry has a stored value whose precision
is usually greater than the framebuffer resolution. This gives a palette of
only 2n colors, but the palette can be drawn from 2m greylevels, where m
is the number of bits per entry in the lookup table. One way this could
be used in a greyscale framebuffer would be to correct for non-linearities in
the display and in human perception so that each step in grey level would
result in a uniform perceptual step in luminance level.

Figure 3.8 shows how a framebuffer can be arranged to drive a color
display via three lookup tables. Virtually all 8-bit per pixel color displays
– like the ones in older Macintoshes, PC’s or workstations – utilize a 24
bit/pixel lookup table with 256 entries (28). This gives a palette of 256
colors per frame, but the colors are drawn from a selection of nearly 17
million (224 = 16, 777, 216).

A full color resolution framebuffer, called a truecolor framebuffer, is
shown in Figure 3.9. This type of device will have at least 24 bits per pixel
(8 bits per color primary), either driving 3 color guns directly or (as shown
in the figure) through a separate lookup table per color primary that can
be used to correct nonlinearities or to obtain certain effects (like overlay
planes). Very high end graphic displays may have more than 24 bits allo-
cated per pixel, to handle such tasks as color compositing, depth-buffering
for hidden surface resolution, double buffering for real-time animated dis-

6 CHAPTER 3. DISPLAY DEVICES

00000011

famebuffer memory
1 bit per pixel

1

current
pixel

register

DAC

digital
to analog
converter

electron gun

Figure 3.5: Monochrome Framebuffer

011

famebuffer memory
3 bits per pixel

current
pixel

register

DAC

digital
to analog
converter

electron gun

011

3

Figure 3.6: 3-Bit Per Pixel Greyscale Framebuffer

play, and overlays.

3.3 Gamma Correction

So far we have treated the transfer of information from the framebuffer to
the CRT as if it were linear. For example, in an eight-bit grey-scale frame-
buffer without a lookup table, pixel values can range from 0, representing
black, to 255, representing white. Thus, we would expect that a pixel value
of 127 would represent a middle grey, and in that even increments of pixel
values would represent even increments of grey. In fact, this is not the case.

There are two reasons why even increments of pixel values do not re-

3.3. GAMMA CORRECTION 7

famebuffer memory
3 bits per pixel

digital
to analog
converter

DAC

electron guncurrent
pixel

register

011

011

0

1

2

3

4

5

7

00100110

38

lookup table
8 bits per entry

6

Figure 3.7: Greyscale Framebuffer with Lookup Table

sult in even increments of perceived grey. The first is that the human eye
registers equal increments of color intensity, not as a function of the differ-
ence between intensities (luminance), but as a function of the ratio between
intensities. In other words, if I1 < I2 < I3 are three intensities, the step
between I2 and I1 would look the same as the step between I3 and I2 if

I2/I1 = I3/I2,

but the steps would look unequal if

I2 − I1 = I3 − I2.

Because of the ratio law, in fact, the step between I2 and I1 would appear
to be greater than the step between I3 and I2. This relationship is shown in
Figure 3.10, which plots perceived intensity Ip in dimensionless units versus
actual intensity Ia on a unit scale. The solid line indicates how perceived
intensity will vary with actual intensity, and the dashed line shows how
perceived intensity would vary if the relationship were linear.

In practice, the story is further complicated by the fact that the relation-
ship between CRT grid voltage and phosphor luminance is also non-linear.
The actual phosphor luminance Ia due to grid voltage Iv is given by a curve
of the form

Ia = Iγ
v ,

where γ is a positive constant greater than 1. This relationship is shown
in Figure 3.11 for a CRT with γ = 2. For most CRTs in common usage,
values of γ range between 1.6 and 2.4.

If we take both the nonlinearity of the CRT and the nonlinear perceptual
response into account, the two effects interact to make a more complex
relationship. This effect is shown in Figure 3.12.

8 CHAPTER 3. DISPLAY DEVICES

DAC

famebuffer memory
1 byte per pixel

current
pixel

register

lookup tables

digital
to analog
converters

electron guns

254

255

DAC

00000011

00000011

DAC
R

G

2

3

4

5

00100110

00100110

B
2

3

4

5
00100110

Figure 3.8: 8-Bit Color Framebuffer with 3 Lookup Tables

2

3

4

5

00000011

00000011 00100110

DAC

famebuffer memory
3 bytes per pixel

current
pixel

registers

lookup tables

digital
to analog
converters

electron guns

254

255

2

3

4

5

11111111

00000011 00100110

DAC

00000011

00000011

DAC

00100110
R

G

B

Figure 3.9: Truecolor Framebuffer with Three Lookup Tables

3.3. GAMMA CORRECTION 9

5

5

x = 1

x = 0.125

x = 0.25

x = 0.

x = 0.0625
0

0.25

0.

0.75

1

0 0 5 0 0.75 1.2 .5 Ia

Ip

Figure 3.10: Perceived Intensity vs. Actual Intensity

y =1

y = 0.0625

y = 0.25

y = 0.5625

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

Ia

Iv

γ = 2

Figure 3.11: Actual Intensity vs. Stored Intensity (voltage), gamma = 2

5x = 0.

x = 0.3536

x = 0.7071

x = 1

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1Iv

Ip

Figure 3.12: Perceived Intensity vs. Stored Intensity (voltage)

10 CHAPTER 3. DISPLAY DEVICES

The process of correcting for the nonlinearities introduced by the nature
of human perception and the physics of CRTs is called gamma correction. If
we did not have to take the perceptual issue into account, gamma correction
would simply consist of scaling each pixel value to the scale 0...1, raising it
to the power 1/γ, and then restoring it to its original scale before using it
to determine grid voltage. Actually, the problem is complicated by the fact
that perceived intensity varies as the ratio of actual intensity. In most cases
a suitable value for γ can be found experimentally, that will give an even
perceived gradation across the full range of greys. However, the γ value
used for gamma correction and the γ of the CRT will differ somewhat.

Gamma correction can be done on a per-pixel basis at the time of dis-
play, replacing a stored image with a gamma corrected image. On a frame-
buffer with a lookup table, however, the lookup table can be loaded with
gamma corrected intensity values, that are simply indexed by the colors in
the image. This approach has the virtues that it need only be done once,
even if we are displaying a sequence of images, that it requires much less
computation even for a single image, and that it does not require modifying
the image itself. When we study compositing, we will see that pre-gamma
correcting images is a very bad idea if we plan on doing any work on the im-
age that requires adding or averaging pixels. We will see that this includes
compositing, spray painting, filtering and many other common operations.

Chapter 4

Color

4.1 What is Color?

There is probably nothing more important to the study of images than the
notion of color, what it means exactly, how it can be encoded, and how
it can be manipulated. In our attempt to answer the question “what is
color?”, we will examine several ways of looking at the phenomenon. We
will first take the point of view of the physicist, later the physiologist, and
finally the artist. Each point of view has its own validity within its own
context, and knowledge of each will help us to develop a more complete
understanding of this higly complex question.

4.1.1 Physical vs. physiological models

The physical model of color is directly related to the physical phenomenon
of light, and is actually a way of describing distributions of light energy.
Light is energy in the form of electromagnetic waves, with wavelengths in
the visible range from 400 to 700 nanometers. The energy of an electro-
magnetic wave is generally not concentrated at a single wavelength but is
distributed across a range of wavelengths. This distribution is known as
the spectrum of the wave, and it is this spectrum that is interpreted by our
eyes as the color of the light. Knowing only this distribution, we can make
reasonable predictions about perception of color.

Graphs of two light energy spectra are shown in Figure 4.1. The area
under each curve gives the total energy per unit illuminated surface area.
This total energy relates directly to the luminance or percieved brightness
of the color. Both spectra shown in Figure 4.1 have about the same lu-
minance. The “dominant” wavelength of the curve determines the hue or

1

2 CHAPTER 4. COLOR

color name of the color. Both of the spectra in Figure 4.1 have a maximum
concentration of energy around 560 nm, and energy at this wavelength is
perceived by humans to have a yellow hue. The peakedness of the spec-
trum, i.e. the percentage of the total energy concentrated in a narrow band
around the dominant wavelength, determines the saturation or purity of
the color. The spectrum in Figure 4.1 that is labeled “yellow” will look like
a fairly pure yellow or orange, whereas the spectrum labeled “brown” will
look muddy, like a yellow ochre.

yellow
R
e
la
t
i
ve
 E
n
e
r
gy
 D

e
n
s
i
ty

brown

Figure 4.1: Physics of Color

However, from the point of view of the physiology of human vision, we
can find no “machinery” in the eye that does anything like measure the
shape of light spectra. Instead, perception of color is the result of various
mental processes that receive their initial input from broadly-tuned photo
sensors in the retina. These sensors are of two main types.

Retinal rod cells measure illumination level (grey level) and have a spec-
tral sensitivity or efficiency function of the shape shown in Figure 4.1.1a.
Even though the rod cells convey no color information, they are maximally
sensitive to the greens and yellows. This means that under very low illu-
mination, when there is no color perception, we still see yellow and green
objects as being brighter than red or blue objects.

Retinal cone cells provide differential measurements of illumination,
with spectral tuning that is much finer than that exhibited by rod cells.
The cone cells give us the ability to discriminate hue. There are three dis-
tinct cone types, that can be thought of as corresponding very roughly to

4.1. WHAT IS COLOR? 3

the color primaries red, green, and blue. Figure 4.1.1b shows the relative
sensitivities of the three cone types to light across the visible spectrum of
wavelengths.

a) rods b) cones

Figure 4.2: Spectral Sensitivity of Retinal Rod and Cone Cells
copied from Foley, van Dam, Feiner and Hughes, Computer Graphics Prin-
ciples and Practice, Addison-Wesley, 1990, pg. 577.

However, curves of rod and cone sensitivity are only measures at the
eye. They say a lot about input to brain processes, but very little about
the use to which the brain puts these inputs. Mental processing is complex
and very ill understood. Judging from the amount of brain area devoted
to it, visual processing is one of the most complex tasks undertaken by the
brain. Thus, we would be making a gross oversimplification of the problem
if we tried to relate eye physiology directly to color perception.

4.1.2 Color as a contextual phenomenon

The artist, Josef Albers, elevated the art of perceptual color manipulation
to a very high level in his development of color-field painting. His working
thesis was that color is a relative perceptual phenomenon, that transcends
attempts to exactly quantify or measure individual colors. In other words,
the color we will perceive cannot be predicted outside of the context within
which the color will be presented. A memorable painting by Albers is
simply a violet square immersed in a field of yellow. On close inspection,

4 CHAPTER 4. COLOR

however, the violet square is seen to be slate grey. The presentation of the
grey square in the context of a brilliant yellow surround, dramatically alters
our perception. I will show two simple studies in class, that demonstrate
some of the ideas that Albers worked with in his painting. For more on the
contextual nature of color, see Joseph Albers, Interaction of Color, Yale
Univ. Press, 1963.

The point is, that in the end, color perception transcends the physical
and the physiological, involving the integration of context into the “reading”
of a presentation.

4.1.3 Tri-stimulus theory

Nevertheless, there is much evidence that a tri-stimulus theory of color (like
the RGB system) provides a very useful color model, and if we ignore con-
textual issues, allows us to represent specific colors in a very compact form.
This form is highly suitable for manipulation in a computer. In general, tri-
stimulus theory says that color can be quantified by a 3-parameter system.
There is much experimental and experiential evidence to back this theory,
and it underlies most of current color technology in the print, broadcast,
and film industries. The foundation principle of tri-stimulus theory is that
most perceptual colors can be produced by presenting a mixture of three
primary colors. A direct and important consequence of this theory is that
many different light energy distributions will be read as the same perceptual
color.

Some color systems extend the three color primary idea, and use a
tri-stimulus system, where the three parameters are more abstract color
measures.

4.2 HSV Color Space

One of the most widely used examples of an abstract tri-stimulus system
is the HSV color space. The HSV system attempts to represent all percep-
tual colors using three measures that relate directly to how artists often
think about color. It provides separate measures of hue (corresponding
to dominant color name), saturation (purity of color), and value (bright-
ness on grey scale). Its structure is derived directly from the RGB system,
and in fact there is a simple translation from RGB to HSV and back. Fig-
ure 4.2 diagrams the relationship between the two systems. If the RGB color
cube of Figure 4.2a is viewed along its white-black diagonal, it presents the
hexagonal silhouette shown in Figure 4.2b. The complete HSV system is a
cone-shaped space derived from this projection and shown in Figure 4.4.

4.3. CIE COLOR SPACE 5

Yellow

Cyan
B lue

White

B lack

R ed

Green

M agenta

a) RGB

Red

Green

Blue

Y ellow

Cyan

M agenta

W hite

b) HSV

Figure 4.3: Relationship Between RGB and HSV Color Systems

The HSV color space is parameterized by color coordinates (h, s, v),
standing for hue, saturation and value. This parameterization is shown in
the three diagrams of Figure 4.5. Hue h is measured by angular position
around the face of the cone. As shown in Figure 4.5a, it goes from 0 to 360
degrees, starting with red at 0◦, and proceeding counterclockwise around
the color-wheel through yellow at 60◦, green at 120◦, cyan at 180◦, blue at
240◦ and magenta at 300◦. Saturation s is measured by distance from the
central axis of the cone. As shown in Figure 4.5b, it is a fraction that goes
from 0 for grey at the center to 1 for fully saturated at the boundary of the
cone. Value is measured by v. As shown in Figure 4.5c, it is a fraction that
goes from 0 for black at the apex or point of the cone to 1 for full intensity
at the base of the cone, measured along the axis of cone. For example, a full
intensity, fully saturated green would be (120, 1, 1). A very dark but fully
saturated green would be (120, 1, 0.3), a pastel green would be (120, 0.3, 1),
and a neutral green brown would be (120, 0.3, 0.3).

4.3 CIE Color Space

The final space we will look at is the CIE system. This system was de-
veloped in the 1930’s to place the determination of color and illumination

6 CHAPTER 4. COLOR

Black

Red

YellowGreen

Cyan
White

M agentaBlue

Figure 4.4: HSV Color Cone

on a more scientific basis with respect to human perception. One problem
with both the RGB and HSV systems, is that they do not allow for precise
color specification because they have no set basis for the colors that can be
formed. In other words, the pure red color on one display or printer may
look quite different from pure red on another device, although they both
have the same RGB specification (1, 0, 0) or HSV specification (0, 1, 1). The
CIE system, on the other hand, makes it possible to specify exactly repro-
ducible colors. Thus, CIE colors can be catalogued and then displayed on
CRT’s, printed in ink, mixed as paint - always giving the same result.

Red

0ο

Green 120ο

Blue 240ο

Yellow 60ο

Cyan

180ο

Magenta 300ο

Gray

h

a) hue

Red

Green

Blue

Yellow

Cyan

Magenta

Gray

s

b) saturation
Black

Red

YellowGreen

Cyan White

M agentaBlue

v

c) value

Figure 4.5: Parameterization of HSV Color Space

4.3. CIE COLOR SPACE 7

The CIE system was developed using the experimental configuration
shown in Figure 4.6. Observers were presented with a split screen. A
colored test light illuminated one side of the screen, and a set of three pure
primary lights illuminated the other side. The observer could adjust the
intensity of each primary with a dial. The task was to adjust the screen
color produced by the three primaries, to match the color projected by the
test light.

t e s t l i g

o bserver

G
526 nm

R
645 nm

B
444 nm

Figure 4.6: CIE Test Apparatus

Using a range of pure single-wavelength test lights, the curves of primary
intensities shown in Figure 4.3 were obtained. For each wavelength of test
light, the exact setting of each primary necessary to reproduce the perceived
color of that test light was determined. A complication was that for some
colors the primary settings needed to be negative – in other words it was not
possible to reproduce all test colors with the three additive primaries. To
deal with this complication, the nonreproducable colors were matched by
adding primary colors to the test light. This was considered to be equivalent
to subtraction of the corresponding primary from the additive mixture and
shows up as negative values on the curves.

From the test data, three functions of wavelength, known as the CIE
x, y and z color matching functions were developed. These functions are
graphed in Figure 4.3. They do not correspond to realizable light sources,
but can be thought of mathematically as if each were a primary light source.
The corresponding three light levels of the matching functions necessary to
match a given color are called the color’s CIE XY Z coordinates. Thus,
any color C can be represented by a weighted sum of these 3 primaries

C = Xx + Y y + Zz. (4.1)

Usually, however, the CIE coordinate system is given in modified form,

8 CHAPTER 4. COLOR

Figure 4.7: CIE Color Matching Experiment Data
copied from Wikpedia, CIE 1931 Color Space,
http://en.wikipedia.org/wiki/CIE 1931 color space.

by defining the color’s chromaticity coordinates (x, y, z). These coordinates
measure the color’s chromatic content, and are given by

x = X/(X + Y + Z), (4.2)
y = Y/(X + Y + Z), (4.3)

z = Z/(X + Y + Z) = 1 − (x + y). (4.4)

The CIE matching function y was chosen to be identical to the human
response to luminance (compare Figures 4.1.1a and 4.3). Thus, the CIE
Y coordinate does not contribute to the chromatic content of a color and
can be thought of as the luminance or brightness of the color. Since the
z component of chromaticity can be calculated directly from the x and
y components, a unique color specification is given by (x, y, Y). This is
known as the CIE xyY color specification. It has the advantage that all of
the chromatic information is contained in the coordinate pair (x,y) and all
of the luminance information is given by one coordinate Y. A cross section
through the CIE xyY space for a fixed luminance (i.e. a fixed value of Y)
looks like that shown in Figure 4.3.

There are methods of going from a catalogued CIE color to an RGB
triple, that require knowing some characteristics of the display device (e.g.
the CIE coordinates of the phosphors of a CRT). The science of using CIE

4.3. CIE COLOR SPACE 9

Figure 4.8: The CIE XYZ Color Matching Functions
copied from Wikpedia, CIE 1931 Color Space,
http://en.wikipedia.org/wiki/CIE 1931 color space.

information fits into the broad area of colorimetry, and is something that
you may want to study further if you have a deep interest in color.

10 CHAPTER 4. COLOR

Figure 4.9: Cross Section of the CIE Space for Fixed Luminance Y
from Schubert, E.F., Light Emitting Diodes, Colorimetry, 2003.
¡http://www.ecse.rpi.edu/ schubert/Light-Emitting-Diodes-dot-org/¿

Chapter 5

Simple Image File
Compression Schemes

We have noted earlier that one of the big issues that we will need to deal
with in treating the subject of image files is file size. What ways are avail-
able to store accurate image information in a file, while minimizing the
storage used for the file and at the same time keeping file access time to
a minimum? This issue is clearly of importance in the animation and film
industries, where it is often necessary to store many thousands of images to
fully describe a scene. It is also of crucial importance in multimedia, where
it is often necessary to squeeze the maximum out of the limited storage
capacity of a CD-ROM or other personal computer storage medium. And,
not of least significance, image storage size has crucial implications for the
speed of transmittal of the image between computers, especially within the
context of visually-oriented computer networking such as is done over the
Internet using the World Wide Web. The formula for transmission time
is quite simple – it is exactly proportional to the size of the file as it is
encoded for transmission.

All compression schemes exploit the fact that most images contain a
good deal of redundant information, and that this redundancy manifests
itself in various kinds of coherency in the image. We will define coherency
as the tendency for one portion of an image to be similar to other portions.
Often coherency is most apparent in regions of the image that are physically
near each other. For example, a digital image containing a pale yellow
wall in the background will have broad expanses of nearly identical colors,
and in fact it may have many thousands of pixels with exactly the same
color value. This is the simplest kind of coherency – many copies of the

1

2 CHAPTER 5. SIMPLE IMAGE FILE COMPRESSION SCHEMES

same color. Coherency, however, can be a more sophisticated concept. For
example, we could have the same wall, but now with a light gradation
over its surface, so that we have a smooth and predictable variation in
light intensity (value) across the wall. Another more sophisticated example
could be a picture containing a wall in the background that is covered with
a patterned wallpaper, so that we have large regions that contain the same
repeating texture. There might be schemes for exploiting this coherency,
for big space savings.

In this chapter, we will look at several of the simpler file compression
schemes, namely run-length encoding, the use of color tables, and a more
sophisticated table-based encoding scheme. In a later chapter, we will look
at two much more powerful but also much more complex schemes – the
JPEG protocol and Wavelet compression.

5.1 Run-Length Encoding

Run-length encoding, in its simplest form, takes advantage of color co-
herency along a scanline. It is a readily observable fact that in certain
images there are many regions along a scanline where adjacent color val-
ues are repeated across several pixels. This group of identical pixels, taken
together, is called a run. Runs appear frequently in synthesized computer
graphic images, where it is not unusual for large areas to tend to have the
same color. Runs appear less frequently in photographic images, especially
when they are of natural scenes.

In the simplest run-length encoding scheme, instead of storing each pixel
value along a scanline, a pair of numbers is stored for each run along the
scanline. The first number in the pair is a repeat count, and the second is
the pixel value. For example, suppose we had the scanline

2 2 2 2 2 3 4 1 1 1
which is ten pixels long. The run-length encoding of this scanline could be
written

(5 2) (1 3) (1 4) (3 1)
which contains one pair for each of the four runs in the scanline, requiring
only eight distinct values, and saving two units of storage. (Note that in
the above example, the parentheses are used only for clarity, and would not
actually need to be be stored.) The savings of 20% in total space is about
what can be expected for a typical computer graphic image. However,
there are no guarantees. In the worst case, where no adjacent pixels have
the same color (i.e. all runs are of length one) this scheme actually doubles
the space used, since a pair of numbers would be required to represent each
pixel!

5.1. RUN-LENGTH ENCODING 3

Fortunately, there is an easy improvement that can be made on the
simple run-length encoding scheme, that solves this problem. The trick is
to somehow “flag” the repeat count, such that the repeat count without
the flag is just the same as in the simple scheme, but the count with the
flag is used to prefix a string of pixels that have different values. Then to
encode the scanline, each run of length two or more would be output using
standard run-length encoding, but all consecutive runs of length one would
be grouped together and output as a group prefixed by a flagged repeat
count. Using this scheme, the scanline from the example above would be
encoded

(5 2) (2 3 4) (3 1)
which requires only seven values to encode the original ten pixels. This line
would be decoded as follows:

(5 2) ⇒ 2 2 2 2 2

(2 3 4) ⇒ 3 4 the flag indicates that 2 explicitly given values follow

(3 1) ⇒ 1 1 1

With this modified runlength encoding scheme, we add only one extra value
per scanline, even in the worst case when every pixel has a different value.
In actual implementation, worst-case performance might be a bit worse
than this, since we will use a limited storage space (typically one byte) for
the runlength count, so that the length of a run or an unencoded group
of pixels will typically be limited to less than the length of a scanline.
Many popular computer graphics image file formats use this type of run-
length encoding scheme. Important examples are wavefront RLA (.rla)
files, Silicon Graphics Iris RGB (.rgb or .sgi), and Softimage Picture files
(.pic).

5.1.1 Silicon Graphics Iris RGB File Format

Silicon Graphics developed its own image file format, known as the Iris
RGB file format, and supported by the SGI GL 3D interactive graphics
standard. It is not the standard in OpenGL (which supports no particular
file format), but nevertheless, the Iris image file format remains in wide use.
Iris RGB files typically carry the file name suffix .rgb, although the suffix
.sgi is also common. An Iris RGB file can be written in either verbatim or
run-length encoded modes. Overall file layout is shown in Figure 5.1, and
depends upon which of these two modes is chosen. The verbatim file format
of Figure 5.1a contains only the header and the uncompressed image data.

4 CHAPTER 5. SIMPLE IMAGE FILE COMPRESSION SCHEMES

header block
unencoded image data

header block
scanline offset tables

run-length encoded image data
a) verbatim file b) run-length encoded file

Figure 5.1: SGI Iris RGB File Layout

A run-length encoded file of Figure 5.1b contains tables giving scanline
offsets, in addition to the header and the run-length encoded image data.

The header is laid out according to the C++ data-structure shown in Fig-
ure 5.2. The magic number of an Iris RGB file is 01DA16, and is stored in
the first two bytes of the file. The storage byte indicates whether the file is
stored verbatim or run-length encoded. The image is organized into chan-
nels, with one channel per color primary and additional channels for any
auxilliary values, such as an alpha value. The bpc byte indicates whether
one or two bytes per pixel are used for channel data. The dimensions byte
indicates how many scanlines and channels are stored in the file, and will
normally be set to 3, indicating that the ysize and zsize entries below
give the number of scanlines and channels. If dimensions is set to 1, the
image file consists of just one scanline and one channel, so ysize and zsize
are ignored. If dimensions is set to 2 there is only one channel, so zsize
is ignored. The xsize, ysize and zsize entries are each two bytes long,
and give the scanline length and image height in pixels, and the number
of channels. The pixmin and pixmax entries are each four bytes long, and
are used to hold the minimum and the maximum channel values in the
image. The imagename entry is an 80 byte area that is used to store any
text description of the image that is desired. Typically this will store the
filename of the image. The colormap entry is normally set to 0. Non-zero
entries were used in the past to give indexed colormap information for files
with pixels stored as indices into a color table.

Verbatim format

Image data in verbatim Iris RGB files is stored starting with the bottom
image scanline, working to the top of the image. Thus, the first pixel
stored is in the bottom lefthand corner and the last stored is in the upper
righthand corner. All of the entries for channel 1 are stored, then all of
the entries for channel 2, etc. For a four channel RGBα image, channel 1
is used for red, 2 for green, 3 for blue and 4 for α. Channel data will be
stored using either one or two bytes per pixel, depending on the value of

5.1. RUN-LENGTH ENCODING 5

struct Iris_Header{
short magic; // 01DA(hex) Iris RGB magic number
char storage; // 0 = verbatim, 1 = run length encoded
char bpc; // 1/2 bytes per pixel per channel
short dimensions; // 1 = 1 scanline, one channel

// 2 = ysize scanlines, one channel
// 3 = ysize scanlines, zsize channels

unsigned short xsize; // image (scanline) width in pixels
unsigned short ysize; // image height (number of scanlines)
unsigned short zsize; // number of channels
long pixmin; // minimum channel value in image
long pixmax; // maximum channel value in image
long unused; // unused spacer
char imagename[80]; // ASCII text describing image
long colormap; // 0 = normal, others values obsolete
char spacer[404]; // unused spacer

};

Figure 5.2: SGI Iris RGB File Header Format

the bpc entry in the file header.

Run-length encoded format

Scanlines of image data in run-length encoded Iris RGB files can be stored
in any order. However, access to the scanline data is done through the
scanline offset tables. There are two such tables, immediately following the
file header. The first is the scanline start table, which gives the location
in the file (i.e. the starting byte number from the start of the file) for
each channel of each scanline. The second table is the scanline length table,
which give the encoded length of each channel of each scanline. There are
four bytes per table entry, i.e. each entry is an unsigned long. Both
tables are ordered using the same ordering scheme as for verbatim image
data. Starting from the bottom of the image, there will be one entry per
scanline for channel 1, then channel 2, etc.

Channel data is run-length encoded on a scanline by scanline basis.
Encoding is done using the scheme shown in Figure 5.3. Each channel is
run-length encoded using an unsigned 8-bit1 (one byte) value for the repeat

1Recall that in 8 bits there is the possibility to store 28 = 256 different values. For

6 CHAPTER 5. SIMPLE IMAGE FILE COMPRESSION SCHEMES

(for bpc = 1)

(for bpc = 2)

07

valuen

07

015

valuen

07

1 ≤ n ≤ 127, Repeat count for run of length = n

(for bpc = 1)

(for bpc = 2)

...
07

value
n-128

07

value
1

07

value
2

07

value
3n

07 07

value
4

015

value
1

value
2

value
n-128

...n

07 015 015

128 ≤ n ≤ 255, n − 128 gives number of nonrepeating values that follow

0

07

end of data

Figure 5.3: SGI Iris RGB Run-length Encoding Scheme

count. If this value is between 1 and 127 it stands for the length of a run,
and is followed by a one or two byte channel value that is to be repeated
to form the run. Thus, if this repeat count is 10, it means that the channel
value following the count should be repeated 10 times to form a run of
10 identical values. However, if the repeat count is between 128 and 255
the count is followed by a sequence of nonrepeating channel values. The
number of nonrepeating values will be the count minus 128. A repeat count
of 0, indicating end of data, is used to mark the end of each scanline.

5.1.2 SoftImage Picture Files

The SoftImage animation system also uses its own image file format, known
as the SoftImage Picture format. Files in this format usually carry the
filename suffix .pic. In Picture files, image compression is done using the

unsigned 8 bit number’s, this available space is used to encode values from 0 to 255.

5.1. RUN-LENGTH ENCODING 7

run-length encoding scheme shown in Figure 5.4. Unlike the Wavefront
RLA scheme, the Picture file scheme treats all count bytes as unsigned
numbers. In this scheme, the run-length count is stored in either an eight or
a 24 bit field. A non-repeating string of explicitly stored values is preceded
by a single byte count that must be a number between one and 127, that
indicates the length of the nonrepeating sequence minus one. A short run,
runs of between two and 128 pixels, are encoded by preceding the repeated
value by a single byte-count between 129 and 255, which is interpreted as
the length of the run plus 127. Longer runs of from 128 to 65,535 pixels
are encoded by a single byte containing the value 128, followed by a two
byte field giving the explicit repeat count. The scheme is made a bit more
complicated by the fact that encoded values may be either 24 bit RGB
triples or single byte values. Generally, in a full RGB image with an alpha
channel, the RGB values will be encoded as triples, and the alpha values will
be single bytes encoded as a separate channel from the color information.
A channel information block in the image file tells the decoding program
how to interpret the channels of image data.

SoftImage Picture files are organized into a header and an image data
section. The header has two parts, the picture information block and the
channel information block, as shown in Figure 5.5.

C++ code detailing the picture information block is shown in Figure 5.6,
and is reasonably self explanatory. The magic number for a Picture file
is 5380F63416 and is stored in the first four bytes of the file. Floats are
stored as four-byte SGI format floating point numbers. The aspect field is
typically 1.0. The fields code field will be 0 if there is no image data, 1
if only the odd numbered scanlines are stored for the image, 2 if only the
even numbered scanlines are stored, and 3 if all scanlines for the image are
stored. The channel information section specifies what channels are present
in the image data, and how they are organized. Usually, the R, G and B
channels are grouped together into 24 bit values per pixel and the alpha
values (if present) occupy a second group.

The channel information block immediately follows the picture informa-
tion block in the file, and has one entry per channel of image data. The
format of an entry in the channel information block is is four bytes long,
with the format shown in Figure 5.7. The chained byte is set to 1 except
for the last entry. So if there are two image channels, the first entry would
contain a 1 in the first byte, and the second entry would contain a 0. The
size byte will typically be set to 8, indicating the number of bits allocated
to each value in a channel. The type field indicates whether or not the
channel is run-length encoded. The four upper bits of the primaries byte
are used to indicate which of the three color primaries or alpha are encoded
in the channel. Typically, this byte will be set to 0xe0 to indicate that the

8 CHAPTER 5. SIMPLE IMAGE FILE COMPRESSION SCHEMES

07

n

07

α val

07

R val

07

G val

07

B val

07

n

or

129 ≤ n ≤ 255, Repeat count for short run of length = n − 127 (i.e. 2 · · · 128)

or

07

128

07

α val

15 0

n

07

R val

07

G val

07

B val

07

128

15 0

n

129 ≤ n ≤ 65, 535, Repeat count for long run of length = n

or

07

n

07

α val1
07

α val2 ...
07

α valn+1

07

n

07

R val1

07

G val1
07

B val1
07

R valn+1
07

G valn+1
07

B valn+1...

0 ≤ n ≤ 127, n + 1 gives number of nonrepeating values that follow

Figure 5.4: Softimage Picture File Runlength Encoding Scheme

header picture information
header channel information

image data

Figure 5.5: SoftImage Picture File Format

5.2. COLOR TABLES 9

struct PIC_Header{
long magic; // 0x5380f634 -- PIC magic number
float version; // PIC file format version number
char comment[80]; // any text describing the image
char id[4]; // "PICT"
short width; // image width in pixels
short height; // image height in scanlines
float aspect; // pixel aspect ratio (width/height)
short fields_code; // 3 for full frame image
short unused; // should be 0 (but might not be!)

};

Figure 5.6: SoftImage Picture File Picture Information Block

typedef struct{
unsigned char chained; // 0 = last, 1 = more channels follow
unsigned char size; // 8 -- number of bits/channel value
unsigned char type; // 2 = run-length encoded, 0 unencoded
unsigned char primaries; // bits indicate R, G, B, alpha

// R 0x80, G 0x40, B 0x20, alpha 0x10
}PIC_CHANNEL_INFO;

Figure 5.7: SoftImage Picture File Channel Information Block

channel contains R, G and B data, or to 0x10 to indicate that it contains
alpha data only.

The image data immediately follows the channel information block, and
is organized by scanline, with the top scanline of the image appearing first
in the file. Each scanline is encoded in channels as indicated by the chan-
nel information block, typically as an RGB channel followed by an alpha
channel, as shown in Figure 5.8.

5.2 Color Tables

Another compression scheme that can be quite effective, if a picture is
known to have a limited color palette, is to store a table of the RGB colors
in the image file, and then for each pixel store the index to the table entry
that holds the RGB color for that pixel. For example, if an image has 256

10 CHAPTER 5. SIMPLE IMAGE FILE COMPRESSION SCHEMES

alpha
channel

red, green, blue
channel

Figure 5.8: SoftImage Picture File Scanline Organization

or less colors, a one byte (eight bit) entry for each pixel will suffice to index
into a table containing full 24 bit RGB information. This reduces the image
file size by 2/3, less the space required to store the 256 table entries.

This scheme can even work for images with large numbers of colors, if
one is willing to take some degradation of image quality. There are various
ways to quantize an image to reduce the number of distinct colors so that
the color table method is effective. A simple way of reducing the number of
bits per pixel is by discarding low order bits for each color primary. This es-
sentially “throws away” the least significant part of the primary color value,
leaving a picture with a reduced color palette. For example, discarding the
bottom two bits for each primary will reduce the potential total number of
different colors by a factor of 22 = 4. For natural scenes, with high image
complexity, this often is hardly noticable. However, for computer graphic
images, especially ones with smoothly varying color gradations, color quan-
tization leads to very noticable banding of colors. To avoid artifacts such as
banding, more sophisticated techniques for reducing the number of colors
in an image can be used. These schemes attempt to choose the colors that
will be preserved in an optimal way. One example is a scheme for choosing
those elements of the RGB color cube which approximate the colors in the
original image with the least variance between the original and quantized
images.

5.3 Lempel–Ziv–Welch Encoding

Another very popular compression scheme is also based on a table, but
it involves 1) no loss of data, and 2) no need to store the table! It is
known as the Lempel-Ziv-Welch (LZW) algorithm and forms the basis of
the well-known Unix compress utility. In a nutshell, this technique works
by “discovering” and remembering patterns of colors (or any other data
you may want to compress), and storing these patterns in a table – then
only table indices are stored in the file. Unlike the color table technique,
table entries can grow arbitrarily long, so that one table index can stand
for a long string of data in the file. And, by a clever construction, it turns
out that the table itself never needs to be stored in the file.

5.3. LEMPEL–ZIV–WELCH ENCODING 11

5.3.1 The LZW encoding algorithm

To see how the LZW encoding algorithm works, we will follow a simple
example. To begin with, let us assume that there is a fixed number of
color values (like 256 for 8-bit pixels). For our example, let us represent a
space of only 4 possible colors – A, B, C, or D. Allocate a table called T, a
current-input pixel register called in, a current table index register called
index, and a string variable called prefix, and consider the example input
scanline

A B A C A B A

Then the algorithm works like this

1. Initialize the table T with the possible 1-pixel color values, and the
prefix variable with the empty string.

T
value A B C D
index 0 1 2 3

in

index

prefix ""

2. while (input not exhausted)
a load input register in with next input pixel value
b append in to string in prefix

c if (prefix not in table T)
i output index
ii insert prefix in table T

iii set prefix = in

d set index = position of prefix in table

3. output index

Figure 5.9 shows how this algorithm would progress when run on the
sample input. In this example, it compresses the original seven input pixels
into only 6 output values.

5.3.2 LZW Decoding Algorithm

The genius of Lempel-Ziv is in the decoding algorithm. This converts the
encoded file back into the original sequence, without having the table that
was built upon encoding. In fact, the decoding algorithm recreates this
table as it runs.

The algorithm utilizes the following logic:

12 CHAPTER 5. SIMPLE IMAGE FILE COMPRESSION SCHEMES

Sequence of Prefixes and Outputs
prefix in output
"" A -
A B 0
B A 1
A C 0
C A 2
A B -
AB A 4
A - 0

Resulting Table T

index value
0 A
1 B
2 C
3 D
4 AB
5 BA
6 AC
7 CA
8 ABA

Figure 5.9: LZW Encoding of the Input String: A B A C A B A

5.3. LEMPEL–ZIV–WELCH ENCODING 13

1. We know the first, 1-pixel, table entries. In our example, these were
(0, A) (1, B) (2, C) (3, D). Thus, if we read any input from the
encoded file that has a value in this range (e.g. 0 through 3), we can
directly translate it.

2. We keep track of the previous matched table entry, and when we
input the next code from the file, note whether it is either in the
table already or it is not.

3. If the new code is in the table, then we know what it stands for,
and we also know that the previously translated code, plus the first
character of this code must be the next entry to be added to the table
if it is not already there.

4. If the new code is not in the table, then the previously translated code,
with its own first character appended to the end, is the translation
for the input, and must also be the next entry to be added to the
table.

In pseudocode form, the LZW decoding algorithm is given by:

1. Initialize the table T, e.g. T = [(0, A) (1, B) (2, C) (3, D)]

2. Read 1st value from the file, code = getcode()

3. Output(T[code])

4. oldcode = code

5. for(code = getcode(); code �= End-of-File; code = getcode())

a if(code < tablelength) /* i.e. code already in T */

i output(T[code]);
ii Insert T[oldcode] with T[code][0] appended, into table T

b else /* code not in table yet */

i translation = T[oldcode] with T[oldcode][0] appended
ii output(translation)
iii insert translation into table T

c oldcode = code

Figure 5.10 shows how the example encoded file from Figure 5.9 would
be decoded. Recall that the encoded file contains the sequence (0 1 0 2 4
0), which is the encoding of the original scanline (A B A C A B A).

14 CHAPTER 5. SIMPLE IMAGE FILE COMPRESSION SCHEMES

Sequence of Inputs, Outputs, Actions
oldcode code translation action

- 0 A T = [(0,A) (1, B) (2, C) (3, D)]
0 1 B add AB to T
1 0 A add BA to T
0 2 C add AC to T
2 4 AB add CA to T
4 0 A add ABA to T
0 end of file — —

Figure 5.10: LZW Decoding of the Encoded String: 0 1 0 2 4 0

The way to understand why this algorithm works correctly, is to think
about how the original encoding algorithm builds its table. Imagine the
decoding algorithm as using exactly the same table building logic. However,
instead of reading pixels directly from the input file, it gets its input pixels
from reading codes and decoding them via the partially built table. As long
as a code that is read is in the table already, simply take its translation
pixel by pixel and feed it to the encoding algorithm’s table building logic.
The only time this has a problem is when a code is read that is not in the
table. In this case, we know that the missing code must be the next one
to be added to the table, and even better, we even have the missing entry
partially built. In the encoding algorithm, the partially built table entry
is the “prefix” string. Equivalently, in the decoding algorithm, it is the
table entry for oldcode. So, instead of being stopped by the missing table
entry, we can proceed on using the characters in the partially built new
table entry. If we do this, we see that the first character in the partially
built entry (i.e. the first character of the translation for oldcode) becomes
the last character of the new entry that gets added to the table. Working
through the following simple example will demonstrate this to you.

Try the following – both encode and decode the sequence (A B A B A
B A)1. You should get the encoding (0 1 4 6), reducing the original seven
input values to four output values. When you try decoding this sequence,
you will see that the code 6 is read before the corresponding table entry
is built. Note that results obtained with the LZW algorithm are more
impressive when there are numerous repeated patterns in the input.

1also try to pronounce it :)

5.3. LEMPEL–ZIV–WELCH ENCODING 15

5.3.3 GIF - Graphics Interchange File Format

The GIF format was developed by CompuServe, Inc. to meet the demand
for a highly compressed image file format for storage in remote archives and
downloading over networks. The format assumes that display devices are at
most 8-bit/pixel resolution, and employ a color-lookup-table. Accordingly,
GIF stores a color table along with an image, and the image itself is stored
as a sequence of indices into the color table. GIF gets further compression
by using LZW encoding to compress the image data.

A GIF file for a single RGB image is organized as follows:

1. Three bytes containing the magic number “GIF”

2. Three bytes containing the GIF version number. This defines the GIF
standard employed by the file, it typically is “87a”.

3. Seven bytes containing the logical screen descriptor for the file. The
first four bytes contain the window width and height, two bytes pro-
vide information on color table format, and the last byte is the color
table index for the background color. Note, the window width and
height are stored in byte reversed form, least significant byte followed
by most significant byte.

4. Global color table. The color table is stored as a consecutive list
of RGB values. There is no accommodation for an alpha channel.
Although it can be varied, typically the table has 256 entries, each
containing a three bytes, one for each of the Red, Green, and Blue
components of the color.

5. Image descriptor. This begins with a byte containing the identifying
code 0x2C. This is followed by eight bytes giving coordinates of upper
left hand and lower right hand corners of image in the display win-
dow (in byte reversed order), and typically a single byte containing 0
(although there may be much more graphical control information).

6. Image data, in LZW encoded form. When decoded, this gives the
color table index for each pixel in the image. Indices are stored in
scanline order starting at the upper lefthand corner of the image.

7. Trailer byte. This single byte contains the code 0x3b, and indicates
the end of the GIF file.

As an example of the GIF format, Figure 5.11 contains portions of an
annotated hexadecimal dump of a GIF file encoding of the red cube image,

16 CHAPTER 5. SIMPLE IMAGE FILE COMPRESSION SCHEMES

Byte Values Decoding

Header
000000 4749 4638 3761 GIF87a

Logical Screen Descriptor
000006 2c01 c800 byte reversed w x h
00000a f700 CMap: 8-bits x 256
00000c 00 background index

Global Color Table
00000d 7a 0000

000010 7a01 017b 0000 7b02 027b 0303 7b04 047b reds and red-greys
000020 0606 7b09 097b 0d0d 7b11 117c 0000 7c01

000030 017c 0606 7c09 097c 0d0d 7c15 157c 1c1c

000040 7c1d 1d7d 0000 7d01 017d 0202 7d04 047d

... etc. etc. ...
000100 7f7a 7a7f 7b7b 7f7c 7c7f 7d7d 7f7e 7e

00010f 7f 7f7f middle grey

000112 8000 0080 0202 8004 0480 0909 8022 reds and red-greys
000120 2280 5050 8051 5180 5b5b 8062 6280 6f6f

... etc. etc. ...
000300 0000 0000 0000 0000 0000 0000 00

Image Descriptor
00030d 2c

00030e 0000 0000 2c01 c800 00 (0, 0), (300, 200), 0

Table Based Image Data
000317 08 LZW min code size = 8
000318 fe 254
000319 00 ad08 1c48 b0a0 packed data
000320 c183 0813 2a5c c8b0 a1c3 8710 234a 9c48

000330 b1a2 c58b 1833 6adc c8b1 a3c7 8f20 438a

000340 1c49 b2a4 c993 2853 aa5c c9b2 a5cb 9730

000350 63ca 9c49 b3a6 cd9b 3873 eadc c9b3 a7cf

... etc. etc. ...
001060 bcda abbe faab c01a acc2 6aa6 0101 00

Trailer
00106f 3b

Figure 5.11: Hexadecimal Dump of cube.gif, with Explanatory Comments

5.3. LEMPEL–ZIV–WELCH ENCODING 17

cube.gif of Figure 2.3. This is the same image that we saw in the PPM
assignment.

There are a lot of other details and features supported by GIF, that we
will leave for the interested student to study on his own. For that purpose,
you can pick up the file gif89a.doc in
/usr/local/misc/courses/viza654/documentation/
if you want more information on GIF. In the same directory you will find
lzw.and.gif.doc, by Steve Blakestock, which gives more detail on LZW
encoding and the GIF implementation of it.

18 CHAPTER 5. SIMPLE IMAGE FILE COMPRESSION SCHEMES

Chapter 6

The PostScript Page
Description Language

PostScript1 is the most widely known and used alternative to the raster-
oriented pixmap-style image description technique. Although PostScript
can support images stored as bitmaps or pixmaps, its main use is as a lan-
guage for describing how a page should be drawn. In other words, PostScript
“thinks” of an image as a sequence of steps – an algorithm – for drawing
that image from a small set of drawing primitives.

PostScript became widely known and used when several laser-printer
manufacturers agreed to build printers that could “understand” the PostScript
language. Such printers look at a PostScript file to be printed as a program.
The printer loads the program, and executes it – thus drawing out the im-
age. Such printers are really small computers, with several megabytes of
memory, that are attached to an electrostatic copy machine, a laser scan-
ner, and an input port through which they can download PostScript files
from the computer that is requesting the printing.

Our object in this course will be to achieve a basic level of understanding
of the structure of PostScript. We will learn just enough so that we have
a feel for this very important file format, and can look at a PostScript
file and understand basically what it is all about. We will not attempt to
become expert PostScript programmers, but will develop a little of our own
PostScript code for a simple problem. Students should not look to these
brief notes as anything but an outline of the highpoints of PostScript.

For a complete description of PostScript please see the pair of PostScript
reference books in the laboratory. The PostScript Language Reference Man-

1PostScript is a trademark of Adobe Systems Incorporated.

1

2CHAPTER 6. THE POSTSCRIPT PAGE DESCRIPTION LANGUAGE

ual is a red covered book, and gives a complete description of the details of
PostScript. The blue covered PostScript Language Tutorial and Cookbook
is a “how to” guide, that has lots of fancy examples of things that you
can do with PostScript. Both books are by Adobe Systems Incorporated,
and are published by Addison-Wesley, copyright 1985, 1986. In addition, a
small group of example PostScript programs can be found in

/usr/local/misc/courses/viza654/handouts/postscript/.

Figure 6.1a contains a listing – in plain text form – of the PostScript
file (i.e. the PostScript program) that will produce the Hello World target
picture shown in Figure 6.1a. The file target.ps can be found in the
handouts directory listed above. If you have the file in your local directory,
then the Unix command

lpr target.ps

will cause the target picture to be sent to the laser printer and printed.
The first line of the file (actually a PostScript comment) tells the printer
that this is a PostScript file, and not simply a plain text file, causing the
printer to read and interpret the file as a PostScript program, rather than
just printing it as pages of text.

There are two handy tools on our system for examining PostScript files,
to see what they will draw without having to go to the printer. These are
the programs xpsview and ghostview. Simply type

xpsview target.ps or ghostview target.ps

to display the image produced by the target program on the screen. Both
programs come with a simple interactive interface that should be reasonably
self explanatory. My personal preference is for xpsview, as I find that it
is faster and gives a truer representation of what finally ends up on the
printer. However, xpsview is not available on all machines, so you should
know about both programs.

Sometimes, for debugging purposes, you may want to obtain a printout
of the text of a PostScript file. You cannot do this by simply sending the file
to the printer, as the printer will interpret the file as PostScript. To print
the text of a PostScript file, use the program psf, which formats text files
for printing, to change the ascii text of the file into a PostScript program
that will “draw” the contents of your file. The output of psf can then be
sent to the printer via lpr.

PostScript is not a particularly compact representation, so .ps files
tend to be large. Fortunately, they are all text, so programs like the Unix
compress utility are quite successful in reducing the amount of space needed
to store them.

3

%!PS-Adobe-

/circle {newpath % procedure to draw a circle

0 360 arc

closepath

} def

/inch {72 mul} def % procedure to convert pts. to inches

/pg save def % current state saved in pg

90 rotate % page rotated clockwise to landscape mode

0 -8.5 inch translate % restore y-coordinate to bottom edge

% draw the target

5.5 inch 4.25 inch 3 inch circle stroke

5.5 inch 4.25 inch 2.5 inch circle fill

5.5 inch 4.25 inch 2.0 inch circle 0.5 setgray fill

% draw the text into the target

/Helvetica-Bold findfont 32 scalefont setfont

(Hello World) dup stringwidth pop

11 inch exch sub 2 div 8.5 inch 32 sub 2 div moveto

1 setgray show

showpage pg restore % restore state after page drawn

a) Program

Hello World

b) Resulting Page at 1/5 Scale

Figure 6.1: PostScript Program to Make Hello World Target Picture

4CHAPTER 6. THE POSTSCRIPT PAGE DESCRIPTION LANGUAGE

6.1 Basic Notions of the PostScript Language

The basic underlying notion in PostScript is that of the page. A PostScript
program works a page at a time, creating a blank virtual page, drawing into
the page to produce an image, and finally outputting the page to an output
device. Measurements within a page are done in points a measurement used
by typographers – 1 pt.= 1/72 inch. By default, the origin of a page is its
lower lefthand corner, as shown in Figure 6.2. The horizontal direction
from this corner is the x coordinate, and the vertical direction is the y
coordinate.

(0,0) x

y

Figure 6.2: Origin of a Page

All drawing commands are done in a continuous coordinate system –
not a discrete system like in a pixmap (i.e. there are no pixels). Because
of this, PostScript images are continuously scalable to an arbitrary size
without loss of detail.

PostScript maintains a current path – i.e. a sequence of points, curves,
and lines – that can be added to by drawing commands. When a path is
completed, it can be painted into the current page be either stroking the
path (drawing its outline) or filling the inside of the path with a color.

PostScript also maintains a current transformation matrix (CTM), that
acts to transform the original coordinate system of the page into a system
more convenient for drawing a portion of the current path. Translate, rotate
and scale operators allow one to manipulate the CTM.

6.2 Structure of PostScript Language

The basic data structure of PostScript is the stack. This is a first-in/last-
out structure that works just like a stack of cards or books. New things are
added to the top. Removals are also from the top. These basic operations
on a stack are called push and pop, and are illustrated in Figure 6.3.

6.3. POSTSCRIPT LANGUAGE SYNTAX AND SEMANTICS 5

4
3
2
1

PUSH POP
in out

Figure 6.3: Operations on a Stack

PostScript maintains the following stacks:

• operand stack results of executing program objects,

• systemdict system dictionary stack of predefined PostScript opera-
tors,

• userdict user dictionary stack of user defined operators,

• execution stack call stack for procedure calls,

• graphics state stack top item is current context for drawing.

6.3 PostScript Language Syntax and Seman-
tics

The following brief outline of PostScript Language syntax and seman-
tics lists the valid objects in the language, and the action taken by the
PostScript interpreter upon encountering the object.

• Numbers: examples of standard notations are 123, -123, -0.002,
1e14. Radix notation follows the base 16 example 16#FF73. action
push numeric value onto stack.

• Strings: delimited by parentheses, as in the example (this is a
string). Parentheses can be inserted in a string if they are balanced
like (more (stuff)), or can be escaped by preceding them by a \
character – i.e. \(and \). Standard C special characters like \n can
also be used. action push entire string onto stack as a single unit.

• Names: a sequence of characters containing no whitespace and with-
out any of the syntax characters like (,), [,], \, /, for example abc
@nyc 2for1. action the name should be bound to either a procedure
or a value. The associated procedure is executed or the associated
value is returned.

6CHAPTER 6. THE POSTSCRIPT PAGE DESCRIPTION LANGUAGE

• Literal Names: any name immediately preceded by a / character, like
/abc. action evaluates to the name itself, i.e. the name abc in the
above example.

• Arrays: a sequence of objects delimited by [and], like [123 abc
(xyz)]. action The [symbol marks the start of an array, and the
] symbol marks its end. The objects between [and] are evaluated
one by one, then the entire result is pushed onto the stack as a single
unit.

• Procedures: a sequence of objects delimited by { and }, such as
{5 10 moveto}. action acts just like an array, only the objects be-
tween the delimiters { and } are left unevaluated.

• Comments: from % symbol to the end of the current line, example
% - this is a comment. action comments are not evaluated and
have no effect.

6.4 Execution of PostScript Programs

Execution of a PostScript program is stack oriented. As each expression is
evaluated, its operands are popped from the operand stack, and its result is
pushed back onto the operand stack. Figure 6.4 shows example execution
of program text that adds the numbers 5 and 10 together. Following the
example, we see that program execution is from left to right through the
program text. The execution of a number from the program text places
the number’s numeric value on the operand stack. The execution of a
procedure, such as add pops the procedure’s operands from the top of the
stack, performs the designated operation, and pushes the result back onto
the stack. We see that add retrieves the top 2 values from the stack, adds
them, and pushes their sum back onto the stack.

Because of the stack orientation of PostScript, arithmetic is naturally
done in postfix form. What this means is that operators follow their operands,
rather than being between their operands as in normal arithmetic (e.g.
5 10 add rather than 5 + 10). This takes a bit of getting used to, but
is actually just as convenient as the usual infix scheme. One consequence
of the scheme is that order of evaluation is strictly dependent upon posi-
tion within a sequence, and thus correct evaluation of expressions does not
require the use of parentheses.

The arithmetic operators that are built into PostScript are: add sub
mul div idiv mod. They work as shown in Figure 6.5. As an example,
the standard infix expression

6.4. EXECUTION OF POSTSCRIPT PROGRAMS 7

... 5 10 add ...program text:

program counter

operand stack program execution

... ... 5 10 add ...

... 5 ... 5 10 add ...

... 5 10 ... 5 10 add ...

... 15 ... 5 10 add ...

Figure 6.4: Example PostScript Program Execution Sequence

(3x + 2y)/4,
is equivalent to the PostScript postfix notation

3 x mul 2 y mul add 4 div.

a b add −→ a + b
a b sub −→ a − b
a b mul −→ ab
a b div −→ a/b real result
a b idiv −→ a/b integer result
a b mod −→ a mod b

Figure 6.5: PostScript Arithmetic Operators

6.4.1 Procedure definition and execution

The operator def turns a name into a variable, by binding the name to
either a value or a procedure. It takes the top 2 stack elements – the top
element being the value to be bound or assigned to the literal name which
is the second element on the stack. To define a procedure, the top element
must be a procedure { . . . }. def binds the name to the procedure, so
that when the name is executed in a program, the procedure bond to it is

8CHAPTER 6. THE POSTSCRIPT PAGE DESCRIPTION LANGUAGE

evaluated. The following example defines a procedure with the name sqr,
that computes the square of the current top stack element.

/sqr {dup mul} def % squares the top stack element

An example use of the sqr procedure would be

4 sqr

which would leave the value 16 (4 squared) on the top of the stack after
execution.

So, a procedure can be looked at as requiring a certain stack configura-
tion when it is called, and that leaves the stack in a new configuration after
its execution. Typically, a procedure will remove its arguments from the
stack (pop them from the stack), compute one or more results and place
the result value(s) on the stack (push them onto the stack). Thus, to fully
document what a procedure does, one must specify 1) what operands it
expects and in what order they must appear on the stack, 2) what values
are returned to the stack by the procedure, and 3) what side effects (if any)
the procedure has. Side effects are effects of running the procedure, other
than changes to the operand stack. For example, some procedures affect
other stacks, like the graphics stack, and others cause graphics to be drawn.

6.4.2 Control flow

Normally, PostScript programs are executed in sequence. Flow of control
operators break the normal sequence of execution, and allow selective exe-
cution and looping. The most important control flow operators supported
by PostScript are if, ifelse, and for.

Before describing these operators, it is necessary to show how logical ex-
pressions are built up. As in any programming language, there are operators
to test relationships. These relational operators are shown in Figure 6.6.

The control flow operators are summarized in Figure 6.7. The if opera-
tor in PostScript pops a boolean expression and a procedure from the stack,
and executes the procedure only if the boolean expression is true. Simi-
larly, the ifelse operator pops a boolean expression and two procedures
from the stack. It executes the top procedure if the boolean expression is
false, and the second procedure if the boolean expression is true. The for
operator provides a looping mechanism. It pops an initial counter value, a
counter increment value, a counter limit, and a procedure from the stack.
The procedure is executed once for each counter value, from the initial value
up to the limit, with the counter incremented by the increment value after

6.4. EXECUTION OF POSTSCRIPT PROGRAMS 9

operators
operator gt ge lt le eq ne
relationship > ≥ < ≤ = �=

relational operator examples
prior stack operator ending stack
6 2 gt true
6 2 lt false

Note that true & false are defined symbols in PostScript

Figure 6.6: Relational Operators in PostScript

each execution. The current counter value is pushed onto the stack just be-
fore the procedure is executed. The procedure is responsible for removing
this counter value from the stack. If the increment value is negative, the
counter is decremented by this value on each iteration, and termination is
when the counter is less than the limit. If the initial value exceeds the limit
the procedure is never called.

control flow operator examples
prior stack operator ending stack
boolean-expr proc-true if results of proc
6 2 gt {(big)} if (big)
6 2 lt {(small)} if —
boolean-expr proc-true proc-false ifelse results of proc
6 2 gt {(big)} {(small)} ifelse (big)
6 2 lt {(big)} {(small)} ifelse (small)

initial incr limit procedure for results of proc
0 0 2 10 add for 30

Figure 6.7: Control Flow Operators in PostScript

10CHAPTER 6. THE POSTSCRIPT PAGE DESCRIPTION LANGUAGE

6.5 Graphics in PostScript

6.5.1 Graphics State

The graphics state in PostScript is a description or list of parameters that
control how drawing commands will be interpreted. This includes:

• CTM – current transformation matrix, determines the drawing coor-
dinate system.

• point – where the virtual pen is that is “tracing out” the drawing

• current path – accumulation of lines and curves defining a boundary
that will be drawn in by a stroke or fill command.

• clip path – defines a boundary, outside of which stroke and fill
commands will have no effect.

• grey level (or color for color PostScript)

• line width – width in points of a stroke

• cap – 0 , 1 , 2

• join – 0 , 1 , 2

• miter limit – limit on length of sharp miters (when join = 0)

• dash – dash pattern for dashed lines

• flatness – measure of how accurately curved lines are rasterized when
filled or stroked.

The graphics state can be saved, in its entirety, on the graphics state
stack via the operator

gsave.
It can be restored from this stack via

grestore.
gsave and grestore give one the ability to, for example, scale an individual
object while it is being drawn without affecting the rest of the page. Simply
save the graphics state on the stack, change the scale and draw the object,
and then restore the graphics state from the stack before continuing.

Commands that affect the parameters of the current graphics state are

6.5. GRAPHICS IN POSTSCRIPT 11

n setgray black 0 ≤ n ≤ 1 white
n setlinewidth n is line width in points
n setlinecap n = 0, 1, 2
n setlinejoin n = 0, 1, 2
n setmiterlimit

pattern offset setdash pattern = array of dashes and gaps,
offset = offset from start of line

n setflat n < 1: very fine, n larger: cruder

Drawing operators, are those that have side effects that alter the current
path. These are

12CHAPTER 6. THE POSTSCRIPT PAGE DESCRIPTION LANGUAGE

x y moveto move current drawing point to (x, y)
dx dy rmoveto move current drawing point by

increment (dx, dy)
x y lineto draw line from current point to (x, y)

dx dy rlineto same as lineto, but incremental
movement by (dx, dy)

x y r θ0 θ1 arc counter clockwise arc

arc

θ1

θ0

r

Circular arc measured from the x
axis, with center (x, y) and radius
r

x y r θ0 θ1 narc clockwise arc
x1 y1 x2 y2 x3 y3 curveto Bezier curve

(x0,y0)
(x3,y3)

(x2,y2)

(x1,y1)

current
point

Bezier control points are the cur-
rent point and the 3 (x, y) argument
pairs

x1 y1 x2 y2 r arcto curve tangent to 2 lines

(x0,y0)

(x1,y1)

(x2,y2)

current
point

Determines the curve of radius r
that is exactly tangent to the lines
defined by the current point and (x1,
y1), and by (x1, y1) and (x2, y2). A
straight line is drawn from the cur-
rent point to the first tangent point,
and an arc is drawn between the two
tangent points

newpath initialize the path to be empty
closepath connect start and end of current path

There are three operators that affect or make use of the clip path. These
are

6.5. GRAPHICS IN POSTSCRIPT 13

initclip set clip path to device outer boundary
clip clip path = intersection of clip and current

paths

clip path

current
path

resulting
clip path

The clip path is replaced by the in-
tersection of the clip path and the
current path. This means that all of
the interior of the current drawing
path that lies within the clip path
becomes the new clip path.

clippath set current path to clip path

Operators that cause the current path to be drawn into device’s raster,
or otherwise affect the output page are

erasepage that’s what is does!
fill fill inside current path with gray (or color)
stroke outline current path using line style parameters

The command that causes the current page to be sent to the output
device (i.e. printed on the page for a laser printer) is

showpage
Commands that affect the current transformation matrix are

dx dy translate
sx sy scale
angle rotate angle degrees counterclockwise

The way to think about these commands is that they operate on the coor-
dinate axis, as shown in Figure 6.8. The effect of these operations on the
image is to cause all commands that affect the current path to be executed
in the transformed coordinate frame.

6.5.2 Working with Text

Characters in PostScript are actually drawn using the drawing commands
described above. However, it is convenient to have a special set of com-
mands to handle text characters. Characters are stored in fonts. You
can think of a font as a dictionary that associates each drawable char-
acter (like the letter ‘a’) with a procedure for drawing that character.
The names for the fonts that are typically found in all PostScript imple-
mentations are: Times-Roman, Helvetica, Courier, and Symbol. There

14CHAPTER 6. THE POSTSCRIPT PAGE DESCRIPTION LANGUAGE

3 2 translate

30 rotate

0.5 0.5 scale

Figure 6.8: Translate, Rotate and Scale Transform the Coordinate Axes

are also bold, italic, and bold-italic versions: Times-Bold, Times-Italic,
Times-BoldItalic, Helvetica-Bold, Helvetica-Oblique, Courier-Bold,
Courier-Oblique. Of course, most implementations have many more fonts
available.

The following operators operate on fonts and display text

key findfont looks up the font with the name key and pushes
it onto stack. e.g. /Times-Roman findfont

font scale scalefont applies scale to font, returning the scaled
font to the stack

font setfont makes font the current font, e.g.
/Courier findfont 14 scalefont setfont
makes Courier 14 the current font

Once a font is set, the command
string show

6.5. GRAPHICS IN POSTSCRIPT 15

will draw the string into the page starting at the current point. If character
outlines are needed, then

string boolean charpath
will append the outlines of the characters in string to the current path. If
the boolean operand is false, the outline will be suitable for stroking. If
true, the outline will be suitable for filling or as a clip boundary.

16CHAPTER 6. THE POSTSCRIPT PAGE DESCRIPTION LANGUAGE

Chapter 7

Compositing

Image compositing has been used for many years in traditional film, graph-
ics and animation to achieve a variety of effects. Compositing can be as
simple an operation as to lay down a “masked out” set of pixels from one
image onto a background image. This is similar to the process shown in
Figure 7.1 that is used in classical animation. Foreground characters are
painted with opaque ink onto transparent cels, laid down over a background
painting, and photographed to make a composite. This allows the anima-
tors to use a single background image for an entire animated scene. For most
animation work, this idea is pushed quite far, with a typical frame being the
composite of multiple cel layers. Other techniques, such as blue screening
use the same kind of idea to composite film or video imagery together –
again superimposing the image of an opaque foreground character over a
background. Modifications of this idea are to make the foreground char-
acters semi-transparent, blending foreground characters with background
images, to create a variety of effects.

Compositing is particularly useful in computer graphics, and its ease of
use in this medium is largely responsible for the explosion of interest in digi-
tal techniques in film special effects production. The technique of morphing
is usually implemented by combining image warping with compositing to
blend one image into another in such a way that it looks like the first im-
age is “turning into” the second image. Other uses of compositing are to
integrate animated imagery with recorded live action imagery, to produce
effects that would be impossible to stage, such as characters with missing
limbs, action in fantastic settings, and to integrate new footage with stock
footage.

1

2 CHAPTER 7. COMPOSITING

background

composite

cel

Figure 7.1: Compositing Foreground Cel with Background Image

7.1 Alpha

Recall that in our early discussion of framebuffers and image storage, we
noted that besides storing red, green and blue primary values for each pixel,
a full-color framebuffer, a pixel of which is diagrammed in Figure 7.2, will
often also have eight bits per pixel available to store an alpha value. So far
we have not dealt with this quantity other than to mention its presence. In
principle, this alpha value could be used for any convenient purpose in an
image manipulation algorithm, but its usual use is for compositing.

αR G B

Figure 7.2: Four Component Pixel Value

When used for compositing, the alpha value of a pixel is interpreted as
the pixel’s opacity. On a scale from 0 to 1, an alpha value of 0 indicates
that the pixel is fully transparent and a value of 1 indicates that it is fully
opaque.

7.2. THE OVER OPERATOR 3

7.2 The Over Operator

The over operator, operating between two images, is the basic method for
compositing a foreground image F over a background image G to produce
a composite image P . The entire process would be written symbolically as

P = F overG.

To define the over operator, let us let C represent a color channel value
(i.e. a red, green or blue value) for a specific single pixel in one of the
images, and let a subscript on C, such as CF , indicate which image the
color channel value is from. Similarly, let α represent the alpha value for
the same pixel, again with a subscript to indicate the image. Then, the per
pixel operation implied by the over operator is given by

CP = αF CF + (1 − αF)CG. (7.1)

This is often rewritten for implementation as

CP = αF (CF − CG) + CG.

to save a multiply. Note, that all we are saying by this formulation is that
the output color is computed by a linear interpolation between foreground
and background pixel color channel values. The computation for each of
the red, green and blue color channels is identical. If it is desired to com-
posite multiple images over the same background image, this process can be
repeated, compositing each foreground image into the background image,
one at a time.

However, it is often desirable to composite multiple foreground images
together and then composite the result with a background. In other words
we would like the over operator to be associative, so that we can group
compositing operations in any way and still get the same end result. More
precisely, if we let A and B represent two different foreground images, and
G the background image, we would like the over operator to be defined
such that it obeys the associative law

Aover (B overG) = (AoverB)overG.

The questions to be dealt with are 1) how do we reformulate the over
operator to use the two alpha values in the foreground images to compos-
ite the color-primary values into the intermediate composited foreground
image, and 2) how do we extend the over operator to combine the alpha
values from the two foreground images to provide an alpha value for the
intermediate image?

4 CHAPTER 7. COMPOSITING

The problem is simplified somewhat by the fact that we know what
the final result of the multiple compositing should be for the color-primary
values. This is simply the result obtained by compositing each of the fore-
ground images into the background image one at a time, using the process
given by Equation 7.1. If we first composite image B with the background,
and then composite image A with the result, by Equation 7.1 we would
have

CP = αACA + (1 − αA)[αBCB + (1 − αB)CG]. (7.2)

Also, it is clear that the final composited image would have an alpha value
of 1 for all pixels, since the compositing is being done into the fully opaque
background image G. Thus, we have

αP = 1. (7.3)

Now, let
H = AoverB. (7.4)

stand for the the unknown intermediate foreground image that would be
formed if we first composited the two original foreground images to form
an intermediate image H. Then the final operation to composite the inter-
mediate image H with the background image G is described by

CP = αHCH + (1 − αH)CG, (7.5)

Equation 7.2 can be rearranged to yield

CP = αACA + (1 − αA)αBCB + (1 − αA)(1 − αB)CG. (7.6)

Comparing Equations 7.5 and 7.6, we see that for associativity to hold we
must have

αHCH = αACA + (1 − αA)αBCB , (7.7)

and
(1 − αH) = (1 − αA)(1 − αB). (7.8)

Equation 7.7 can be solved for CH to yield

CH = αA/αHCA + (1 − αA)αB/αHCB . (7.9)

and Equation 7.8 can be solved for αH to yield

αH = αA + (1 − αA)αB . (7.10)

7.3. ASSOCIATED COLORS 5

7.3 Associated Colors

Now, Equations 7.9 and 7.10 give us methods for computing both the color-
primary and alpha values for the intermediate image H. The problem with
this formulation is that the two equations give us different calculations
for opacity (alpha) and color value. It would be handy to have a unified
scheme, so that color-primary and alpha values could all be calculated by
the same method, meaning that we would not have to differentiate between
the two kinds of quantities used in representing a pixel. The idea that
will provide the desired unification is to use Equation 7.7, where each pixel
color-primary value appears premultiplied by its associated alpha value.

The association of each color-primary with its alpha value can be done
initially in the framebuffer by a simple multiplication. When an image is
stored in this way we say it is an associated color image. Let A and B
be the two associated-color foreground images corresponding to images A
and B, and let H be the intermediate associated-color image obtained by
compositing A over B. Then by Equation 7.7 our formulation for color
primary value reduces to

CH = CA + (1 − αA)CB. (7.11)

which would be computed in the same way as we computed alpha in Equa-
tion 7.10.

Equation 7.11 then is the equation governing our unified over opera-
tor and fully describes the computation needed to composite both color-
primary and alpha values between pixels of associated-color images to pro-
duce an associated-color output image. One nice result of this formulation
is that it is no longer necessary to differentiate between a foreground and
a background image, except to note that a background image would be an
image all of whose pixels have alpha values of one.

Two final things about associated-color images are reasonably obvious
but worthy of note. The first is that when all alpha values are 1, the origi-
nal image and its corresponding associated-color image are identical. The
second is that before displaying an associated-color image, it is important
to remember to divide each stored associated-color color-primary value by
its associated alpha value to recover the original color. Otherwise, images
will appear washed out.

7.4 Operations on Associated-Color Images

The desire to unify the color-primary and alpha value calculations was mo-
tivated by more than aesthetics. It turns out that the associated color

6 CHAPTER 7. COMPOSITING

image representation together with the over operator of Equation 7.11,
gives us exactly the formulation that is needed to do other operations on
images whose pixels have opacity information stored with them. For ex-
ample, if we wish to blur a foreground image before compositing it with
another image, we would want the blurred image to maintain a reasonable
set of alpha values, i.e. we would want the alpha channel to be in some
sense “blurred” along with the image color channels. If we did not do this,
our resulting image would have clean hard edges where the original alpha
mask was, although the rest of the image was blurred. It turns out that
if we store our images using the associated-color representation, then op-
erations like blurring, and other image manipulations like size and shape
changes will work correctly if we apply the same operations to both the
color channels and the alpha channel.

To verify this, let us look at a combined process of shrinking (minifying)
two images and compositing. If we take two images and composite them
first, and then follow this composition by the minification, it would be
desirable that the result would be the same as if we first minified each image
separately and then composited them. Let us say that our minification is
simply a scale by one-half in the horizontal direction, so that the resulting
image is one-half of the original width, but the height remains the same. To
understand what color computations happen when we combine shrinking
with compositing, we need only look at two adjacent pixels on a scanline
in one image and the corresponding two adjacent pixels in the other image.
The shrinking operation will be to replace each adjacent pair of pixels on
a scanline in the original image with a single pixel whose color value is the
average of the two original pixels. Call the two pixel associated-color color-
primary values in the first image P and Q, both with alpha value α1, and
let the primaries in the second image be R and S, both with alpha values
α2. Now if we were to minify both pictures first, averaging the adjacent
pixels into a single output pixel as shown in Figure 7.3a, then the resulting
composite would have the value

(1/2P + 1/2Q)over (1/2R + 1/2S),

which yields
1/2[(P + Q) + (1 − α1)(R + S)].

If we were to composite first and then minify, as shown in Figure 7.3b, we
would have

1/2(P overR) + 1/2(QoverS)

which reduces to the same form. A careful check will show that this same
property holds over image magnification. In fact, a whole variety of im-
age warping and filtering operations can be performed within a consistent

7.5. OTHER COMPOSITING OPERATIONS 7

context, given that the images are stored as associated color images. It is
also easy to show that this is not true with normal color images. If the
same process is attempted, changing the order of operations will result in
different colors in the final image.

P Q

+

1/2(P+Q)

R S

+

1/2(R+S)

Image 1 Image 2

1/2[(P+Q)+(1-α1)(R+S)]

over

a) minification first

P Q

Image 1

R S

Image 2

over over

P+(1-α1)R

1/2[(P+Q)+(1-α1)(R+S)]

+

Q+(1-α1)S

b) compositing first

Figure 7.3: Combining Minification and Compositing

7.5 Other Compositing Operations

Once the basic notion of image storage in associated color form has been
established, it becomes easy to define additional image combination opera-
tors. These are shown in Table 7.1, and are the standard image combination
operators.

Table 7.1: Associated Color Image Combination Operations

op per pixel operation
A over B CA + (1 − αA)CB
A in B αBCA
A out B (1 − αB)CA
A atop B αBCA + (1 − αA)CB
A xor B (1 − αB)CA + (1 − αA)CB

8 CHAPTER 7. COMPOSITING

Chapter 8

Filtering

There is a large body of literature on digital images that has come out of
the engineering and scientific communities. This is largely motivated by the
desire to more effectively transmit, store, enhance, and reconstruct visual
information in a variety of applications. Most notable in this area is work
done to enhance and analyze images from microscopy, astronomy, satellites
and space probes. NASA missions during the 1970’s depended heavily on
the ability of digital image processing techniques to extract clean images
from data transmitted over many millions of miles of space from very weak
space vehicle transmitters. Much of what is now common practice in work-
ing with images came out of this work. In this course we will not attempt
to exhaustively cover this broad field, but will focus on several well under-
stood procedures that have especially widespread use in the manipulation
of images for graphics, special effects, digital painting and photographic
enhancement.

Digital image processing algorithms tend to fall into two broad cate-
gories, those of filtering and warping. Warping is simply any change to an
image that operates on the image’s geometric structure. Algorithms for
warping will be covered in a later chapter. Here, we will focus on image
filtering.

We define a filtering operation to be one in which we modify an image
based on image color content, without any overt change in the underlying
geometry of the image. The resulting image will have essentially the same
size and shape as the original. Let Pi be the single input pixel with index i,
whose color is Ci, and let P̂i be the corresponding output pixel, whose color
is Ĉi. We can think of an image filtering operation as one that associates
with each pixel i a neighborhood or set of pixels Ni and determines a filtered

1

2 CHAPTER 8. FILTERING

output pixel color via a filter function f such that

Ĉi = f(Ni).

This process is diagrammed in Figure 8.1.

f(Ni)

original image filtered image

neighborhood Ni

pixel i

Figure 8.1: Diagram of the Filtering Process

8.1 Global Filters

A special class of filtering operations modifies an image’s color values by
taking the entire image as the neighborhood about each pixel. These can
be thought of as global filters or simply recoloring algorithms. Of these
techniques, the two most commonly encountered are normalization and
histogram equalization.

8.1.1 Normalization

The goal of image normalization is to adjust the range of image colors to
make sure that all colors fall within the range of colors allowed by the frame-
buffer or file format being used, and at the same time assure that the full
range of color intensities or values is used. A typical and simple normaliza-
tion process would be to examine an image to determine the minimum and
maximum values in the image, and then to rescale all of the colors using a
linear map which places the minimum value at 0 and the maximum value
at 1 (or 0 and 255 on an 8-bit integer scale).

We first find Cmin and Cmax, the minimum and maximum image chan-
nel values, by scanning all of the pixel channel values in the entire image.
Then for each channel j of each pixel i in the image we compute a normal-
ized value

Cij =
Cij − Cmin

Cmax − Cmin
,

8.1. GLOBAL FILTERS 3

This process guarantees that the resulting image uses the full range of
values available, and can be very helpful in the process of repairing a badly
underexposed or overexposed image. Later we will see that many image
processing algorithms do not guarantee that the resulting pixel colors will
lie within the allowable range. Normalization will prove to be a very handy
technique for readjusting the colors.

Figure 8.2 shows the effect of the normalization process. Figure 8.2a
is a photograph of a natural scene that is exposed normally. Figure 8.2b
shows the same scene but with the color values in the image artifically
shifted toward the darks so that the maximum color value is only 1/2 of
the full possible range. Finally, Figure 8.2c shows what this image would
look like after the normalization process. Some artifacts are introduced due
to the loss of color accuracy when the dark image was made, but otherwise
the resulting image recovers most of the value information in the original
image.

a) original image b) image at 1/2 brightness c) image renormalized

Figure 8.2: Image Normalization

As an aside, normalization, as well as all of the image manipulation
procedures discussed in these notes, should be done before any attempt
at gamma correction of the image for the display. If gamma correction is
done before normalization, for example, the linear normalization operation
becomes highly nonlinear, failing to preserve either the correct relationships
among colors in the image or the correct gamma correction.

4 CHAPTER 8. FILTERING

8.1.2 Histogram equalization

An image histogram is simply a set of tabulations recording how many
pixels in the image have particular attributes. Most commonly, such a
histogram records pixel count for a set of discretized brightnesses or values.
For example, examine the original natural scene image in Figure 8.3a, and
its histogram in Figure 8.3b. In this case, the histogram has 256 bins, each
corresponding with one of the integer values from 0 to 255. The height of
the vertical line at each of these values indicates how many pixels in the
image have a value that, when placed on a scale from 0 to 255 and rounded
to the nearest integer, equals the value on the horizontal axis. Although
the image of Figure 8.3a is normally exposed, the histogram shows that it
is strongly dominated by darks, while still having a good number of pixels
that are very bright. In fact, we see that all 256 possible values that can
appear in the image are being used. A look at the image itself will verify
the information shown in the histogram.

a) original image

0 255
value

p
i
x
e
l

c
o
u
n
t

b) histogram

Figure 8.3: Normally Exposed Image and its Histogram

The construction of the image histogram shown in Figure 8.3b is based
on brightness values. We begin by initializing the 256 entries in integer
array H to 0. This array will be used to collect value counts for the his-
togram. Recall that given the red Ri, green Gi, and blue Bi components
of pixel i, its perceived value is given by

Yi = 0.30Ri + 0.59Gi + 0.11Bi (8.1)

8.1. GLOBAL FILTERS 5

Then for each pixel i in the image, we compute its value Yi using Equa-
tion 8.1, scale to the range 0 to 255 and round to produce the discrete pixel
value

Ȳi = round(255Yi).

This is done across the image, keeping a count of the number of pixels
having each of the 256 possible discrete values, by incrementing H[Ȳi] by 1
for each discrete pixel value computed.

The goal of histogram equalization is to not only assure that the full
range of values is used, but that the distribution of values in the image is
as uniform as possible across the range of allowable values. To take a more
extreme case, consider the image of Figure 8.4a. It was made from the
image of Figure 8.3a by artificially enhancing the darks and suppressing
the lights, leading to the histogram shown in Figure 8.4b. Clearly, this
process has resulted in an image in which it is difficult to see detail, since
so many of the values are compressed into a small range. However, since
the image still uses the full range of values, a simple normalization would
not improve the image. Histogram equalization will act to more uniformly
spread the values in the image across the full range, brightening the lighter
darks, while leaving bright pixels relatively unchanged.

a) darkened image

0 255
value

p
i
x
e
l

c
o
u
n
t

b) histogram

Figure 8.4: Darkened Image and its Histogram

Given an image and its histogram H, it is a simple matter to adjust the
image colors so that they make a much more uniform use of the available
pixel colors. Simply compute a new value Ŷi for each pixel i in the image

6 CHAPTER 8. FILTERING

using its discretized value Ȳi and the histogram by the formula

Ŷi = 1/T

Ȳi∑
j=0

H[j], (8.2)

where T is the total number of pixels in the image. The original pixel red,
green and blue color channel values would then be rescaled by the scale
factor

Si = Ŷi/Yi. (8.3)

Equation 8.2 simply guarantees that each remapped pixel color will be
set such that its value is proportional to the count of all pixels dimmer
than or as bright as the pixel being remapped. In this way, pixel colors
maintain the same relative brightness ordering with respect to each other,
but will be shifted up or down the value axis to adjust the histogram. After
remapping, it may be the case that by increasing a pixel’s value, one or more
of its channel values may exceed the maximim of 255. To correct this, the
histogram equalization can be followed by normalization.

Figure 8.5a shows the dark image of Figure 8.4a after histogram equal-
ization is performed. Comparing the histograms of Figure 8.5b and Fig-
ure 8.4b, it is clear how effective the algorithm is in its attempt to more
evenly utilize the available color values. The histogram equalized image of
Figure 8.5a is clearly not successful as an image from an artistic point of
view, but it is very successful compared with Figure 8.4a in terms of our
ability to see and correctly interpret the details in the image.

One final note on histogram equalization applies if you are using a frame-
buffer with a color lookup table. A histogram equalized image can be pro-
duced for display much more quickly simply by using Equations 8.2 and
8.3 to modify color lookup table entries rather than the image pixels them-
selves.

8.2 Local Filters

A local image filter, as opposed to a global filter, is simply any operation
that modifies an image’s color content by replacing each pixel’s value with a
new value obtained by examining only pixels in a local neighborhood about
the pixel. Image content outside of the local neighborhood has no effect on
the pixel’s new value.

8.2. LOCAL FILTERS 7

a) equalized image

0 255
value

p
i
x
e
l

c
o
u
n
t

b) histogram

Figure 8.5: Histogram Equalized Image and its Histogram

8.2.1 Construction of local neighborhoods

For all of the filters being discussed here, the neighborhood about a pixel
will be taken to be a rectangular region centered on the pixel. The size
of the rectangular neighborhood will be determined by the requirements of
the filter function, but will be subject to the constraint that its width w
and height h must be odd so that the neighborhood’s center can lie on a
pixel. Thus, in general

w = 2n + 1,

and
h = 2m + 1,

where n and m are positive integers. Figure 8.6 diagrams the relationships
between w and n, and h and m.

pixel i

m

w

h

n

Figure 8.6: Rectangular Local Neighborhood About Pixel i

8 CHAPTER 8. FILTERING

When using a rectangular neighborhood around a pixel for purposes of
filtering, the question of what to do around the edges of the image invari-
ably arises. For instance when the pixel under consideration is less than n
pixels from the left edge of the image, the neighborhood extends beyond
the image’s boundary, and it becomes unclear what pixel colors should be
included. There are two common ways of addressing this dilema, by either
shrinking the output image or expanding the input image.

Shrinking the output image is the simplest approach. Here we simply
ignore the n pixel columns on the left and right of the image and the m
scanlines on the top and bottom of the image. If we do this, we will compute
no values for the corresponding pixels in the output image, producing an
output image that is smaller than the input image by a few scanlines and
columns.

If it is important that the output image be the same size as the input
image expanding the input image is the best method. The idea is to think
of the image as lying on a 2D plane of infinite extent, and conceptually tile
all of this plane with pixels. We then need to consider what color values
the pixels external to the image should have. The three most commonly
used choices are 1) to give all of the external pixels a fixed value (typically
black), 2) to tile the space external to the image with copies of the image,
and 3) to tile the external space with alternating mirrored copies of the
image. Setting the pixels outside of the image’s boundary to a fixed value is
clearly the easiest, but will give poor results for many filters or images, since
there may be no reasonable correspondence between this fixed color and the
image colors. The option of tiling space with the image can produce good
results where the image is periodic in nature, with its right edge matching
its left, and its top edge matching its bottom. For example, the tiling shown
in Figure 8.7 appears to be reasonable in the horizontal direction, due to the
repetitive nature of the image. However the tiling in the vertical direction
clearly leads to discontinuities that may produce bad results with many
filters. The option of tiling with mirrored copies of the image is shown in
Figure 8.8. This procedure nearly always gives good results, as it tends to
result in very clean seams between the real image and its replications. As
a rule, this method is recommended.

8.2.2 Median filter

The median filter is a local filter that is typically used as a way to improve
an image that suffers from shot noise. Shot noise is random dark or light
spots, usually a single pixel in size, caused by dirt, electronic noise or image
transmission errors.

The median filter works as follows. For each pixel in the image, choose

8.2. LOCAL FILTERS 9

Figure 8.7: Image Tiling Space

a square neighborhood with the pixel being considered at its center. The
output pixel value should be the median of the values in the neighborhood.
The median is determined by taking each color value in the neighborhood,
sorting them into an ordered list, and choosing the value that sorts to the
middle position in the list.

The logic of the median filter stems from the observation that a small
region of an image will usually contain pixel values that are closely related
to each other. Further, one would expect that the pixel in the center of the
region would contain a color value very close to the average of the colors
surrounding it. Now, if we know that an image contains shot noise, and
if the pixel at the center of the region is significantly different from the
average, we can consider its value to be “suspect”. In this case, the best
we can do is to replace its value by the average of the “non-suspect” pixels
in the region. The median filter accomplishes this by sorting pixels with
very high or low values to the two extreme ends of the sorted list of colors.
However, the color in the center of the list, i.e. the median color, will be
near to the mean of the uncorrupted pixels in the region.

Figure 8.9 shows the kind of results that can be obtained with a median

10 CHAPTER 8. FILTERING

Figure 8.8: Mirrored Image Tiling Scheme

filter. Figure 8.9a is a clean original image, and Figure 8.9b is a version of
this image degraded with shot noise. Finally, Figure 8.9c shows that image
after applying a median filter employing a 3×3 square neighborhood. Note
that virtually all of the noise is entirely removed, and the image suffers only
minimal degradation.

8.2.3 Convolution

Probably the most important set of filtering operations is implemented by
taking a weighted sum or difference of pixels within a neighborhood to
produce each output pixel. This approach implements the mathematical
concept of the convolution of two functions. The idea is easy to follow, as it
can be thought of as sliding a rectangular array of weights over an image,
replacing the pixel positioned at the center of the array by the appropri-
ately weighted sum of the pixels under the array. The array of weights is
commonly called the convolution kernel. Figure 8.10 shows a snapshot in
time of the convolution process, with a kernel of weights centered over the
pixel in the fourth scanline from the top and the fourth column from the

8.2. LOCAL FILTERS 11

a) original image b) with shot noise c) after filtering

Figure 8.9: Median Filtering

left of the image. Pixel values are multiplied by kernel values, and the sum
replaces the pixel in the fourth scanline and fourth column in the output
image.

original image G filtered image G*H

colors in
neighborhood Ni

kernel H

1 2 1

1 2 1
2 4 21/16 1 3 2

1 2 2
3 1 3

output pixel i

new pixel
color = 27/16

Figure 8.10: Convolution Filtering

Since the convolution process is a fixed process, a convolution filter is
identified by its particular kernel. The simplest of the convolution filters is
a uniform filter, or box filter. It is simply one in which all of the weights
are the same, and that sum to 1. For each pixel Pi, it produces an output
that is the numerical average of the pixels in its neighborhood.

Before proceeding, we should make our terminology and mathematical
description more precise. In mathematical notation, it is usual to represent

12 CHAPTER 8. FILTERING

the filter kernel by the letter H. We will call our input image G and the
output image Ĝ. For the time being, let us examine the weighting process
in one dimension (i.e. along a scanline) since it will be easier to draw and
describe. Later, the notation can be easily extended to two dimensions.

The discrete convolution process, involving “sliding” H over G to pro-
duce a weighted output, is indicated by the mathematical symbol ∗. Assume
that both G and H are represented as arrays with indices beginning at 0
as in the C Programming Language. Then their discrete convolution would
be written mathematically as

Ĝ[i] = (G ∗ H)[i] =
∞∑

j=−∞
G[j]H[i − j]. (8.4)

There are several things to note about Equation 8.4. First, the sum-
mation is infinite. However, we may assume that the kernel width is the
small odd integer w = 2n + 1, and we can assume that all kernel elements
outside of the array bounds are 0. To simplify the notation it will be con-
venient to reindex the kernel H from −n to n instead of from 0 to w − 1.
The second is that the subscript on H decrements from ∞ to −∞ as the
index of summation j increases. One way to view this is that according
to the precise mathematical definition of convolution, we mirror H before
multiplying in the summation. This is so that if we convolve a single point,
the convolution will reproduce the point-spread function represented by the
convolution kernel. Finally, we note that Equation 8.4 requires the exten-
sion of G by exactly n elements on either end to produce valid outputs for
each of the N elements in the original input G. Thus, if the input G has
width N , it must be expanded, for purposes of the convolution operation,
to have N + 2n elements, and indices from −n to N + n − 1. Since we
are not interested in the output of the convolution operation beyond the
original extent of input G, after these modifications, Equation 8.4 can be
rewritten

Ĝ[i] = (G ∗ H)[i] =
i+n∑

j=i−n

G[j]H[i − j], i ∈ [0, N − 1]. (8.5)

Figure 8.11 shows the operation implied by Equation 8.5 for a kernel of
width w = 3 and an image scanline of width N = 7. The Figure clearly
shows the weighting process, and emphasizes that since the array indexing
for H is reversed from the index of the summation, we have to think of the
kernel as being reflected about its center before being superimposed over
the image.

All of this can be extended to two dimensions in a straightforward way.
Assume that the kernel H is a rectangular array of width w = 2n + 1 and

8.2. LOCAL FILTERS 13

Input Output

H 1/4 1/2 1/4

1 0 -1

-1 0 1 2 3 4 5 6 7

G 3 3 2 4 2 1 3 1 1

0 1 2 3 4 5 6

G*H 11/4 11/4 3 9/4 7/4 2 3/2

reflectionreflection

Figure 8.11: Convolution G ∗ H

height h = 2m + 1, and that the image G is of width M and height N .
Then we may write

Ĝ[i, j] = (G∗H)[i, j] =
i+m∑

l=i−m

j+n∑
k=j−n

G[l, k]H[i−l, j−k], i ∈ [0,M−1], j ∈ [0, N−1].

(8.6)
Equation 8.6 assumes that two-dimensional array indexing is row major,
where the first index is the row (scanline) index and the second is the
column index.

If, for some reason, it is desired to use a non-rectangular kernel, this
can be modeled by making the kernel H a rectangle, but filling its entries
with 0’s outside of the boundary of the desired kernel shape.

A final note on convolution kernels has to do with kernel construction
and efficiency of processing. Many of the important convolution kernels
have the separability property that they can be represented as the outer
product of two one dimensional vectors. If we take the 1-dimensional con-
volution kernel H1 and express it as the column vector H1, then the matrix

H2 = H1Ht
1,

can be used as the 2-dimensional convolution kernel H2. A example would
be the 1-dimensional tent filter kernel

1 2 1

which can be used to construct the 2-dimensional tent filter kernel⎡
⎣ 1 2 1

2 4 2
1 2 1

⎤
⎦ =

⎡
⎣ 1

2
1

⎤
⎦ [

1 2 1
]
.

Thus, if we can imagine a 1-dimensional filter and its properties, we can
often easily create a 2-dimensional filter that will give similar results.

14 CHAPTER 8. FILTERING

Along with ease of construction, the seperability property leads to an
important efficiency consideration. This is that we can get the same result
by filtering twice using the 1-dimensional filter as we would get by applying
the 2-dimensional filter once. If the filter kernel is small, this has no obvious
advantages but can have a real effiency payoff for large kernels. Consider
a square filter kernel of width w. To filter an image using this kernel
requires w2 operations per pixel. If the kernel were seperable, then an
alternative would be to process the scanlines of the image using the 1-
dimensional factor of the kernel to produce an intermediate image, and then
process the columns of the intermediate image using the same 1-dimensional
kernel. Now, the 1-dimensional convolution process takes only w operations
per pixel and it is done twice, requiring a total of 2w operations. Using
the seperability property results in a filtering algorithm whose time grows
only linerally with the size of the kernel, whereas the direct 2-dimensional
convolution takes time that grows with the square of w. There is clearly a
big speed advantage as w becomes large.

8.2.4 Important convolution filters

There are two main categories of convolution filter. Those that tend to
smooth or blur the image are known as low-pass filters and those that tend
to enhance edges, noise and detail are known as high-pass filters. In gen-
eral, a low-pass filter is typified by a kernel dominated by positive weights,
whereas a high-pass filter will have more of a balance between positive and
negative weights. To gain an intuitive feeling for this terminology, think of
an image of the surface of a pond covered with ripples of varying size. There
are large smooth ripples covering large areas, and smaller ripples riding on
top of the bigger ones. The large ripples provide the general contour to the
water’s surface and the little ones provide the detail to the surface. What
a low-pass filter does is that it tends to remove detail by averaging over a
local area, analogous to letting only the large smooth ripple through. What
a high-pass filter does is that it tends to flatten out large ripples while en-
hancing the the small ones. They do this by taking differences over a local
area, so that the output in a region of nearly identical values goes to zero,
while the output in a region with rapidly varying detail will be enhanced.

An important class or family of low-pass or smoothing filters can be
obtained by starting with a 1-dimensional box or pulse filter kernel of width
three,

1 1 1

Convolving with this box filter yields the simple average of the three pixels
in a scanline neighborhood. Figure 8.12a shows this filter kernel graphed.

8.2. LOCAL FILTERS 15

This can be extended to the 2-dimensional filter kernel

1 1 1
1 1 1
1 1 1

by the principle of seperability. It is easy to verify for yourself that if a
scanline were convolved with this kernel, and then the resulting scanline
were convolved with this kernel again, that the result would be the same
as if the original scanline had been convolved with the kernel

1 2 3 2 1

This is simply the convolution of the original kernel with itself. This kernel
has the shape shown in Figure 8.12b, and is known as the tent filter. What
it does is to apply linearly decreasing weights to pixels with distance from
the center. Again, by the separability principle it can be used to form the
2-dimensional filter

1 2 3 2 1
2 4 6 4 2
3 6 9 6 3
2 4 6 4 2
1 2 3 2 1

The final filter kernel shown in Figure 8.12c is the result of convolving the
box kernel with itself two more times. The kernel is bell shaped, and is
given by

1 4 10 16 19 16 10 4 1

which can again be extended to 2-dimensions by separability. Further rep-
etitions of convolution by the box kernel will tend more and more towards
a gaussian curve.

1

0

a) box filter

1

0

2

3

b) tent filter

4

0

8

12

16

20

c) bell filter

Figure 8.12: Filters Formed From Successive Convolution of the Box Filter

The filters resulting from successive convolutions of the box filter tend
to give better image smoothing results than a simple box filter of the same

16 CHAPTER 8. FILTERING

width. Figure 8.13 shows how these filters compare on an image containing
a white square on a black background. Figure 8.14 makes the same com-
parisons on an image consisting of a series of vertical lines, and Figure 8.15
makes comparisons on a ripple image. In each of these figures image a) is
the original image and image b), c) and d) are versions of image a) filtered
by box filters of kernel width 3, 5 and 9 respectively. Image e) is filtered
with a tent filter of width 5 and should be compared with image c). Image
f) is filtered with a bell-shaped filter of width 9 and should be compared
with image d).

There is a noticable improvement in image quality in the bottom row,
with edges smoothly and cleanly blurred rather than blended together with
the muddy appearance visible in the second row. This is especially apparent
when comparing images d) and f) in Figures 8.14 and 8.15. Another thing to
note is that a simple box filter has a strong directional bias in the horizontal
and vertical directions that is largely corrected in the higher order filters.
This is most obvious when comparing images d) and f) in Figure 8.15.

Figure 8.15 is an especially useful image in demonstrating why this fam-
ily of filters are called low-pass filters. In the center, where the ripple size
is large, there is very little difference between images a) and f). How-
ever, in the corners, where the ripples are small and closely spaced, there
is a marked blur and decrease in intensity. The low-pass filter passes the
low-frequency (high-wavelength) ripples relatively unchanged, but nearly
eliminates the high-frequency (low-wavelength) ripples.

The final filter to be considered here is the high-pass filter with the
kernel

1 1 1
1 -8 1
1 1 1

This filter acts to suppress large areas of uniform or smoothly varying color,
while emphasizing edges, fine texture, and noise. Because the sum of the
kernel weights is 0, an area of constant color will result in a filter output
of 0. However, along edges or wherever the image has high detail the filter
output will be a large positive or negative value. Figure 8.16 was made
using this high-pass filter.

The images a), c) and e) are original unfiltered images and images b),
d) and f) are the corresponding high-pass filtered images. Due to the high-
pass filtering, only the edges in image a) pass through to image b). Image
d) replaces each black/white or white/black boundary in image c) with
a thin line, and replaces each black or white interior with black. Image
f) is perhaps the most interesting, especially compared with the low-pass
filtered image f) in Figure 8.15. Here the smooth low-frequency ripples in

8.2. LOCAL FILTERS 17

a)

c)

e)

b)

d)

f)

Figure 8.13: Square Image Low-Pass Filtered Versions

18 CHAPTER 8. FILTERING

a)

c)

e)

b)

d)

f)

Figure 8.14: Vertical Line Image and Low-Pass Filtered Versions

8.2. LOCAL FILTERS 19

a)

c)

e)

b)

d)

f)

Figure 8.15: Ripple Image and Low-Pass Filtered Versions

20 CHAPTER 8. FILTERING

the center of the image are suppressed, leaving only the effects of the fine
high-frequency ripples in the corners.

Note that since the filter can produce negative as well as positive values,
filter outputs must be adjusted to the range of the framebuffer. The filtered
images in Figure 8.16 were made by scaling the absolute value of the filter
output to fit the range of allowable values. Another approach would have
been to compute the output image and then normalize the result.

There are many other possibilities for convolution filters. These include
filters that do a combination of low and high-pass filtering, thus smoothing
the image while emphasizing edges, filters that are directionally sensitive,
emphasizing edges oriented in a particular direction, and filters that detect
and emphasize particular patterns in the image. The convolution filtering
homework assignment will give the student an opportunity to experiment
with some of these filters on their own.

8.2. LOCAL FILTERS 21

a)

c)

e)

b)

d)

f)

Figure 8.16: Original Images and High-Pass Filtered Images

22 CHAPTER 8. FILTERING

Chapter 9

Image Warps

The word warp brings mental images of large shape distortions, but the
technical term image warp is used to refer to any transformation on an
image that changes any of its geometric properties. Thus a transformation
that simply changes the size of an image and a transformation that makes
complex twists and bends to an image are both referred to as warps. Other
image operations, even ones that make drastic changes, are not referred
to as warps as long as they only change non-geometric attributes such as
color, texture, graininess, etc.

We often refer to the operation that does the warp as a map or function
that sends an input image into a warped output image. To nail this idea
down more precisely, let us start by measuring the input image in coordi-
nates (u, v), and our resulting warped image in coordinates (x, y). Then any
warp can be thought of as a mapping that sends each coordinate pair (u, v)
into a corresponding pair (x, y). Any such map can be expressed as two
functions, X that determines the transformed x coordinate from (u, v), and
Y that determines the transformed y coordinate from (u, v). This concept
is illustrated in Figure 9.1, and is written mathematically as

x = X(u, v),
y = Y (u, v),

or in vector notation as [
x
y

]
=

[
X(u, v)
Y (u, v)

]
. (9.1)

1

2 CHAPTER 9. IMAGE WARPS

[X(u,v), Y(u,v)]

u

v

Input
Image

����
����
����
����
����

x

y

Warped
Image

(u0,v0) (x0,y0)

Figure 9.1: Image Map defined by functions X(., .) and Y (., .)

9.1 Forward Map

The function pair [X(), Y ()] defines what is known as a forward map from
the input image to output image. If the input image were continuous, and
the forward map were reasonably smooth (i.e. it had no discontinuities), it
would suffice to allow one to “paint in” the warped image from the input
image. For each coordinate pair (u, v) in the input image, we would simply
color the point [X(u, v), Y (u, v)] in the output image the same color as the
point (u, v) in the input image. However, if you reflect a bit you will see that
this process is only of hypothetical interest, as it implies that we paint an
infinitely finely represented image into another infinitely finely represented
image using an arbitrarily large number of painting steps – it works great
but it takes forever!

Realistically, digital images are not infinitely fine continuous represen-
tations but in fact consist of a finite number of discrete samples. We view
an image by spreading the color of each sample over a small area – so that
each sample corresponds with a pixel when we view the image. This seems
to solve our problem, and allows us to write the simple algorithm

for(v = 0; v < in_height; v++)
for(u = 0; u < in_width; u++)

Out[round(X(u,v))][round(Y(u,v))] = In[u][v];

that will perform the forward map with only one operation per pixel in
the input image. Note that the round() operations in the assignment
statement are necessary to provide integer pixel coordinates. Unfortunately,
the application of this simple forward map algorithm to a sampled image
will result in the kinds of situations shown in Figure 9.2. The output image
will be left with “holes” (i.e. pixels with unknown values) where the output
is scaled up compared with the input, and multiple pixel overlaps where
the output is scaled down with respect to the input.

9.2. INVERSE MAP 3

In Out

[X(), Y()]

11,
21

31

12

13

22

23

32

33

?

? ? ?

?

?

?

?

?

?

?

?

?

?

??

?

?

? ? ?

?

???

? ?

?
11 12 13

21 22 23

31 32 33

Figure 9.2: Forward Map Leaves Holes and Overlaps

The problem is that each pixel in the input image represents a finite
(non-zero) area and actually projects an area of the input image onto the
output, as shown in Figure 9.3. If our forward mapping algorithm carefully
projected each pixel onto the output, we would see that each input pixel
might fully cover some output pixels and partially cover several other output
pixels, or it might only partially cover a single pixel. If we did this kind of
projection, saving the percentage coverage of each output pixel by the input
pixels, we could use these percentages to compute a weighted average color
for each output pixel. This would give us an output image without holes
or overlaps. But, the calculation of the correct percentages could get very
complex, especially if the forward map is highly nonlinear (i.e. straight
lines get mapped to curved lines). If the map is linear, a simple way to
do the projection of a pixel is to project each of its four corners and then
connect these projected corners by straight lines. However, if the mapping
is non-linear, we would have to resort to other methods to get accurate
results, such as mapping many sample points around the pixel contour. No
matter what, this method is bound to be slow to compute and much harder
to implement than our original simple pixel-to-pixel algorithm.

9.2 Inverse Map

The problems with the forward image mapping process can be solved by
simply inverting the problem, turning it into an inverse map. Instead of
sending each input pixel to an output pixel, we look at each output pixel
and determine what input pixel(s) map to it, as shown in Figure 9.4. To
do this we need to invert the mapping functions X and Y . We will name
these inverse mapping functions U(x, y) and V (x, y), and define them as

u = U(x, y),

4 CHAPTER 9. IMAGE WARPS

Input Pixel

����
����
����
����

Output Pixels

������
������
������
������
������
������

[x(), Y()]

Figure 9.3: Projection of pixel area onto output raster

v = V (x, y),

or in vector notation as [
u
v

]
=

[
U(x, y)
V (x, y)

]
, (9.2)

with U and V chosen such that

u = U [X(u, v), Y (u, v)],
v = V [X(u, v), Y (u, v)]. (9.3)

In other words, the pair [U(), V ()] is chosen such that it exactly inverts
or “undoes” the mapping due to the pair [X(), Y ()]. Thus, if one samples
the output image at point (x, y), then (u, v) = [U(x, y), V (x, y)] gives the
coordinates (u, v) in the input image that map to position (x, y) in the
output. As in the forward map, we have to round to give integer pixel
coordinates, but here we round the coordinates into the input image, not
the output image. Thus, even with a sampled digital image, we can compute
our output image from the input image using the inverse map, without fear
of holes or overlaps in the output image. The mapping algorithm is simply

for(y = 0; y < out_height; y++)
for(x = 0; x < out_width; x++)

Out[x][y] = In[round(U(x,y))][round(V(x,y))];

The inverse mapping method is simple and fast to compute, and thus
is used extensively in most image warping tasks such as morphing and 3D
texture mapping. It also has some nice features, such as the ability to
sample through a mask to provide automatic clipping of the output image,
as shown in Figure 9.5.

9.3. WARPING ARTIFACTS 5

In Out

[U(), V()]

21

31

12

13

22

23

32

33

11

12 13 13

13

13

23

23

33

33

33

23

13

13

1212

21

31

31 32 32

32

222222

22 22

11
11 12 13

21 22 23

31 32 33

Figure 9.4: Inverse Map gives Complete Covering

������
������
������
������
������

no sample,
clip mask

sample

Figure 9.5: Inverse Mapping Through a Clip Mask

9.3 Warping Artifacts

However, nothing comes for free and in fact the inverse mapping process,
while solving the serious problems of the forward map, still leaves us with
artifacts that can degrade output image quality. These artifacts are due to
the fact that in dealing with digital images we are dealing with sampled,
not continuous, data. We will treat this issue in detail later, but for now it
is enough to know that they fall into two important categories:

• aliasing artifacts caused by sampling the input too coarsely in some
places, leading to missed features and unwanted patterning (Fig-
ure 9.6a) – aliasing will occur where a region of the output image
is minified (scaled down) with respect to the corresponding region of
the input image.

• reconstruction artifacts caused by using too crude a method (psf)
to reconstruct the area around the input pixel, leading to staircasing
or “jaggies” in the output (Figure 9.6b) – reconstruction artifacts will
appear where a region of the output image is magnified (scaled up)
with respect to the corresponding region of the input image.

6 CHAPTER 9. IMAGE WARPS

We can minimize aliasing by doing a careful job of smoothing the input
image before we sample it to produce the output image. We can mini-
mize reconstruction artifacts by using a more sophisticated reconstruction
scheme than the square flat areas that we get with pixels. However, these
issues will require a careful treatment and we will not begin to build up the
necessary tools until the next chapter.

input image output aliased image

output grid over
input image

a) aliasing artifacts

b) reconstruction artifacts

Figure 9.6: Aliasing and Reconstruction Artifacts

9.4 Affine Maps or Warps

An affine map on an image is of the general form[
x
y

]
=

[
a11u + a12v + a13

a21u + a22v + a23

]
.

9.4. AFFINE MAPS OR WARPS 7

In other words

X(u, v) = a11u + a12v + a13,

Y (u, v) = a21u + a22v + a23,

where the coefficients aij are constants. Affine maps have several nice
properties. They always have an inverse (except in some uninteresting
degenerate cases), and they can be represented in matrix form. The map
above can be written⎡

⎣ x
y
1

⎤
⎦ =

⎡
⎣ a11 a12 a13

a21 a22 a23

0 0 1

⎤
⎦

⎡
⎣ u

v
1

⎤
⎦ , (9.4)

where a 1 is padded onto the end of each vector to allow for the translation
constants a13 and a23. Multiplying the top row of the matrix by the vector,
one can see that the effect of the constant a13 is to translate the x coordinate
by an amount equal to the value of a13, i.e.

x = a11u + a12v + a13 =
[

a11 a12 a13

] ⎡
⎣ u

v
1

⎤
⎦ . (9.5)

We have already seen some of the important affine transformations when
we studied PostScript. These were scale, translate and rotate. An addi-
tional, highly useful, affine transformation is shear. In the matrix form of
Equation 9.4 these transformations are:

• scale (x, y) = (a11u, a22v)

⎡
⎣ a11u

a22v
1

⎤
⎦ =

⎡
⎣ a11 0 0

0 a22 0
0 0 1

⎤
⎦

⎡
⎣ u

v
1

⎤
⎦ 1

1

a11

a22

• translation (x, y) = (u + a13, v + a23)⎡
⎣ u + a13

v + a23

1

⎤
⎦ =

⎡
⎣ 1 0 a13

0 1 a23

0 0 1

⎤
⎦

⎡
⎣ u

v
1

⎤
⎦

(0,0)
(a13,a23)

8 CHAPTER 9. IMAGE WARPS

• rotation (x, y) = (u cos θ − v sin θ, u sin θ + v cos θ)⎡
⎣ u cos θ − v sin θ

u sin θ + v cos θ
1

⎤
⎦ =

⎡
⎣ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎤
⎦

⎡
⎣ u

v
1

⎤
⎦

Θ

• shear (x, y) = (u + a12v, a21u + v)

⎡
⎣ u + a12v

a21u + v
1

⎤
⎦ =

⎡
⎣ 1 a12 0

a21 1 0
0 0 1

⎤
⎦

⎡
⎣ u

v
1

⎤
⎦

u1

v1

a12v1

a21u1

The structure of the scale, translation and shear transforms is reason-
ably obvious. The derivation of the rotation transform goes as follows.
Refer to Figure 9.7 which shows the rotation of point (x0, y0) through an-
gle θ to make new point (x1, y1). Since the rotation is about the origin,
both points are at distance r =

√
x2

0 + y2
0 =

√
x2

1 + y2
1 from the origin. The

initial angle of rotation of point (x0, y0) from the x axis is α. Then from
the definitions of the sine and cosine functions we have

x0 = r cos α, x1 = r cos(α + θ),
y0 = r sin α, y1 = r sin(α + θ).

The well known trigonometric identity

cos(α + θ) = cos α cos θ − sin α sin θ,

may be multipled by r to yield

r cos(α + θ) = r cos α cos θ − r sin α sin θ,

so that by the definitions of x0 and x1 above we may obtain

x1 = x0 cos θ − y0 sin θ.

Likewise, the identity

sin(α + θ) = sin α cos θ + cos α sin θ.

may be multiplied by r to yield

r sin(α + θ) = r sin α cos θ + r cos α sin θ,

so that by the definitions of y0 and y1 above we may obtain

y1 = y0 cos θ + x0 sin θ

9.5. COMPOSING AFFINE WARPS 9

x

y

r

α

Θ

(x1, y1)

(x0, y0)

Figure 9.7: Rotation of a Point Around the Origin

9.5 Composing affine warps

In situations where one wants to do a series of affine transformations to one
image, the matrix representation of the transform gives us an easy way to
compose the transforms.

Let S be a scale, T a translation, R a rotation, and H a shear matrix.
Let’s do a rotation, followed by a scale, followed by a translation

1. R

⎡
⎣ u

v
1

⎤
⎦ =

⎡
⎣ u′

v′

1

⎤
⎦

2. S

⎡
⎣ u′

v′

1

⎤
⎦ =

⎡
⎣ u′′

v′′

1

⎤
⎦

3. T

⎡
⎣ u′′

v′′

1

⎤
⎦ =

⎡
⎣ u′′′

v′′′

1

⎤
⎦.

This sequence of operations can be written in one equation as

T (S(R

⎡
⎣ u

v
1

⎤
⎦)) =

⎡
⎣ u′′′

v′′′

1

⎤
⎦

but by the associative law, this gives the same result as

((TS)R)

⎡
⎣ u

v
1

⎤
⎦ =

⎡
⎣ u′′′

v′′′

1

⎤
⎦ .

10 CHAPTER 9. IMAGE WARPS

Thus, we see that we can premultiply the matrices to get a single composite
transformation matrix

M = TSR,

that will do all 3 transformations (warps) in the specified order, in the
single operation

M

⎡
⎣ u

v
1

⎤
⎦ =

⎡
⎣ u′′′

v′′′

1

⎤
⎦ .

This is a wonderfully compact and unified way of constructing a large
variety of very useful warps in a very intuitive way – i.e. by simple composi-
tion of very easy to understand operations. Figure 9.8 shows an example of
a composite operation that first scales an image by 1/2 and then translates
it so that it is still centered in the original image rectangle.

1/2 Scale translate

(0,0) (1,0)

(0,1) (1,1)

(0,0)

(1/2,1/2)

(1/4,1/4)

(3/4,3/4)

S T

S =

[
1/2 0 0
0 1/2 0
0 0 1

]
, T =

[
1 0 1/4
0 1 1/4
0 0 1

]

TS =

[
1 0 1/4
0 1 1/4
0 0 1

][
1/2 0 0
0 1/2 0
0 0 1

]

M = TS =

[
1/2 0 1/4
0 1/2 1/4
0 0 1

]

Figure 9.8: Affine Composition – 1/2 Scale Followed by Centering Trans-
lation

9.6 Forward and Inverse Maps

A matrix M , which is a composite affine transformation built up as the
product of a series of affine transformation matrices, is all we need to com-

9.6. FORWARD AND INVERSE MAPS 11

pute the forward map

M

⎡
⎣ u

v
1

⎤
⎦ =

⎡
⎣ x

y
1

⎤
⎦ .

Thus the forward map is implemented by simply multiplying the matrix M
by the pixel coordinates (u, v) of each pixel in the input image to produce
transformed pixel coordinates (x, y) in the output image.

But, we already know that a forward map is not really what we want,
as it will produce holes and overlaps in the output image. Fortunately, it is
relatively easy to find the correct inverse map for any affine transformation
expressed as a matrix M . All that we need to do is to find the matrix M−1

with the property given by Equations 9.3 that

M−1M

⎡
⎣ u

v
1

⎤
⎦ =

⎡
⎣ u

v
1

⎤
⎦ ,

i.e. that M−1 exactly cancels the effect of M . Now when applied directly
to output pixel coordinates (x, y), M−1 gives us the coordinates (u, v) in
the input image that map to (x, y) under the forward map M ,⎡

⎣ u
v
1

⎤
⎦ = M−1

⎡
⎣ x

y
1

⎤
⎦ .

If we can find such a matrix, the inverse map would be implemented by
simply multiplying the matrix M−1 by the pixel coordinates (x, y) of each
pixel in the output image to produce transformed pixel coordinates (u, v)
in the input image.

The matrix M−1 is known (not surprisingly) as the inverse of the orig-
inal matrix M . For a 3 × 3 matrix M , of the form

M =

⎡
⎣ a11 a12 a13

a21 a22 a23

0 0 1

⎤
⎦ ,

its inverse M−1 is given by

M−1 =
1

a11a22 − a12a21

⎡
⎣ a22 −a12 a12a23 − a13a22

−a21 a11 −a11a23 + a13a21

0 0 a11a22 + a12a21

⎤
⎦ .

Thus, the terms of the inverse are easy to compute from the terms of the
original affine transformation matrix, and it is a simple matter to write a C

12 CHAPTER 9. IMAGE WARPS

function that, given the affine transformation matrix M , returns its inverse
M−1.

In the next section we will begin to explore a class of nonaffine image
warps that can nevertheless be expressed as matrices. We will again have
the problem of determining the inverse matrix, but the compact formula
above will not hold, since the bottom row of the forward matrix will not,
in general, be simply

[
0 0 1

]
. In this case we will need to have a

convenient algorithm for computing the inverse of such a matrix. The
general formula for such an inverse is

M−1 =
A(M)
|M | ,

where |M | is the determinant of the matrix M , and A(M) is the adjoint of
M . Students with mathematical curiosity can check out a Linear Algebra
book for details on how the adjoint and determinant are computed, or wait
for the appendix to these notes which will be done in about a year!

9.7 Perspective Warps

Perspective warps are popular and useful warps that give the illusion that
the image is receding off into space, as if it had been rotated out of the
picture plane. Think of the image being painted onto a plane in three-
dimensional space, and imagine a second plane, the plane of projection,
which cuts through the image plane. A perspective warp can be thought of
as a three-dimensional rotation of the image about the line of intersection
between the two planes. It distorts the image’s shape in such a way that
groups of parallel lines that are also parallel to the line of intersection
remain parallel to each other, but other groups of parallel lines recede to
a common vanishing point. Figure 9.9 shows an example of a perspective
warp in which it appears that the image has been rotated around its central
horizontal axis. Note that all horizontal lines remain parallel to each other,
but that the vertical lines (if extended upwards) would all intersect at
a common point. Horizontal lines rotated to be “nearer” to the viewer
appear longer than in the original image, and horizontal lines rotated to be
“farther” from the viewer are shorter. This change in scale with perceived
distance is known as foreshortening, and helps to create an illusion of depth
in the perspective image.

Perspective warps extend the affine transforms by adding a non-linear
scaling after the matrix multiplication, and make use of the two terms in
the third row of the transform matrix that are 0 in the affine warps. They
are obtained by setting the terms a31 and/or a32 to non-zero values. When

9.7. PERSPECTIVE WARPS 13

Figure 9.9: A Perspective Warp

this is done, the product of the matrix by pixel coordinates yields a result
where the third coordinate of the resulting vector is not one. This can be
seen in the example⎡

⎣ 1 0 0
0 1 0

a31 a32 1

⎤
⎦

⎡
⎣ u

v
1

⎤
⎦ =

⎡
⎣ u

v
a31u + a32v + 1

⎤
⎦ .

It is common practice to call this third element the w-coordinate of the
vector. For all of the affine warps, if the w-coordinate was one before the
warp, it remained at one after the warp. For the perspective warps, w
is in general not one after the matrix multiplication is done. In fact, the
w coordinate is related to the distance of the point (u, v) in the rotated
picture plane from the original picture plane – i.e. it can be thought of as
a non-linear measure of the distance of the pixel from the viewer.

Abstractly, when we originally formed the vector

[
u
v
1

]
from the two

dimensional coordinate pair (u, v), we were treating each two dimensional
point as if it were a point in three-dimensional (u, v, w) space, lying on the
plane w = 1. This is shown pictorially in Figure 9.10, and is known as a
homogeneous coordinate system (i.e. a system in which every point has an
identical third coordinate).

Returning to the perspective transformation process, we noted that after
the matrix multiplication, our homogeneous image coordinates no longer
had a third coordinate of one. To complete a perspective warp, and restore
our points to homogeneous coordinates with w = 1, we follow the matrix
multiplication by a scaling operation. We divide each vector by its own w
coordinate, i.e.

1
w

⎡
⎣ u

v
w

⎤
⎦ =

⎡
⎣ u/w

v/w
1

⎤
⎦ .

This can be seen to be equivalent to connecting the three-dimensional point

14 CHAPTER 9. IMAGE WARPS

u

v

w

w = 1
plane

(0,1,1)

(-1,2,1)

2

1-1

1

Figure 9.10: Homogeneous Coordinates Lie on the Plane w = 1

with the origin by a line, and determining the intersection of that line with
the plane w = 1.

So, the process for computing the forward transformation for a perspec-
tive warp is to 1) multiply each pair of image coordinates by the perspective
warp matrix, then 2) scale each coordinate triple by the reciprocal of its
own w coordinate. An example of this process is worked out in Figure 9.11,
where the perspective warp matrix is

P =

⎡
⎣ 1 0 0

0 1 0
1 0 1

⎤
⎦ .

Note in this example, that no matter how large u is, the projected u coor-
dinate cannot exceed 1. Similarly, for large u, the projected v coordinate
tends towards 0 – i.e. the vanishing point is at (1, 0).

Unlike the affine warps, however, the perspective warp involves a non-
linear operation (dividing by w), and so it may be more difficult to find a
suitable inverse function for the inverse mapping operation. Fortunately, it
is possible to find the inverse to within a scale, and this will turn out to be
all that we need. We shall see about this in the next Chapter.

9.7. PERSPECTIVE WARPS 15

(0,1) (1,1)

(0,0) (1,0)

(0,1)

(.5,.5)

(0,0) (.5,0) (1,0)

P =

[
1 0 0
0 1 0
1 0 1

]

P

[
u
v
1

]
=

[
u
v

u + 1

]
=⇒

⎡
⎣ u

u+1
v

u+1

1

⎤
⎦

Figure 9.11: Example Perspective Warp

16 CHAPTER 9. IMAGE WARPS

Chapter 10

Inverse Projective Maps
and Bilinear Maps

10.1 Projective Maps

A useful tool for doing warps would allow the user to change the shape of a
rectangular image by moving corner points, as shown in Figure 10.1. This
would allow us to make any arbitrary shape distortion that preserves linear
edges. The problem is: what is the map from input to output?

u1

u3u0

u2

x0

x3

x2

x1

Figure 10.1: Interactive Image Warping by Moving Corners of Rectangle

The answer is that the map

M

⎡
⎣ u

v
1

⎤
⎦ =

⎡
⎣ u′

v′

w′

⎤
⎦ =⇒

⎡
⎣ x

y
1

⎤
⎦ , (10.1)

1

2CHAPTER 10. INVERSE PROJECTIVE MAPS AND BILINEAR MAPS

with
x = u′/w′, y = v′/w′,

that we used to implement a perspective transform, will in fact warp a
rectangle into an arbitrary convex quadrilateral. We call this entire class
of operations the projective transforms.

The elements of the transformation matrix M for a general quadrilateral
warp are not hard to compute. It turns out that the lower righthand corner
term a33 of M simply acts to provide a uniform scaling. Since this is
redundant with the scaling effects of the other diagonal terms a11 and a22,
we can arbitrarily set a33 to one without any loss of generality. Having
done this, each application of Equation 10.1 to a vertex ui of the starting
rectangle gives two equations

xi =
a11ui + a12vi + a13

a31ui + a32vi + 1
,

yi =
a21ui + a22vi + a23

a31ui + a32vi + 1
,

for vertex xi of the corresponding vertex of the warped quadralateral. Since
we have four corresponding coordinate pairs (ui, vi), (xi, yi) this gives us the
eight necessary correspondences to solve for the eight unknown coefficients
aij of the transformation matrix M .

10.2 Inverse Projective Maps

For purposes of image warping we have defined a projective map to be any
map that can be defined by a 3×3 homogeneous transformation matrix. The
map itself consists of the following steps for transforming a two-dimensional
coordinate pair (u, v):

1. extend (u, v) to a three-dimensional homogeneous vector

(u, v) −→
[

u
v

]
=⇒

⎡
⎣ u

v
1

⎤
⎦

2. multiply by the transformation matrix to get the transformed homo-
geneous vector

M

⎡
⎣ u

v
1

⎤
⎦ =

⎡
⎣ u′

v′

w′

⎤
⎦

10.2. INVERSE PROJECTIVE MAPS 3

3. scale the result by 1/w′ (project onto the plane w = 1) and discard
the w coordinate, giving a transformed 2D coordinate pair (x, y)

1/w′

⎡
⎣ u′

v′

w′

⎤
⎦ =

⎡
⎣ u′/w′

v′/w′

1

⎤
⎦ =⇒

[
u′/w′

v′/w′

]
−→ (x, y).

Now, this whole process is invertible, to within a scale applied to the
matrix M . If we compute M−1 (or any scale of M−1), then if we invert
the process for the forward map, we get the inverse map:

1. extend (x, y) to three-dimensional homogeneous form

(x, y) −→
[

x
y

]
=⇒

⎡
⎣ x

y
1

⎤
⎦

2. multiply by M−1

M−1

⎡
⎣ x

y
1

⎤
⎦ =

⎡
⎣ x′′

y′′

w′′

⎤
⎦

3. scale by 1/w′′ and discard the w coordinate

1/w′′

⎡
⎣ x′′

y′′

w′′

⎤
⎦ =

⎡
⎣ x′′/w′′

y′′/w′′

1

⎤
⎦ =⇒

[
x′′/w′′

y′′/w′′

]
−→ (u, v)

Note, in the above process, that any arbitrary scale factor is “washed
out” when we scale by 1/w′′ in the last step. Thus, although the general
projective mapping process contains a non-linear operation (divide by w), it
is still possible to use a simple matrix inverse to compute the inverse map.
This is of great importance to image warping algorithms, since it means
that for any projective map we can always find an inverse map, making it
a simple matter to use an inverse mapping process to compute the warped
image.

Figure 10.2 gives the computation of the inverse of a general 3 × 3
projective transformation matrix. It is taken directly from the Wolberg
text on pages 52-53. One important note is that since we just need M−1 to
within a scale, we can skip the divide by the determinant |M |, and simply
use the adjoint A(M) in place of the inverse. This gives a nice time savings
in the original calculation of the inverse.

4CHAPTER 10. INVERSE PROJECTIVE MAPS AND BILINEAR MAPS

M =

⎡
⎣ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦

|M | = a11a22a33+a12a23a31+a13a32a21−a13a22a31−a12a21a33−a11a32a23

A(M) =

⎡
⎣ a22a33 − a23a32 a13a32 − a12a33 a12a23 − a13a22

a23a31 − a21a33 a11a33 − a13a31 a13a21 − a11a23

a21a32 − a22a31 a12a31 − a11a32 a11a22 − a12a21

⎤
⎦

M−1 =
A(M)
|M |

Figure 10.2: 3 × 3 Matrix Inverse

10.3 Bilinear Interpolation

We have already seen that a projective warp can map a rectangular image to
any quadrilateral shape. If the warp maps a rectangle into a parallelogram,
then the projection is a simple affine projection with elements a31 and a32

of matrix M both set to zero. However, if these terms are non-zero, we
have a perspective warp, and the resulting shape is a quadrilateral whose
opposite sides are not necessarily parallel. This is fine if we want a true
perspective of the original image, but there are times when we would like
to do a warp which preserves uniform spacing between image features. A
perspective warp will have a foreshortening effect, making image features
shrink as they “recede” away from the viewer. This effect can be seen in
Figure 10.3.

Often this foreshortening effect is not desired, and a mapping like that
shown in Figure 10.4 would be preferred. This kind of map is known as
a bilinear warp. Just like a perspective warp, it will allow for arbitrary
mapping from any quadrilateral shape to any other quadrilateral shape,
but will preserve spacing.

The bilinear warp uses linear interpolation to map from the (u, v) source
image plane to the (x, y) destination image plane. It is obtained by the
following construction:

10.3. BILINEAR INTERPOLATION 5

y

x

v

u

Figure 10.3: Foreshortening due to Perspective

y

x

v

u

Figure 10.4: Even Spacing under Bilinear Warp

1. number the corners of the source image, and the corresponding cor-
ners of the destination image with the same subscripts, as shown in
Figure 10.5.

Now, for each point (u, v) in the source image, find the corresponding point
(x, y) in the destination image, as shown in Figure 10.6:

2. measure the fraction of distance u along the u-axis of the source, and
the same fraction along the [x0, x3] and [x1, x2] edges of the destina-
tion, to place points x03 and x12.

3. measure the fraction of distance v along the v-axis, and the same
fraction along the [x0, x1] and [x3, x2] edges, to place points x01 and
x23.

4. the lines [x03, x12] and [x01, x23] intersect at the point (x, y) that the
input point (u, v) maps to.

Although the bilinear map eliminates the foreshortening effect, it is not
the best for all purposes. Its main problem is that, unlike the perspective
warp which maps straight lines to straight lines, the bilinear warp maps
straight lines to curved (parabolic) lines. This can be seen in Figure 10.7,

6CHAPTER 10. INVERSE PROJECTIVE MAPS AND BILINEAR MAPS

v

u

y

x
x3

u1

u0

u2

u3

x0

x2x1

Figure 10.5: Establishing Correspondence Between Corners

v

u

u1

u0

u2

u3
2/3 1/3

1/3

2/3

(u,v)

y

x x3

x0

x2
x1

2/3

1/3

2/3

1/3

x01

x12

x03

x23
(x,y)

Figure 10.6: Example Map of Point (u, v) = (2/3, 2/3) to Point (x, y)

which shows how the diagonals of a rectangle are mapped under both per-
spective and bilinear maps. The mapping of straight lines to curved lines
can lead to quite annoying image distortions for certain kinds of images.

10.3.1 Algebra of Bilinear Map

In order to fully understand the bilinear warp, it is necessary to explore its
algebra. For simplicity, we will first normalize the coordinates of the input
image to the range [0, 1]. If the original coordinates (s, t) are on the range

s0 ≤ s ≤ s1, t0 ≤ t ≤ t1,

then let
u =

s − s0

s1 − s0
,

and
v =

t − t0
t1 − t0

.

10.3. BILINEAR INTERPOLATION 7

Perspective Warp

y

x

v

u

Bilinear Warp

y

x

v

u

Figure 10.7: Mapping of Diagonals Under Perspective and Bilinear Warps

Now the u and v coordinates can be thought of as fractions of the distance
along the original s and t axes.

Note that in the original construction of the bilinear map, steps 2, 3
and 4 are equivalent to constructing the line [x03, x12] and then measuring
fraction v along the line from x03. This is given by the equations for the
forward map:

x03 = (x3 − x0)u + x0,

x12 = (x2 − x1)u + x1,

and
x = (x12 − x03)v + x03,

where each vector equation really stands for two scalar equations, one for
the x coordinate and one for the y coordinate. To compute the inverse
map, first combine these six equations into the two equations

x = a0 + a1u + a2v + a3uv

y = b0 + b1u + b2v + b3uv,

where a0 = x0, a1 = x3 −x0, a2 = x1 −x0, a3 = x2 −x1 −x3 −x0, b0 = y0,
b1 = y3 − y0, b2 = y1 − y0, b3 = y2 − y1 − y3 − y0.

8CHAPTER 10. INVERSE PROJECTIVE MAPS AND BILINEAR MAPS

With some effort, these equations can be solved for u and v to yield

v =
−c1

2c2
± 1

2c2

√
c1

2 − 4c2c0 (10.2)

u =
x − a0 − a2v

a1 + a3v
, (10.3)

subject to the constraints 0 < u < 1, 0 < v < 1 and where

c0 = a1(b0 − y) + b1(x − a0),

c1 = a3(b0 − y) + b3(x − a0) + a1b2 − a2b1,

and
c2 = a3b2 − a2b3.

The decision about adding or subtracting the second term in Equa-
tion 10.2 for v is made by applying the constraints that u and v lie in the
range [0, 1].

10.4 Scanline Approach to Inverse Mapping

Whether we are using a projective map or a bilinear map, we are still
left with the problem of how to efficiently compute the output image from
the input. Inverse mapping is usually the best approach, and this can
be done using a scanline algorithm. First, determine the bounds of the
output pixmap by finding the minimum and maximum x and y coordinates
of the corners, as shown in Figure 10.8. This will have to be done using
the forward map, or may already be known if this is part of an interactive
warping tool.

Now, represent each edge in parametric form. For example, for edge
[x0, x1] we write

x = (x1 − x0)t + x0,

and
y = (y1 − y0)t + y0,

where t is a parameter measuring the fraction of the distance along the edge,
measured from x0. The intersection of this edge with a specific scanline at
y = yi is then given by solving for t

t =
yi − y0

y1 − y0

10.4. SCANLINE APPROACH TO INVERSE MAPPING 9

x0

x1

x2

x3

(xmax,ymax)

(xmin,ymin)

scanline
y = yi

Figure 10.8: Bounding Pixmap Around Corners of Image

and then applying this to the equation for x, giving

x = (x1 − x0)
(yi − y0)
y1 − y0

+ x0,

which is the equation for the x coordinate of the intersection of scanline yi

with the line.
Given this simple way to find the intersection between scanlines and im-

age edges, we can compute the output image with the following algorithm:

for(y = y_min; y < y_max; y++){
list the 2 intersections with scanline y;
sort intersections by x coordinate, giving x_low, x_high;
for(x = x_min; x < x_low - 1; x++)

pixel[x][y] = black;
for(x = x_low; x < x_high; x++){

use inverse map to compute (u,v) coordinates in input image
that correspond to coordinates (x,y) in output image

pixel[x][y] = pixel value at location (u,v) in source image;
}
for(x = x_high + 1; x < x_max; x++)

pixel[x][y] = black;
}

This simple looking algorithm has a few pitfalls. First, x_low and
x_high, as well as u and v should be rounded to the nearest integer value
to form proper indices. Second, care must be taken to deal with situations
when a scanline intersects exactly with a corner, so that only one intersec-
tion is recorded for

10CHAPTER 10. INVERSE PROJECTIVE MAPS AND BILINEAR MAPS

but two or zero intersections are recorded for

If two intersections are recorded, we can draw the corner pixel and if zero
intersections are recorded, we can skip the corner pixel. This can be a
stylistic decision. There are also some nice ways to organize the algorithm
and the data to get some efficiencies (see Homework Nuts and Bolts below).

This approach works for maps from a rectangular image to an arbitrary
quadrilateral or from a quadrilateral to a rectangle (inverse). This leads
to a general quadrilateral to quadrilateral algorithm with an intermediate
rectangular step.

10.5 Homework Nuts and Bolts: Projective
Transformation

10.5.1 Building the transformation matrix M

A composite transformation matrix can easily be built up from a series of
simpler transformations. Start by initializing M to the identity matrix

M =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ .

Then, for each new operation T that is to be concatenated onto the trans-
form, premultiply the matrix M by T , replacing M by the product TM

M ⇐= TM,

10.5.2 Constructing the output pixmap

Let u0, u1, u2, u3 be the coordinates of the four corners of the input image.
Apply transform M to each of these in turn, using the steps of a projective
transformation covered last class. This will give you the output corners x0,
x1, x2, x3, as shown in Figure 10.5.

10.5. HOMEWORK NUTS AND BOLTS: PROJECTIVE TRANSFORMATION11

Now, as long as the transformation M is projective, it is certain that
the minimum and maximum x and y coordinates of the corners x0, x1,
x2 and x3 will determine the bounding box around the output image, as
shown in Figure 10.9. The bounding box can then be used to determine
the necessary width and height of the pixmap for the output image.

x0

x1

x2

x3

y0 = bottom

y3 = top

x1 = left x3 = right

Figure 10.9: Constructing a Bounding Box

10.5.3 Finding the inverse transformation

This is simply the inverse of the matrix M , as given in Figure 10.2.

10.5.4 Constructing an edge table for the inverse map

We color in the output image by using the inverse map to determine which
input pixel maps to each output pixel, by iterating over the output pixels.
This can cause problems for certain inverse maps, which will send pixels
in the output pixmap, that are not within the boundaries of the projected
image outline, back to the input pixmap.

To prevent coloring in output pixels that are outside of the image bound-
ary, you will need to be sure to do the inverse map only on pixels within
the projected image boundary. The most convenient way to do this is with
an edge table.

For each of the projected edges: [x0, x1], [x1, x2], [x2, x3] and [x3, x4]
store the following:

• ymin — minimum y coordinate of the edge

12CHAPTER 10. INVERSE PROJECTIVE MAPS AND BILINEAR MAPS

• ymax — maximum y coordinate of the edge

• dx/dy — inverse of the slope of the edge, e.g., x1−x0
y1−y0

• x0 — x coordinate of the endpoint having y coordinate ymin

Since a horizontal edge, i.e. an edge ij with (yi − yj) = 0, will not
intersect a scanline, each such edge should be discarded. Now, sort the
remaining edges by ymin, breaking ties using dx/dy.

Note: in determining ties and checking for horizontal lines, it is impor-
tant to allow for some roundoff or truncation error in the floating point
numbers. The test x1 == x2 will only be true if x1 exactly equals x2.
Instead, use the test

fabs(x1 - x2) < EPSILON

where EPSILON is some very small number. I would suggest

#define EPSILON l.0e-5

i.e. one hundred thousandth.

10.5.5 Painting in the output image

The first 2 entries in your edge table will mark the leftmost and rightmost
pixels in the projected image on the bottom scan line. For each scan line,
color in black up to the first edge, inverse map between edges, and color in
black from the second edge, as shown in Figure 10.10.

inverse map

black
black

Figure 10.10: Coloring a Scanline in the Output Image

In order to do the bookkeeping on this, with each “active” edge (i.e.
each edge which the current scan line crosses) store the x coordinate of the
crossing point of the scanline with the edge. This is easy to do. At the
start, the crossing point is given by x0. Each time the scanline is advanced,

10.5. HOMEWORK NUTS AND BOLTS: PROJECTIVE TRANSFORMATION13

add dx/dy to the crossing x coordinate – that’s it! The only remaining bit
of bookkeeping is to note when you have reached the top of an “active”
edge. At this point, deactivate the edge, and activate the next edge in the
table.

10.5.6 Data structures and algorithms

The following data structures will be convenient for storing edge informa-
tion:

typedef struct _edge{
int Ymin, Ymax;
int X0;
double dxdy;
double X;

}Edge;

Edge edge_table[4];

The following selection sort algorithm on an array of N integers will put
the smallest value in table[0], the second smallest in table[1], etc.

int table[N], temp;
int i,j, k;

for(i = 0 ; i < N - 1 ; i++){
for(k = i, j = i + 1; j < N; j++)

if(table [j] < table[k])
k = j;

if(k != j){
temp = table[i];
table[i] = table[j];
table[j] = temp;

}
}

14CHAPTER 10. INVERSE PROJECTIVE MAPS AND BILINEAR MAPS

Chapter 11

Filtering to Avoid
Artifacts

11.1 The Warping Process

If you have made some progress on the warping assignment, you will have
noticed some artifacts that are introduced into the warped image. Fig-
ure 11.1 depicts a typical image warp, and shows how the same warp can
produce both maginification and minification in the output image. Where
the warped image is magnified compared with the input, the artifacts are
the result of oversampling. Where the warped image is minified compared
with the input, the artifacts are aliasing errors due to undersampling. In
order to understand where these errors are coming from and how to correct
them, we need to have a better conceptual view of what we are doing when
we warp a digital image.

11.2 Sampling and Reconstruction

First, remember that the original image consists of samples of some real
world (or virtual) scene. Each pixel value is simply a point sample of the
scene. When we view such an image on a screen, we are really viewing
a reconstruction that is done by spreading each sample out over the rect-
angular area of a pixel, and then tiling the image with these rectangles.
Figures 11.2a-c show the steps in the process from sampling to reconstruc-
tion, looked at in one-dimensional form. When viewed from a distance, or
when the scene is sufficiently smooth, the rectangular artifacts in the recon-

1

2 CHAPTER 11. FILTERING TO AVOID ARTIFACTS

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

input output

magnify

minify

same
scale

Figure 11.1: Magnification and Minification in the Same Warp

struction are negligible. However, under magnification they become very
noticeable as jaggies and blockiness in the output. Figure 11.2d shows how
the extra resampling when magnifying results in multiple samples with the
same value, effectively spreading single pixel values in the original image
over multiple pixels in the magnified image.

Lesson 1: To reduce magnification artifacts we need to do a
better job of reconstruction.

11.3 Resampling and Aliasing

When we minify an image, however, the resampling process causes us to
miss many of the reconstructed samples in the original image, leading to
missing details, ropiness of fine lines, and other aliasing artifacts which will
appear as patterning in the output. In the worst case, the result can look
amazingly unlike the original, like the undersampled reconstruction shown
in Figure 11.2e. The problem here is that the resampling is being done too
coarsely to pick up all the detail in the reconstructed image, and worse, the
regular sampling can often pick up high frequency patterns in the original
image and reintroduce them as low frequency patterns in the output image.

Lesson 2: To reduce minification artifacts we must either 1)
sample more finely than once for each output pixel, or 2) smooth
the reconstructed input before sampling.

11.3. RESAMPLING AND ALIASING 3

a) brightness along a scanline across the original scene

b) brightness samples along the same scanline

c) pixel-like reconstruction of original line from the samples

d) resampling under magnification

e) resampling under minification

Figure 11.2: The Sampling, Reconstruction and Resampling Processes

4 CHAPTER 11. FILTERING TO AVOID ARTIFACTS

11.4 Sampling and Filtering

Although we have not yet developed the mathematics to state this pre-
cisely, it will be shown in a later chapter that under certain conditions it is
theoretically possible to exactly recover an original unsampled image given
only the samples in the pixmap. It will be possible to do this when the
original image is smooth enough given the sampling density that we used
to sample the original image to capture it in the pixmap. The criterion,
loosely stated, is that the original image should not have any fluctuations
that occur at a rate greater than 1/2 of the sampling rate. In other words,
if the original image has an intensity change that from dark to light and
back to dark again (or vica versa), that there should be at least two samples
taken in the period of this fluctuation. If we have more, that is even better.
Another way of saying this is that any single dark to light or light to dark
transition should be wide enough that at least one sample is taken in the
transition. This criterion must hold over the whole image, for the shortest
transition period in the image.

If we let the sampling period (i.e. the space between samples) be TS ,
then this is useful in two ways in considering the image warping problem:

1. A perfect reconstruction could be obtained by prefiltering the sampled
image with a filter that smooths out all fluctuations that occur in a
space smaller than 2TS .

2. Aliasing under resampling could be avoided by filtering the recon-
structed image to remove all fluctuations with periods smaller than
twice the resampling period, before doing the resampling.

In simple terms, we need to: 1) Do a nice smooth reconstruction, not the
crude one obtained by spreading samples over a pixel area, and 2) possibly
further smooth the reconstruction so that when we resample, we are always
doing the resampling finely enough to pick up all remaining detail.

11.5 The Warping Pipeline

Conceptually, what we are trying to do when we warp a digital image is
the process diagrammed in Figure 11.3. It consists of three steps:

1. reconstruct a continuous image from the sampled input image, by
filtering out all fluctuations with period less than twice the original
sampling period TS ,

2. warp the continuous reconstruction into a new shape,

11.6. FILTERING AS CONVOLUTION 5

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

reconstruct warp resample

lowpass
filter
uS/2

lowpass
filter
uR/2

discrete
original
image

continuous
reconstructed

image

continuous
warped
image

discrete
warped
image

Figure 11.3: A Conceptual View of Digital Image Warping

3. filter the warped image to eliminate fluctuations with period less than
twice resampling period to be used in the next step, and

4. resample the warped image with a resampling period TR to form a
new discrete digital image.

However, in fact we do not really have any way in the computer of
reconstructing and manipulating a continuous image, since by its nature
everything in the computer is discrete. Now, since the reconstructed and
warped continuous versions of the image never really get constructed, it
makes sense to think of combining the reconstruction and low-pass filtering
operations of steps 1 and 3 into a single step, that somehow would take into
account the warp done in step 2. To understand just how this might work,
it would help to have a view of the filtering process that would operate over
the original spatial domain image, rather than on the image after it has
been transformed into the frequency domain.

11.6 Filtering as Convolution

In order to understand what a filter might look like in the spatial domain,
let us start by looking at the process of reconstruction – remembering that
in the frequency domain this turned out to be a filtering process that dis-
carded high frequencies. To do this we will need to expand our notion of
convolution to include the convolution of continuous functions. Converting
our image samples into pixels – i.e. reconstructing an image from samples
– is mathematically a convolution of the samples with a continuous square
unit pulse function. A one-dimensional, analogy follows.

Define a one-dimensional unit pulse function of width T to be

PT (t) =
{

1, −T/2 < t < T/2
0, otherwise,

6 CHAPTER 11. FILTERING TO AVOID ARTIFACTS

1

T t

PT(t)

a) unit pulse function

t

1

T T

unit
pulse sample

values

sample periodpulse width

b) sliding unit pulse over samples

t

c) resulting reconstruction

Figure 11.4: Reconstruction by Convolution of Samples with Unit Pulse

as shown in Figure 11.4a. Now, think of the pulse as sliding back and forth
along the scanline, as in Figure 11.4b. Wherever you want a reconstructed
value from the samples, simply center the pulse over the point along the
scanline at which you want the image value and select the value of the
sample that the pulse overlaps. Another way of thinking of this is that we
multiply the value of the shifted pulse by all of the samples that it overlaps
and add all of the products. If we choose a pulse whose width is exactly
the same as the sampling period used to capture the original samples, the
non-zero portion of the pulse will overlap only one of the samples at a time,
and the reconstruction process will simply spread each sample value out 1/2
the sampling period T in each direction. This will result in a reconstructed
scanline as shown in Figure 11.2c. The unit pulse serves as a weighting
function, weighting each sample’s contribution to the final reconstruction.
A weighting function used in this way is also known as a convolution kernel.

The convolution process is described mathematically by the integral

fR(t) =
∫ ∞

−∞
fT (λ)h(t − λ)dλ,

11.7. IDEAL VS. PRACTICAL FILTER CONVOLUTION KERNELS 7

where: fR is the reconstructed function, fT is the function f(t) sampled
with sampling period T , h is the convolution kernel, and λ is a shift pa-
rameter that determines where the kernel h is centered.

If fT is zero except at integer multiples of its sampling period T , and
there are N samples numbered 0 through N − 1, then the integral reduces
to the sum

fR(t) =
N−1∑
n=0

fT (nT)h(t − nT).

For example, if T = 1, then

fR(2) = fT (0)h(2)+fT (1)h(1)+fT (2)h(0)+ · · ·+fT (N −1)h[2− (N −1)].

Now, in this example, if the kernel function h is of width 1, then all the
terms in the sum will be zero except the term fT (2)h(0), giving the same
kind of squared off result as in Figures 11.2c and 11.4c.

If we choose the “tent” function of base width two shown in Figure 11.5a
as our convolution kernel h, then doing a convolution as in Figure 11.5b, all
terms would be zero except fT (2)h(0) only if the kernel is centered exactly
over a sample. If we choose a value of t that is not exactly at a sample
point, the tent function will overlap two samples, and we will get a weighted
average of adjacent sample points. For example,

fR(2.5) = fT (2)h(0.5) + fT (3)h(−0.5) = 0.5fT (2) + 0.5fT (3)

This yields a linear weighted reconstruction as shown in Figure 11.5c, es-
sentially connecting the samples by straight lines. Obviously this is a much
“smoother” result than that obtained with the unit pulse kernel, and in
practical applications is often enough to eliminate the most obvious recon-
struction artifacts in a magnified image.

There is a whole science behind selecting and designing convolution
kernels for filtering, and this will be the subject of the following sections.

11.7 Ideal vs. Practical Filter Convolution
Kernels

11.7.1 The Ideal Low Pass Filter

Assume that we have sampled continuous function f(t) with a sampling
interval T , to obtain the sampled signal fT (t). Assuming that the original
continuous signal were smoothed so that it has no fluctuations with size
smaller than 2T , then we know that we should be able to reconstruct f(t)

8 CHAPTER 11. FILTERING TO AVOID ARTIFACTS

t

1

2T

a) unit tent function

t2T T

unit
tent

sample
values

sample periodtent width

1

b) sliding unit tent over samples

t

c) resulting reconstruction

Figure 11.5: Reconstruction by Convolution of Samples with Unit Tent

11.7. IDEAL VS. PRACTICAL FILTER CONVOLUTION KERNELS 9

tT2T

1/T
sincT(t)

Figure 11.6: Unit Sinc Function of Period 2T

exactly. Although the mathematics behind precisely how to do this must
wait for a later chapter, we can, at this point, develop a good working
technique for at least doing a good approximate reconstruction.

It is a well known result in the theory of filtering that an ideal low-pass
filter, that cuts off all fluctuations of period less than 2T is given by the
convolution kernel

h(t) =
sin πt/T

πt
,

where the function sin θ
θ is known as the sinc function. The graph of this

function is shown in Figure 11.6. Now, to filter out fluctuations that are
shorter than 2T we need to convolve with the octopus-like sinc function of
period 2T . This is not such a happy result, because the sinc never goes to
a constant zero value. Thus, we are left with the need to convolve all of
our image samples with a convolution kernel of infinite extent – a bit hard
to do!

11.7.2 Practical Filter Kernels

Thus, practical image filtering cannot be done using the ideal low-pass
filter. However, there are many ways in which we can approximate the
ideal sinc kernel. In fact, the quality of a low-pass filter will be judged by
how nearly it approximates the sinc, recognizing that there is always the
trade-off between wanting the computational speed advantages of a narrow
convolution kernel versus wanting a high quality result. Some of the ways
of approximating the sinc are shown in Figure 11.7. The simplest is to
truncate the sinc spatially as in Figure 11.7a. A second approach is to
use another function that has the same general local shape as the sinc,
such as the spatial pulse and the tent kernels that we discussed in the last
section. Figure 11.7b shows that these can both be seen as approximations
to the sinc, albeit poor ones!. The trick that tends to yield the best tradeoff
between simplicity and quality is to window the sinc by multiplying by a

10 CHAPTER 11. FILTERING TO AVOID ARTIFACTS

smooth function that goes to zero beyond a certain distance, as shown in
Figure 11.7c.

Another technique is to approximate the windowed sinc by a spline
curve. These and other ideas are given a very thorough treatment in Wol-
berg, Chapter 5.

11.7.3 Practical Convolution Filtering

We have seen the mathematical representation of the convolution, but now
need to move to a more practical level and learn how to efficiently compute
a convolution. The convolution problem is shown in Figure 11.8. Put in
simple terms, the problem is: given a convolution kernel h, and a set of
uniform samples fT , compute the value of the convolution of h and fT for
an arbitrary coordinate t. This essentially allows us, in one step, to both
reconstruct and resample our function at any arbitrary resampling period.

The mathematical expression for the convolution of kernel h with sam-
pled function fT , evaluated at coordinate t is

f∗(t) =
∞∑

n=−∞
fT (nT)h(t − nT),

where n is the sample number, T is the sample period, and fT is taken to
be zero beyond the region for which samples are stored.

Now, if we assume that h(t) has a finite extent, say 3 units of the original
sampling period T on either side of t, then the sum reduces to centering
the convolution kernel over the position t, multiplying it by each of the
3 samples on either side of t, and then summing the result. This can be
written as the sum

f∗(t) =
3∑

m=−2

fT [(
t/T � + m)T]h[t/T − (
t/T � + m)T],

Here,
t/T � is the greatest integer less than or equal to t/T , or in other
words it is simply the sample number of the sample just to the left of
position t. Thus, fT [(
t/T � + n)T] gives the sample value just to the left
of t when n = 0, and the two to the left of this when n = −1, −2, and
the three to the right when n = 1, 2, 3. This concept is diagrammed in
Figure 11.9.

Now, with respect to the array indices in a pixmap, the sample period
T is just 1, i.e. horizontally or vertically a move of 1 unit moves 1 pixel
across a scan line or along a column.

11.7. IDEAL VS. PRACTICAL FILTER CONVOLUTION KERNELS11

a) simple truncation of sinc to width 4T

b) unit pulse and tent as approximations to the sinc

x

c) windowing the sinc with a finite function

Figure 11.7: Approximating the Infinite Sinc Function to Achieve a Finite
Convolution Kernel

12 CHAPTER 11. FILTERING TO AVOID ARTIFACTS

t

h(t)
fT(t)

T

t-3T t+3T

... ...

Figure 11.8: Convolution of Kernel h with samples fT at Position t

t
(t/T -1)T

t/T

(t/T +1)T

Figure 11.9: Values of h are Needed Only at Integer Valued Offsets from t

11.8. ANTIALIASING: SPATIALLY VARYING FILTERING AND SAMPLING13

Thus, sampling the filtered pixmap is simple. If W (u, v) is the warp
function, and W−1(x, y) is its inverse, then[

u
v

]
= W−1(x, y).

For a kernel of width 6, we sample the input image along scanline
v� at
positions
u� − 3 ,
u� − 2 ,
u� − 1 ,
u� ,
u� + 1 ,
u� + 2 , and
u� + 3;
and multiply each of the samples by

h[u − (
u� + n)],

or
h[(u −
u�) + n],

where n is the sample index from −2 to 3. (Note that (u −
u�) is simply
the fractional part of the real number u.) The sum of all of these six
products is our approximation to the pixel in the reconstructed warped
image resampled at the point (x, y). Of course, this operation needs to be
done both along the columns and along the scanlines that fall under the
filter kernel if the image warp involves distortion in both directions. The
horizontal filter should be done to an intermediate image, and then that
image should be vertically filtered into the final image, so that the actual
convolution is over a rectangular area about the point (u, v).

You should note that this calculation requires computing the kernel
function h six times for each (x, y) coordinate pair under the inverse map.
This can be avoided by an initialization step that samples h finely, com-
puting h once for each of these samples and storing the resulting sample
values in a table, as diagrammed in Figure 11.10. This can be done very
finely (e.g. 500 samples) since it only need be done once. Then when a
value for h is needed it can be obtained from the table by simply selecting
the sample value in the table whose index is nearest to the coordinate for
which a value for h is needed. Now, the whole process of taking a single
filtered sample is simply a series of multiplies and adds.

11.8 Antialiasing: Spatially Varying Filter-
ing and Sampling

11.8.1 The Aliasing Problem

Remember that in the image warping problem there are two places where
filtering is important:

14 CHAPTER 11. FILTERING TO AVOID ARTIFACTS

h(t)

sample values to be stored in a table

Figure 11.10: Precalculation of Many Samples of Convolution Kernel h

Figure 11.11: Area Sampling, Pixel Area Projected Back Into Input Image

1. reconstruction filtering (critical when magnifying)

2. antialiasing filtering (critical when minifying).

In the last section we looked at the general idea of practical filtering, with
special attention paid to the reconstruction problem. Here we will focus
specifically on the aliasing problem.

Recall that aliasing will occur when resampling an image whose warped
reconstruction has frequency content above 1/2 the resampling frequency.
To prevent this we can either:

1. filter the reconstructed and warped image so that its highest frequen-
cies are below 1/2 the resampling rate,

2. adjust the resampling rate to be at least twice the highest frequency
in the reconstructed warped image.

In general, the problem in both cases is that a warp is non-uniform, meaning
that the highest frequency will vary across the image, as schematized in
Figure 11.11.

11.8. ANTIALIASING: SPATIALLY VARYING FILTERING AND SAMPLING15

We can deal with this by filtering the entire image to reduce the highest
frequencies found anywhere in the image, or sample everywhere at a rate
twice the highest frequency found anywhere in the image. Either solution
can be very wasteful (sometimes horribly wasteful) of computation time in
those areas of the image that do not require the heavy filtering or excess
sampling. The answer is to use either spatially varying filtering or adaptive
sampling.

11.8.2 Adaptive Sampling

We can think of the inverse mapping process described in Chapter 7, and
shown in Figure 11.12a, as a point sampling of the input image, over the
inverse map, guided by a uniform traversal over the output image. This
technique is simple to implement but, as we have discovered, leaves many
artifacts, and we need to look at more powerful approaches.

One method for doing sampling without aliasing is area sampling. This
technique is diagrammed in Figure 11.12b. Area sampling projects the
area of an output pixel back into the input image and attempts to take
a weighted average of covered and partially covered pixels in the input.
Area sampling produces good results under minification, i.e. aliasing is
eliminated. However, to do area sampling accurately is very time consuming
to compute and hard to implement. Fortunately, experience shows that
good success can be had with simpler, less expensive approximations to
area sampling.

A common approximation to area sampling is known as supersampling.
Here, we still take only point samples, but instead of sampling the input
only once, or over an entire area as with area sampling, multiple samples
are taken per output pixel. This process is diagrammed in Figure 11.12c.
A sum or weighted average of all of these samples is computed before stor-
ing in the output pixel. This gives results that can be nearly as good as
with area sampling, but results vary with the amount of minification. The
problem with this method is that if you take enough samples to eliminate
aliasing everywhere, you will be wasting calculations over parts of the im-
age that do not need to be sampled so finely. Although supersampling can
be wasteful, some economies can be had. Figure 11.13 shows how some
careful bookkeeping can be done to minimize the number of extra samples
per pixel. If samples are shared at the corners and along the edges of pixels,
there is no need to recompute these samples when advancing to a new pixel.

Adaptive supersampling improves on simple supersampling by attempt-
ing to adjust the sampling density for each pixel to the density needed to
avoid aliasing. The process used in adaptive supersampling is as follows:

16 CHAPTER 11. FILTERING TO AVOID ARTIFACTS

���
���

a) point sampling

��
��

���
���
���

b) area sampling

c) supersampling

Figure 11.12: Sampling Techniques Under Inverse Mapping

samples already calculated

new samples to be calculated

Figure 11.13: Sharing of Samples Under Inverse Mapping. Scan is Left to
Right, Top to Bottom

11.8. ANTIALIASING: SPATIALLY VARYING FILTERING AND SAMPLING17

Circled Samples are Different from Average

Figure 11.14: Adaptive Supersampling

1. Do a small number of test samples for a pixel, and look at the maxi-
mum difference between the samples and their average.

2. If any samples differ from the average by more than some predefined
threshold value, subdivide the pixel and repeat the process for each
sub-pixel that has an extreme sample.

3. Continue until all samples are within the threshold for their sub-
pixels(s) or some maximum allowable pixel subdivision is reached.

4. Compute the output pixel value as an area-weighted average of the
samples collected above.

Any regular sampling approach will be susceptible to aliasing artifacts
introduced by the regular repeating sampling pattern. A final refinement
to the adaptive supersampling technique is to jitter the samples so that
they no longer are done on a regular grid. As shown in Figure 11.15, an
adaptive sampling approach is taken but each sample is moved slightly by
a random perturbation from its regular position within the output pixel
before the inverse map is calculated. Irregular sampling effectively replaces
the low frequency patterning artifacts that arise from regular sampling with
high frequency noise. This noise is usually seen as a kind of graininess in
the image and is usually much less visually objectionable than the regular
patterning from aliasing.

11.8.3 Spatially Variable Filtering

Antialiasing via filtering is a fundamentally different approach from an-
tialiasing via adaptive supersampling, and leads to another basic problem.
Since the frequency content of an image will vary due to the warp applied,
efficiency issues require that whatever filtering is done be adapted to this
changing frequency content. The idea behind spatially varying filtering is

18 CHAPTER 11. FILTERING TO AVOID ARTIFACTS

Figure 11.15: Jittered Adaptive Supersampling

Kernel size expands to match sampling rate. For high sampling
rate, kernel size is small, for low rate it is large.

Figure 11.16: Spatially Varying Filtering

to filter a region of a picture only as much as needed, varying the size of
the filter convolution kernel with the variance in frequency content.

Spatially variable filtering schemes attempt to pre-filter each area of
the input picture, using only the level of filtering necessary to remove fre-
quencies above either 1/2 the sampling rate or 1/2 the resampling rate,
whichever is lower under the inverse map. The idea here is that the same
convolution kernel is used across the whole image but it changes scale to
accommodate the resampling rate. Where the output is minified, the scale
of the kernel being convolved with the input image is increased. Where
the output is magnified, it is decreased. Remember, of course, that the
bigger the kernel the more computation is involved, so the problem with
this approach is that it gets very slow over minification.

A crude but efficient way of implementing spatially varying filtering is
the summed area table scheme. It is crude in that it only allows for a box
convolution kernel, but fast in that it does a 128 × 128 convolution as fast
as a 4×4 convolution! The trick is to first transform the input image into a
data structure called a summed area table (SAT). The SAT is a rectangular
array that has one cell per pixel of the input image. Each cell in the SAT

11.8. ANTIALIASING: SPATIALLY VARYING FILTERING AND SAMPLING19

2 1 3 2
1 3 2 1
3 2 1 1
1 2 1 3
input image

=⇒

7 15 22 29
5 12 16 21
4 8 10 14
1 3 4 7

summed area table

Figure 11.17: Summed Area Table

corresponds spatially with a pixel in the input, and contains the sum of the
color primary values in that pixel and all other pixels below and to the left
of it. An example of a 4 × 4 SAT is shown in Figure 11.17.

The SAT can be computed very efficiently by first computing its left
column and bottom row, and then traversing the remaining scan lines doing
the following calculation:

SAT[row][col] = Image[row][col] + SAT[row-1][col] +
SAT[row][col-1] - SAT[row-1][col-1];

where SAT is the summed area table array and Image is the input image
pixmap, and array indexing out of array bounds is taken to yield a result
of 0.

Once the SAT is built, we can compute any box-filtered pixel value for
any integer sized box filter with just 2 subtracts, 1 add and 1 divide. The
computation of the convolution for one pixel is

BoxAvg = (SAT[row][col] - SAT[row-w][col] -
SAT[row][col-w] + SAT[row-w][col-w]) / ^2;

where w is the desired convolution kernel width and (row, col) are the
coordinates of the upper right hand corner of the filter kernel. Note, that
the size w of the convolution kernel has no effect on the time to compute
the convolution. The required size of the convolution can be approximated
by back projecting a pixel and getting the size of its bounding rectangle in
the input, as shown in Figure 11.18.

Looked at mathematically, if the inverse map is given by functions
u(x, y) and v(x, y), then the bounding rectangle size is given by

du = max(∂u/∂x, ∂u/∂y)

in the horizontal direction, and

dv = max(∂v/∂x, ∂v/∂y)

in the vertical direction, as shown in Figure 11.19. Alternatively, the eu-
clidian distances

(du)2 = (∂u/∂x)2 + (∂u/∂y)2

20 CHAPTER 11. FILTERING TO AVOID ARTIFACTS

bounding
rectangle

Figure 11.18: Finding the Input Bounding Rectangle for an Output Pixel

dy

dx

dx = 1
dy = 1

v

u

δv/δy

δu/δx

δv/δx

δu/δy

Figure 11.19: Measuring the Required Kernel Size Under an Inverse Map

and
(dv)2 = (∂v/∂x)2 + (∂v/∂y)2

can be used.

11.8.4 MIP Maps and Pyramid Schemes

A final and very popular technique for speeding the calculation of a vary-
ing filter kernel size is to use a Multiresolution Image Pyramid or MIP-Map
scheme for storing the image. The idea here is to get quick access to the
image prefiltered to any desired resolution by storing the image and se-
quence of minified versions of the image in a pyramid-like structure, as
diagrammed in Figure 11.20. Each level in pyramid stores a filtered version
of the image at 1/2 the scale of the image below it in the pyramid. In the
extreme, the top level of the pyramid is simply a single pixel containing the
average color value across the entire original image. The pyramid can be
stored very neatly in the data structure shown in Figure 11.21, if the image
is stored as an array of RGB values.

The MIP-Map is somewhat costly to compute, so the scheme finds most
use in dealing with textures for texture mapping for three-dimensional com-

11.8. ANTIALIASING: SPATIALLY VARYING FILTERING AND SAMPLING21

1/4 scale

1/2 scale

full scale

Figure 11.20: An Image Pyramid

R

GB

R

GB
R

GB

Figure 11.21: Data Structure for a MIP-Map

22 CHAPTER 11. FILTERING TO AVOID ARTIFACTS

puter graphics rendering. Here, the MIP-Map can be computed once for a
texture and stored in a texture library to be used as needed later. Then
when the texture is used, there is very little overhead required to complete
filtering operations to any desired scale.

From the MIP-Map itself, it may seem that it is only possible to do
magnification or minification to scales that are powers of 2 from the original
scale. For example if we want to scale the image to 1/3 its original size, the
1/2 scale image in the MIP-Map will be too fine, and the 1/4 scale image
will be too coarse. The solution to this problem is to interpolate across
pyramid levels, to get approximation to any resolution image. We would
sample at the levels above and below the desired scale, and then take a
weighted average of the color values retrieved. The idea is simply to find
the pyramid level where an image pixel is just larger than the projected
area of the output pixel, and the level where a pixel is just smaller than
this area. Then we compute the pixel coordinates at each level, do a simple
point sample at each level, and finally take the weighted average of the two
samples.

Chapter 12

Scanline Warping
Algorithms

12.1 Scanline Algorithms

A scanline algorithm is one in which the main control loop iterates over the
scanlines of an image and an inner loop iterates across each scanline, as in
the code fragment of Figure 12.1. Often these algorithms alternate passes
over the scanlines and then the columns of the image.

... // loop initialization
for(y = 0; v < height; y++){
... // scanline initialization for scanline y
for(x = 0; x < width; x++){

... // operation on pixel x on scanline y
}
... // scanline y wrap-up

}

Figure 12.1: Basic Organization of a Scanline Algorithm

A scanline approach to constructing image manipulation algorithms can
often allow the realization of speedups that exploit coherencies that may
exist along scanlines or down columns. The observation that neighboring
pixels have similar values is just one such coherency that can lead to im-
portant savings in computation. Another idea that can save time is to

1

2 CHAPTER 12. SCANLINE WARPING ALGORITHMS

assume that a movement across a pixel is so small that certain nonlineari-
ties can be ignored and sometimes simple linear interpolations can be used
in advancing from pixel to pixel across a scanline.

For example, one such trick would be to assume that an inverse map is
linear across a short span. Then, as diagrammed in Figure 12.2, instead of
computing the inverse map for every pixel, compute it for the two ends of
a scanline span (x0 and x1 in the figure), yielding two corresponding (u, v)
coordinates pairs in the input image (u0 and u1 in the figure). Then, while
advancing across the output scanline, calculate intermediate input (u, v)
values by linear interpolation, as shown in the code fragment in Figure 12.2.

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

u

v y

x

x0 x1

u0 u1

for(y = 0; y < height; y++){

determine x0 and x1 of a span on scanline y;

(u0, v0) = inv_map(x0, y); // inverse map of span left end

(u1, v1) = inv_map(x1, y); // inverse map of span right end

dudx = (u1 - u0) / (x1 - x0); // change in u per pixel

dvdx = (v1 - v0) / (x1 - x0); // change in v per pixel

u = u0;

v = v0;

for(x = x0; x <= x1; x++){

out[x][y] = in[u][v];

u += dudx; // interpolate to next u value

v += dvdx; // interpolate to next v value

}

}

Figure 12.2: Approximation of the Inverse Map by Linear Interpolation

This trick will work exactly for affine warps, since these maps and their
inverses are simply linear functions and translations in x and y. For non-
affine warps, this approach will lead to errors in the image mapping, that
will be more or less severe, depending upon the degree of the nonlinearity

12.2. SEPARABLE SCANLINE ALGORITHMS 3

and the length of the span being interpolated in the input image space
(u, v). However, the approach tends to be much faster than the exact
computation, which involves computing the inverse map for each pixel.

A further trick that will often make the linear interpolation idea work
well even for nonlinear warps is to subdivide the input image, using the
forward projection of the subdivision to subdivide the output image. This
idea is illustrated in Figure 12.3. When interpolations are done, they are
done across the subregions, thus making the spans shorter and minimizing
the effects of nonlinearities.

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

u

v y

x

Figure 12.3: Subdivision to Minimize the Effect of Nonlinearities

For the special case of a perspective warp, a trick which allows inter-
polation to compute the exact inverse map is to do the interpolation in
(u, v, w) space, before dividing by w to normalize the (u, v) coordinates.
In other words, instead of interpolating only u and v, interpolate u, v and
w. This trick works because the inverse map in three-dimensional homo-
geneous coordinates is linear, up until normalization by the w coordinate.
Figure 12.4 shows the code of Figure 12.2 modified to do interpolation in
(u, v, w) space.

12.2 Separable Scanline Algorithms

A separable algorithm is one in which the map can be factored into two
or more seperate maps, each of which operates only over scanlines or over
columns. This idea is diagrammed in Figure 12.5. The scanline operations
change only the horizontal coordinate and the column operations change
only the vertical coordinate.

Algebraically, what is meant here is this. Given a warp

(x, y) = f(u, v) = [X(u, v), Y (u, v)],

4 CHAPTER 12. SCANLINE WARPING ALGORITHMS

for(y = 0; y < height; y++){

determine x0 and x1 of a span on scanline y;

(u0, v0, w0) = inv_map(x0, y); // inverse map of span left end

(u1, v1, w1) = inv_map(x1, y); // inverse map of span right end

dudx = (u1 - u0) / (x1 - x0); // change in u per pixel

dvdx = (v1 - v0) / (x1 - x0); // change in v per pixel

dwdx = (w1 - w0) / (x1 - x0); // change in w per pixel

u = u0;

v = v0;

w = w0;

for(x = x0; x <= x1; x++){

nu = u / w;

nv = v / w;

out[x][y] = in[nu][nv];

u += dudx; // interpolate to next u value

v += dvdx; // interpolate to next v value

w += dwdx; // interpolate to next w value

}

}

Figure 12.4: Linear Interpolation in (u, v, w) Space before Normalization
by w

we say that the warp is two-pass separable if we can find a function G(u, v)
such that

f(u, v) = [X(u, v), G(X(u, v), v)].

In other words, if we can find a function G such that

Y (u, v) = G(X(u, v), v).

If we can find such a function, then we can first apply the map

(u, v) �→ (X(u, v), v) = (x, v),

keeping the vertical coordinate fixed and changing only the horizontal co-
ordinate and then apply the map

(x, v) �→ (x,G(x, v)) = (x, y)

to the result, keeping the horizontal coordinate fixed and changing only the
vertical.

In general, the seperable property holds when the function X(u, v) can
be partially inverted to yield a solution for u in terms of x and v. Whenever

12.2. SEPARABLE SCANLINE ALGORITHMS 5

G(x,v)
column
warpf(u,v)

X(u,v)
scanline

warp

Figure 12.5: Separation of a Warp into Sequential Scanline and Column
Warps

this can be done, then it is a simple matter to use this solution for u as the
input to the function Y (u, v), to yield G(x, v).

12.2.1 Separation of projective warps

The projective warps can all be implemented via separable algorithms. Note
that all of the projective warps are expressed as a multiplication of the input
image coordinates (u, v) by a 3× 3 homogeneous projection matrix M , i.e.

M

⎡
⎣ u

v
1

⎤
⎦ =

⎡
⎣ x

y
w

⎤
⎦ .

For the special case of an affine warp, where w is 1, separation is achieved
by simply factoring the matrix M into the product of two matrices, the first
of which affects only the horizontal coordinate u, and the second of which
affects only the vertical coordinate v. The portion of the matrix which
affects the output w coordinate can be placed in either of the two factors,
or distributed between them. If the matrix M is given by

M =

⎡
⎣ a b c

d e f
0 0 1

⎤
⎦ ,

6 CHAPTER 12. SCANLINE WARPING ALGORITHMS

then one possible factorization would be

M = V U,

where

U =

⎡
⎣ a b c

0 1 0
0 0 1

⎤
⎦ ,

and

V =

⎡
⎣ 1 0 0

d/a (ea − bd)/a (af − dc)/a
0 0 1

⎤
⎦ .

In the case of a general projective warp, where we cannot assume that
w is 1,

M =

⎡
⎣ a b c

d e f
g h 1

⎤
⎦ .

Now we have
X(u, v) =

au + bv + c

gu + hv + 1
(12.1)

and
Y (u, v) =

du + ev + f

gu + hv + 1
. (12.2)

Equation 12.1 can be solved for u to yield

u =
v(b − hx) + c − x

gx − a
,

which when substituted for u in equation 12.2 gives

G(x, v) =
d(v(b − hx) + c − x) + ev(gx − a) + f(gx − a)
g(v(b − hx) + c − x) + hv(gx − a) + (gx − a)

Thus, any of the projective warps can be seen to be separable.

12.2.2 Paeth-Tanaka rotation algorithm

The Paeth-Tanaka algorithm is a very clever example of a separable warp
algorithm. It handles only pure image rotations, which is a special case
of the projective warps, and operates in three phases – 1) scanline, 2)
column, and 3) scanline. Paeth and Tanaka realized that any rotation in
two dimensions can be factored into three successive shears, as illustrated
in Figure 12.6.

12.2. SEPARABLE SCANLINE ALGORITHMS 7

RΘ

horizontal

shear

vertical
shear

horizontal

shear

Figure 12.6: Image Rotation Implemented as a Sequence of Three Shears

The factorization of the rotation matrix used in the algorithm is

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
=

[
1 − tan θ/2
0 1

][
1 0

sin θ 1

][
1 − tan θ/2
0 1

]
.

(12.3)

Checking this factorization is left as an exercise to the student. While
checking, you will need the trigonometric identities

tan θ/2 =
sin θ

1 + cos θ
,

and
tan θ/2 =

1 − cos θ

sin θ
.

Note that under the factorization of Equation 12.3, the multiplication

Rθ

[
u
v

]

becomes

(
[

1 − tan θ/2
0 1

]
(
[

1 0
sin θ 1

]
(
[

1 − tan θ/2
0 1

] [
u
v

]
))),

which is a horizontal shear, followed by a vertical shear, followed by a second
horizontal shear.

The beauty of this formulation is that under each of the shears, no scale
is required and at each step in the algorithm, pixel motion is in one direction

8 CHAPTER 12. SCANLINE WARPING ALGORITHMS

only. Thus, each output scanline from the first shear is just a horizontal
displacement of the entire input scanline. The output from the second shear
is simply a vertical displacement of each column of the intermediate result,
and the output from the third shear is again a horizontal displacement of
each scanline of the second intermediate result. Since the forward map
does no scales and only applies translations, this allows us to use a forward
mapping algorithm rather than an inverse map to compute the rotation.
Further, we can apply a simple tent reconstruction filter very efficiently
by simply averaging each adjacent pair of input pixels in the source into a
single pixel in the destination according to a fixed ratio on each scanline,
as depicted in Figure 12.7

g

0 1 2 3

input scanline

4 5 60 1 2 3

output scanline
f

Figure 12.7: Image of Input Scanline Overlaid on Output Scanline

The entire algorithm reduces to three simple steps to compute the three
successive shears:

1. Loop across each scanline, displacing each pixel on the line and weight-
ing each adjacent pair of pixels into each output pixel,

2. Loop on each column, displacing each pixel in the column and weight-
ing each adjacent pair of pixels into each output pixel,

3. Repeat of Step 1.

The only complication is that before each step, it is necessary to compute
the output array size to store the intermediate image. This can be done
quite simply, since at each step either the number of rows or number of
columns stays fixed so only the extents of the other coordinates need to be
determined. The geometry of this calculation is shown in Figure 12.8a, and
Figure 12.8b gives a detailed algorithm for implementing step 1.

12.2. SEPARABLE SCANLINE ALGORITHMS 9

(0,0) (w,0)

(0,h) (w,h)

w

dx = h * tan(Θ/2)

h

dx

a) geometry of step 1 of the Paeth-Tanaka algorithm

x_off = height * tan(theta/2); // offset of lower lefthand corner

if(x_off < 0) x_off = 0;

for(v = 0; v < height; v++){ // v = input scanline number

x0 = -v * tan(theta/2) + x_off; // starting x, for u = 0

f = fabs(x0 - (int)x0); // overlap fraction

g = 1.0 - f;

for(j = 0; j < (int)x0; j++) // zero output scanline up to x0

out[j][v] = 0;

out[j++][v] = g * in[0][v]; // tent filter input pixels into output

for(i = 0; i < width - 1; i++)

out[j++][v] = f * in[i][v] + g * in[i+1][v];

out[j++][v] = f * in[i+1][v];

for(; j < width + x_off; j++) // zero rest of scanline

out[j][v] = 0;

}

b) algorithm for step 1 of the Paeth-Tanaka algorithm

Figure 12.8: Implementation Details for Step 1 of the Paeth-Tanaka Rota-
tion Algorithm

10 CHAPTER 12. SCANLINE WARPING ALGORITHMS

12.3 Mesh Warp Algorithm

In a mesh warp, we superimpose a regular grid over the input image, and
then allow the user to move grid corners to deform the grid. The image is
then warped, usually using forward bilinear interpolation, to map the input
subimage in each grid square to the corresponding deformed quadrilateral
in the deformed grid.

input image
with superimposed

grid

output image
with deformed

girid

Figure 12.9: Image Deformation via a Mesh Warp

Typical constraints in a mesh warp are that

1. image corners cannot be moved,

2. grid vertices on horizontal and vertical edges may only move along
the edge,

3. grid edges cannot be made to cross over each other.

These constraints assure that input and output images are the same size
and shape, and that the image will deform like a rubber sheet, without
tearing or folding over itself (i.e., it keeps its original topology).

The edges of the mesh can either be straight lines or spline curves. We
will look first at a mesh warp where mesh edges are straight lines.

12.3.1 Separable mesh warp

The mesh warp can be implemented easily using a two-pass separable scan-
line algorithm. The idea is to treat each vertex perturbation as a translation
in the horizontal direction, followed by a translation in the vertical direc-
tion. This leads quite naturally into a decomposition of the warp into a
set of horizontal movements followed by a set of vertical movements as di-
agrammed in Figure 12.10a, which leads to the full mesh warp shown in
Figure 12.10b.

The algorithm, based on this idea, goes as follows:

12.3. MESH WARP ALGORITHM 11

(x,y)

(x+∆x,y)

∆y
(x+∆x,y+∆y)

∆x

∆x

a) displacement of a single mesh point in two steps

y

x

v

x

v

u

full warp

movement
only in
v direction

movement
only in
u direction

b) full mesh warp in two steps

Figure 12.10: Mesh Warp Implementation Using Horizontal and Vertical
Displacements

1. Apply horizontal movement to each mesh point in the u direction to
give (x, v) coordinates for each mesh point.

2. For each scanline in the intermediate output image, note the intersec-
tion of all grid lines with this scanline as shown in Figure 12.11, and
build an array of these intersection points. If there are M vertical
grid lines, and N scan lines, then the array will be N ×M in size, as
there will be M entries for each of N scanlines.

3. Resample across each scanline to the full image resolution, using for-
ward mapping, accounting for overlap by using box-filter averaging
where the scanline is being minified (compressed) and filling in holes
using tent-filter resampling where the scanline is being magnified
(stretched).

12 CHAPTER 12. SCANLINE WARPING ALGORITHMS

0 0.8 2.3 3

Figure 12.11: Crossings of Mesh Lines with Scanlines

4. Repeat this process from the intermediate image to the final output
image, but doing the process over image columns rather than scan-
lines, and doing movements in the vertical direction to change (x, v)
coordinates into (x, y) coordinates.

12.3.2 Mesh Warp Using Spline Interpolation

The warp algorithm as described can easily be extended to warp an im-
age via a mesh with smoothly curved edges. The only extension needed
here is to interpolate between mesh control points using a higher order
interpolating curve. A typical choice is a cubic interpolation polynomial.
The difference between simple linear interpolation and cubic interpolation
is illustrated in Figure 12.13.

A cubic interpolating polynomial is constructed by fitting curves de-
scribed by cubic polynomials between the control points in such a way that
they join together smoothly to create a continuous curve across all of the
points. Choosing to use cubic curve segments between mesh control points
allows us to organize the calculation in a straightforward way. In reading
the following description, please refer to Figure 12.14, which shows how
such an interpolating curve would be constructed down a column (in the v
direction) in the input image to govern horizontal displacements (in the x
direction) along a scanline in the output image. For each segment i of the
curve (e.g. segment 1 in the figure) define a distance parameter

ti =
v − vi

vi+1 − vi
(12.4)

which varies from 0 to 1 as v varies from vi to vi+1. Then the displacement

12.3. MESH WARP ALGORITHM 13

minify
box-filter

magnify
tent-filter

weighted average of
pixels overlapped

weighted average of
nearest neighbors

INPUT

OUTPUT

a) filters for magnification and minification

INPUT

OUTPUT

0 1 2 3

0 1 1.8 3

b) different filters applied along the scanline

Figure 12.12: Filtering Input Image into Output Image Along a Scanline

of the curve in the x direction for segment i is given by

Xi(ti) = ait
3
i + bit

2
i + citi + di, (12.5)

i.e. a cubic curve in ti. The coefficients ai, bi, ci, and di are determined by
imposing constraints on the curve segment.

Certainly we want the curve segment to pass through the control points
at each of its two ends. Letting xi and xi+1 be the control point horizontal
coordinates for vi and vi+1 , we have

Xi(0) = xi and Xi(1) = xi+1.

Also, we would like the curve segment to join smoothly with its neighbors
to the left and right. This is often enforced by requiring that the slopes
and curvatures must match where the segments join. In other words, their
first and second derivatives must match. This gives

X ′
i−1(1) = X ′

i(0) and X ′′
i−1(1) = X ′′

i (0).

These constraints, plus some additional ones to handle conditions on the
extreme left and right ends of the entire curve serve to completely determine
the coefficients ai, bi, ci and di for each curve segment.

14 CHAPTER 12. SCANLINE WARPING ALGORITHMS

linear
interpolation

higher order
interpolation

Figure 12.13: Linear Interpolation vs. Cubic Polynomial Interpolation

x

vv0 v1 v2 v3 v4

control points

segment
1

t1=0 t1=1

Figure 12.14: Cubic Spline Down Input Column Giving Output Horizontal
Displacements

Once these coefficients are determined, Equations 12.4 and 12.5 can be
used to find the intersections of the curves with the scanlines and columns.
Equations 12.4 and 12.5 are set up to determine horizontal displacement x
in the output image as a function of vertical displacement v in the input
image. They can be used for pass-one of the algorithm to determine where
each curve crosses the scan lines of the image. From here, it is an easy
exercise to construct similar functions to be used for pass-two, which give
the vertical displacements y in the output image as a function of horizontal
displacements u in the input image.

Chapter 13

Morphing

A morph from one image to another involves 1) warping both of the images
to some intermediate shape where they can be superimposed upon each
other, and 2) blending the two images together to produce a third image.
An example is given in Figure 13.1, which shows a step in a morph from a
brick into a ball. First, we find an intermediate shape that we can deform
both into, warp both images to this intermediate shape, and then blend the
intermediate images to produce an image that is a mix of the two originals.

intermediate
warped
brick

original
ball

original
brick

intermediate
warped
ball

blend of the
two intermediate

images into
morphed brick-ball

Figure 13.1: A Step in a Morph of a Brick into a Ball

Five steps in the complete brick-to-ball morph sequence are shown in
Figure 13.2. The complete sequence consists of a series of intermediate

1

2 CHAPTER 13. MORPHING

warped shapes that go from one of the original shapes to the other, and
the blend is controlled by giving proportionally more strength to the origi-
nal image that is closest to the deformed shape. If this is done with some
artistry, when the sequence is played back it can look like a smooth transi-
tion from one shape and coloring to the other.

brick

1.00

0.75

0.50

0.25

0.00

ball

0.00

0.25

0.50

0.75

1.00

Figure 13.2: Steps in Morph Sequence from Brick to Ball

If the two objects being morphed are also moving, then each warp in
the sequence must be done between corresponding frames in the original
motion sequence. For this reason, it is important that a morph tool for
animation or video gives the animator good control over the warp between
the images while allowing for the exploitation of continuity from frame to
frame – to minimize the amount of hand work that must be done for each
frame.

13.1. MORPHING ALGORITHMS 3

13.1 Morphing Algorithms

We will look at three schemes for doing morphing; a scan line approach, a
triangular area fill approach, and a feature based approach.

13.1.1 A Scanline Morphing Algorithm

The scanline algorithm extends the separable mesh warping algorithm that
we studied in the last chapter. The idea is to allow the user to deform a
mesh over each of the two images, so that the mesh approximately fits over
the image features that are to be warped and so that corresponding mesh
elements enclose areas of the two images that are to be warped and blended
into each other. Figure 13.3 shows how a pair of meshes might be set up for
the brick-to-ball morph, although generally this will require a much finer
grid and careful line placement than that shown in the figure.

ending meshstarting mesh

intermediate
mesh for frame
in middle of
sequence

Figure 13.3: Rectangular Meshes Morphing a Brick into a Ball

Now, each image will be warped to an intermediate form that can be
derived by interpolating corresponding vertices in the mesh over image 1
into the vertices in the mesh over image 2. This is very simple to compute
– for the frame at fractional position f along the sequence (f = 0 at the
starting frame, and f = 1 at the ending frame), simply set each vertex Pi,f

in the mesh for frame f to

Pi,f = fPi,1 + (1 − f)Pi,0.

4 CHAPTER 13. MORPHING

This process of mesh interpolation is also shown in Figure 13.3, which shows
how the starting and ending meshes are interpolated to form the mesh in
the middle of the sequence.

Then, each image is warped to this intermediate mesh using the separa-
ble scan line mesh warp algorithm, and the images are blended, also using
f as the blending factor. The interested student is referred to the text by
Wolberg for complete details of the algorithm.

13.1.2 Triangle Mesh Warp Morph

The rectangular mesh technique is by no means the only mesh-oriented
technique that can be used to do a morph. For example, a triangle mesh
warp algorithm was developed by Darrin Butts for the Midas morphing
program. It gives the user free control over the number and placement of
the vertices of a polygonal outline in the initial image, and then requires
the user to triangulate the region enclosed by the polygon by connecting
groups of three vertices with edges. It then copies the outline to the final
image and allows the user to reposition the vertices, thus warping and repo-
sitioning the triangles. The program creates intermediate meshes by linear
interpolation based on frame number, just as with the rectangular mesh
warp. Triangles in the original two images are warped into the triangles in
the intermediate images using an approach very similar to bilinear inter-
polation for rectangular grid elements. The triangular mesh warp process
used by Midas is illustrated in Figure 13.4.

13.1.3 Feature Based Morph

A feature based approach to defining a morph was by Thad Beier of SGI
and Shawn Neely of PDI (SIGGRAPH ‘92). This technique was used for
the ending segment of the Michael Jackson “Black and White” music video,
which features a sequence of morphs of dancers heads into each other. This
technique works by having the user draw pairs of lines, one in each of the
two images that are to be morphed, that locate and identify significant fea-
tures of the two images that should correspond to each other in the morphed
image. The idea is that corresponding lines are both to map to an “aver-
aged” line in the intermediate image. This is implemented mathematically
by using these lines to define an influence function which spreads a kind
of gravitational influence of each line out across the image. At each pixel
in the image, the sum of the influence functions of all of the feature lines
determines the value of a global “field”, which is used to warp the image
into the intermediate image. The basic idea of this algorithm is depicted
in Figure 13.5.

13.1. MORPHING ALGORITHMS 5

brick and ball outlined by 8 mesh points

triangular mesh over control points

intermediate warped mesh

Figure 13.4: Triangular Meshes Morphing a Brick into a Ball

brick and ball with feature lines

intermediate "averaged"
feature lines

Figure 13.5: Feature Lines used to Morph a Brick into a Ball

6 CHAPTER 13. MORPHING

Chapter 14

Frequency Analysis of
Images

14.1 Sampling, Aliasing and Reconstruction

We have already informally looked at the problem of doing any sort of image
warp (change in geometry) when the image is a discretely sampled raster
representation. When the image is warped, changes in size and orientation
make the map from input pixels to output pixels complicated to determine,
and in general not 1-to-1, i.e. there is not usually precisely one input pixel
corresponding to each output pixel.

This problem is fundamental to digital processing of any sort of informa-
tion such as images, sound, simulation data, etc., that is sampled as part of
the information capture process. We can view such sampling abstractly as
the selection of a sequence of evenly spaced values from a continuous signal
or function, as depicted in the graphs of Figure 14.1. When we take any
sort of continuous signal and store a representation of it as a sequence of
samples, we have made some very fundamental changes in the information.
Obviously, we have thrown away a lot of potential detail. It is this potential
for loss of important information that leads to problems later. Sampling
leads to two general classes of problem, reconstruction errors and aliasing.

We can recognize aliasing as the introduction of pattern artifacts into
the image or sound that we are trying to reproduce. Moire patterns (that
are often made for artistic effect) are the result of the same kind of error that
causes aliasing – basically that we are sampling at a rate that is below the
level of detail of what we are trying to capture. Such aliasing artifacts are
symptomatic of the sampling process itself, and cannot be avoided unless

1

2 CHAPTER 14. FREQUENCY ANALYSIS OF IMAGES

tstored samplesoriginal signal t

Figure 14.1: Sampling a Continuous Function

care is taken to do sampling in a way that is appropriate to the data being
sampled. A demonstration of Moire patterns created by radial lines drawn
on a CRT raster can be seen by running the program moire that can be
found in the directory /usr/local/misc/courses/viza654/examples/.

Another problem with sampled data is that in order to reproduce the
original input from the samples, we must somehow reconstruct the input
using only the samples as our information source. For example, in a digital
image we reconstruct an original continuous image by spreading each sam-
ple value across the area of a rectangular pixel on the screen. The artifacts
due to the reconstruction process are known as reconstruction artifacts, and
for digital images result in such errors as staircasing or jaggies, as shown in
Figure 14.2.

��

Figure 14.2: Jaggies Due to Rectangular Pixel Reconstruction

The questions that we need to address if we are to be able to produce
high quality warped images are

1. How should we do sampling to ensure that we have retained enough
data to avoid aliasing artifacts?

2. How should we do reconstruction, given a set of samples, to avoid
reconstruction artifacts?

Our goal in attempting to answer both of these questions will be to see how
successful we can be in avoiding – or at least minimizing – both aliasing
and reconstruction artifacts.

14.2. FREQUENCY ANALYSIS 3

14.2 Frequency Analysis

Before we can answer either of these questions, we need to develop an
understanding of how the smoothness of a data set relates to how finely
it must be sampled, and how much information is contained in a set of
samples. Frequency analysis will give us the tools we need to do this.

We are used to thinking of sound as having a frequency spectrum, and
can readily identify the low frequency tuba from the high frequency piccolo.
The notion of frequency is normally associated with a time varying signal
(like sound), but finds important use in both developing tools to operate
on images and in providing a framework for the investigation of image
qualities. In fact, it provides the foundation of theory supporting the design
and refinement of most image processing techniques.

14.2.1 Fourier series

What do we mean by frequency analysis? The notion here is that any finite
duration or periodic “signal”, can be represented as an infinite weighted
sum of sines and/or cosines. This representation is known as the Fourier
Series representation. Given

f(t) = g(t) =

⎧⎨
⎩

0, t > T
g(t), 0 ≤ t ≤ T
0, t < 0,

then, on the interval (0, T) we have

f(t) = 1/2C0 +
∞∑

n=1

Cn cos(
2πn

T
t − φn) (14.1)

where the amplitude coefficients Cn and the phase angles φn are determined
by first computing auxiliary sine and cosine coefficients

An =
2
T

∫ T

0

f(t) cos
2πn

T
tdt, (14.2)

Bn =
2
T

∫ T

0

f(t) sin
2πn

T
tdt, (14.3)

and then computing
Cn =

√
A2

n + B2
n, (14.4)

and
φn = tan−1 Bn

An
. (14.5)

4 CHAPTER 14. FREQUENCY ANALYSIS OF IMAGES

Figure 14.3 shows how the Fourier Series representation can be used to
represent a square wave. It shows how the coefficients for the series are
calculated, and shows how the series gradually converges to the shape of
the original wave as more and more terms are added to the sum.

What does this mean intuitively?

f(t) = 1/2C0 +
∞∑

n=1

Cn cos(
2πn

T
t − φn)

On the range from 0 to T , our function f(t) can be represented as the
sum of a constant 1/2C0, which is simply the average value of f(t), and
a sum of sine waves (shifted to the left by π/2 which changes the sines
to cosines), each weighted by the weights Cn and shifted to the right by
the distance T

2πnφn, and with frequencies that are integer multiples of the
fundamental frequency 2π/T . The integer multiples of the fundamental
frequency (shown in Figure 14.4) are known as its harmonics.

To determine the cosine weight for a particular value of n: 1) multiply
the function f(t) by the cosine, 2) find the area under the resulting curve,
3) divide by 1/2 the fundamental interval T . In other words,

An =
2
T

∫ T

0

f(t) cos
2πn

T
tdt.

A similar process is used to find the sine weights, yielding the equation

Bn =
2
T

∫ T

0

f(t) sin
2πn

T
tdt.

If f(t) is our signal, we can now think of the signal in terms of its
frequency content. The combined sine and cosine coefficient

Cn =
√

A2
n + B2

n

gives the total weight of the nth harmonic in determining the shape of the
signal f(t). In other words, the weights Cn tell you how important the nth
harmonic is in determining the overall shape of the signal or function.

14.2.2 Fourier transform

A more general transformation from a time varying to a frequency-based
or frequency domain signal is given by the Fourier Transform. Unlike the
Fourier series, the Fourier transform does not require the signal to be of

14.2. FREQUENCY ANALYSIS 5

1

-1

0
T

An =
2

T

∫ T

0

f(t) cos
2πn

T
tdt

=
2

T

[∫ T/2

0

cos
2πn

T
tdt −

∫ T

T/2

cos
2πn

T
tdt

]

=
1

πn

[
sin

2πn

T
t
∣∣∣T/2
0 − sin

2πn

T
t
∣∣∣T
T/2

]
= 0,

i.e. all cosine coefficients are 0.

Bn =
2

T

∫ T

0

f(t) sin
2πn

T
tdt

=
2

T

[∫ T/2

0

sin
2πn

T
tdt −

∫ T

T/2

sin
2πn

T
tdt

]

=
1

πn

[
− cos

2πn

T
t

∣∣∣T/2
0 + cos

2πn

T
t

∣∣∣T

T/2

]

=
2(1 − cos πn)

πn
,

i.e. all sine coefficients are 0 for n even, and 4
πn

for n odd. Thus

f(t) =
∑
n odd

4

πn
sin

2πn

T
t =

∑
n odd

4

πn
cos(

2πn

T
t − π/2).

4 Terms1 Term Only 2 Terms

6 Terms 50 Terms 500 Terms

Figure 14.3: Square Wave Example of Fourier Series

6 CHAPTER 14. FREQUENCY ANALYSIS OF IMAGES

t

1

−1

0
T

sin(2π/T)t

Figure 14.4: Fundamental Sine Wave of Period T

finite duration or to be periodic, and it produces a continuous frequency
spectrum, rather than discrete harmonic weights. It is given by

F (ω) =
∫ ∞

−∞
f(t)e−iωtdt, (14.6)

and its inverse is
f(t) =

1
2π

∫ ∞

−∞
F (ω)eiωtdω, (14.7)

where t is the measure used along the horizontal axis, ω is frequency mea-
sured in radians per unit of the horizontal axis, and i =

√−1, and eiθ is the
complex exponential. The complex exponential is defined by its complex
number equivalent in trigonometric form:

eiθ = cos θ + i sin θ.

The relationship between the Fourier Transform and the Fourier Se-
ries may seem obscure, but due to the equivalence between the complex
exponential and the trigonometric form, we could rewrite Equation 14.6 as

F (ω) =
∫ ∞

−∞
f(t) cos ωtdt − i

∫ ∞

−∞
f(t) sin ωtdt. (14.8)

In this form, the Fourier Transform bears a close resemblance to the Fourier
series (compare Equation 14.8 with Equations 14.2 and 14.3 for the Fourier
series coefficients). Anyway, the point is that we are back to integrals of
products of our function and sines and cosines. The principal differences
between the Fourier Series and Fourier Transform representations are that

1. F (ω) is continuous, rather than a collection of discrete harmonic
weights, and

14.2. FREQUENCY ANALYSIS 7

2. F (ω) is a complex function, rather than a real function.

If F (ω) is the Fourier Transform of function f(t), we say that |F (ω)|
(i.e. the magnitude of the Fourier Transform) is its Fourier Spectrum.
Figure 14.5 shows what such a spectrum might look like for a typical input
signal. Like the coefficients of the Fourier Series, the Fourier Spectrum gives
a measure of how much each frequency contributes to the overall shape of
the signal or function.

f(t)

t

|F(ω)|

ω

Figure 14.5: |F (ω)| is the Fourier Spectrum

Fourier transforms of real signals obey the following laws:

• If f(t) is a real signal, |F (ω)| is symmetric about 0.

• f(t) and F (ω) are two complete representations of the same signal
and are completely recoverable from each other.

• If f(t) is periodic then F (ω) is discrete.

f(t)

t

|F(ω)|

ω

T
2π/T

• If f(t) is discrete (sampled), then F (ω) is periodic with period equal
to the sampling rate of f(t).

|F(ω)|

ω2π/T

... ...

f(t)

tT

8 CHAPTER 14. FREQUENCY ANALYSIS OF IMAGES

• If f(t) is both discrete and periodic then F (ω) is also both discrete
and periodic.

14.2.3 Discrete Fourier transform

There is a discrete version of the Fourier Transform based on the last law,
that is especially useful for dealing with images or any kind of sampled
data. When our function f(t) is both discrete and periodic, then its Fourier
Transform F (ω) is also. It is clear that any discrete periodic function
requires only a fixed number of samples or values to represent it. If the
function is periodic, the discrete values that describe it repeat over and
over, and there is no need to record the repetitions.

The same is true for the function’s Fourier Transform. Take a function
f(t) sampled on a unit interval and periodic with period N , then it is
described by N discrete sample values, and its Fourier transform is also
described by N discrete sample values. Also, if there is a finite number of
samples, then the Fourier Transform is given by a finite sum rather than an
integral. This form of the Fourier Transform is called the Discrete Fourier
Transform (DFT) and is given by

F (u) = 1/N

N−1∑
t=0

f(t)e−i2πut/N ; u = 0, 1, 2, ..., N − 1, (14.9)

with inverse

f(t) =
N−1∑
u=0

F (u)ei2πut/N ; t = 0, 1, 2, ..., N − 1. (14.10)

Note that in these equations t is still used as the time or distance measure,
but it is a sequence of integers, and u is an integer frequency measure in
cycles per unit of the total span N , unlike ω that was measured in radians
per unit.

Figure 14.6 depicts a sampled periodic signal and its DFT. Note that
the DFT itself is sampled and periodic with period N , but more – it is
symmetric about the origin, u = 0. This symmetricity is an attribute
of the Fourier Transform of any real valued signal. Since F (u) is both
periodic and symmetric, we need to store only 1/2 of the N samples to
completely describe F (u), but remember that F (u) is complex and so carries
both amplitude and phase information at each sample. Thus we need two
numbers to describe each sample so that we still have to store a total of N
numbers – we haven’t gained any “compression” simply by doing the DFT.
However, this symmetry is very important in giving us a way to compute

14.2. FREQUENCY ANALYSIS 9

the DFT efficiently, as we will see later when we discuss the fast algorithm
for computing the DFT, known as the Fast Fourier Transform.

......

t

f(t)

-4 -3 -2 -1 1 2 3 4 5 6 7

a) f(t) sampled on unit interval and with period 4

......

u

|F(u)|

-4 -3 -2 -1 1 2 3 4 5 6 7-5-6-7

b) F (u) also has period 4 and is symmetric about the origin

Figure 14.6: A Discrete Periodic Function and its Fourier Transform

14.2.4 Discrete Fourier Transform of an image

This discrete form of the Fourier Transform permits us to transform a
digital image. Given an image sampled with N samples per scanline, and
M scanlines, and letting x represent horizontal distance, y vertical distance
(i.e. column and row numbers) and u and v represent frequency in cycles
per scanline or cycles per column, the two-dimensional Discrete Fourier
Transform is given by

F (u, v) =
1

MN

M−1∑
x=0

N−1∑
y=0

f(x, y)e−i2π(ux
N + vy

M),

with inverse transform

f(x, y) =
M−1∑
u=0

N−1∑
v=0

F (u, v)ei2π(ux
N + vy

M),

Here x, y, u, and v are integers, with 0 ≤ x, u < N , and 0 ≤ y, v < M .

10 CHAPTER 14. FREQUENCY ANALYSIS OF IMAGES

Because of the law x(a+b) = xaxb governing sums of exponents, these
equations can be factored into a handy computational form that allows
computation of the DFT in two parts – first by computing the DFT of
each scanline, and then by computing the DFT of each column of this
intermediate form. This factorization gives us

F (u, v) =
1

MN

M−1∑
y=0

[
N−1∑
x=0

f(x, y)e−i2πux/N

]
e−i2πvy/M , (14.11)

and

f(x, y) =
M−1∑
v=0

[
N−1∑
u=0

F (u, v)ei2πux/N

]
ei2πvy/M , (14.12)

Now, we have waded through a lot of mathematics, and you might be
asking yourself at this point, what does the Discrete Fourier Transform
buy us? In a word, it gives us a new way of looking at our image data.
Specifically,

1. it gives us a different space within which to study images, known as
the frequency domain.

2. |F (u, v)| gives the frequency spectrum, or spectral content of the im-
age, i.e. how much “information” in the image is concentrated at
various frequencies. This can tip us off as to what periodicities exist
in the image, and what ranges of frequencies are most represented?

3. The frequency content of an image is strongly related to what kind
of features might exist in the image. In general, hard edges and high
contrast in an image are equivalent to having strong high frequency
content in the Fourier Transform. Soft edges and low contrast are
equivalent to having strong low frequency content.

4. Certain filtering operations become trivial to implement in the fre-
quency domain. The filtering process can be seen as

f(t)

fourier
transform

=⇒ F (ω)

apply
filter

−→ F ′(ω)

inverse
transform

=⇒ f ′(t)

5. The Fourier transform holds the key to understanding and coping
with sampling issues.

14.2. FREQUENCY ANALYSIS 11

14.2.5 A demonstration of frequency based image con-
struction

The demonstration program frequency in the examples directory under
the course directory allows the user to construct images by specifying the
amplitude and phase of the harmonic frequencies along scanlines and down
columns. The program sums all of the harmonics, using one such sum for all
of the scanlines, and another such sum for all of the columns. The interface
to the program is simply a menu of three buttons. The open button is used
to select an input data file describing the image size and harmonic content.
the save button allows the user to save an image to a file once it is created,
and the quit button is used to exit the program.

Input to the program is via a data file organized as shown in Figure 14.7.
The first line of the file contains the image width and height, which must be
integer numbers between 1 and 1,024. The second line contains a number
between 0.0 and 1.0 which gives the average image intensity. The third line
contains triples describing scanline (horizontal) harmonics and the fourth
line has an identical format but describes column harmonics. Each har-
monic triple consists of a positive integer harmonic number between 1 and
one-half the scanline (or column) width, a number between 0.0 and 1.0
giving the amplitude of the harmonic, and a number between 0 and 360
giving the phase angle of the harmonic in degrees. The two lines describing
harmonics each start with an interpolation flag that must be either 0 or 1.
If the flag is 0, each specified harmonic is taken as an explicit discrete value.
If the flag is 1, harmonics are taken in pairs, with amplitude and phase of
the harmonics lying between these pairs linearly interpolated between the
two harmonics in the pair.

Data Description
width height image size
midlevel average grey level
interpolation-flag harmonic amplitude phase ... scanline harmonics
interpolation-flag harmonic amplitude phase ... column harmonics

Figure 14.7: frequency Program Input Data File Format

The image is constructed by taking products across the scanline and
column harmonic sums. Given the arrays S and C contining the computed
sums of scanline and column harmonics, the pixel in image I at location
(row, col) is computed by

12 CHAPTER 14. FREQUENCY ANALYSIS OF IMAGES

I[row][col] = S[col] * C[row];

Figure 14.8 shows how this computation works. The pixel with the • in the
output image on the left is the product of the scanline and column array
cells containing •’s. Likewise, the pixel with the # is the product of the
scanline and column cells containing #’s.

= *
#

#
#

Figure 14.8: Row-Column Product used by Demonstration Program
frequency

This is not the same as the fully general approach to building up an
image, given by the Fourier Transform, since unlike in a two-dimensional
Fourier Transform, each row has the same spectrum, and each column has
the same spectrum. Nevertheless, one gets the idea of how patterns can be
built up, and how a Fourier Transform can represent an image.

14.3 The Sampling Theorem

The Sampling theorem gives the following very surprising result. It states
that if a signal is sampled at a sampling rate greater than twice the highest
frequency contained in the signal, then it is possible to perfectly reproduce
the signal from the samples. This is precisely what we want to be able
to do with images – we would like our pixels (samples) to provide enough
information so that we can exactly reproduce the original unsampled scene
(or image). The reasoning in the theorem is as follows.

Assume that we start with a signal f(t) that is band-limited, i.e. it has a
maximum frequency umax beyond which its Fourier Spectrum |F (u)| is zero.
Such a band limited signal and its spectrum are shown in Figure 14.9a.
Now, sample that signal at some sampling frequency us to form a new
discrete signal f∗(t) and take its Fourier Transform. It turns out that the
Fourier Transform F ∗(u) of the sampled signal f∗(t) is the mathematical
sum of an infinite number of copies of the Fourier Transform F (u) of the
original signal f(t), with each copy of F (u) shifted from its neighboring
copies by exactly the sampling frequency, as shown in Figure 14.9b. Now,
since F (u) is band limited, the copies of F (u) in the sampled transform

14.3. THE SAMPLING THEOREM 13

F ∗(u) will not overlap as long as the sampling frequency, us is greater than
twice the highest frequency in F (u). If the sampling frequency is less than
this value, as depicted in Figure 14.9c, the lobes overlap and when they
are summed, the shape of the Fourier Transform is distorted in the region
of overlap. You can see from this figure that high frequencies get shifted
into and added together with low frequencies. This is the source of the
aliasing phenomenon – because of sampling, artifacts get introduced into
the sampled data that cannot be removed – they come from the sampling
process itself.

f(t)

t

|F(u)|

uumax-umax

a) signal and its Fourier spectrum

us = 2π/T

|F*(u)|

u

... ...

us-umax

f*(t)

tT

b) well sampled signal and its Fourier spectrum

us = 2π/T

f*(t)

tT

... ...

|F*(u)|

uus-umax

c) undersampled signal and its Fourier spectrum

Figure 14.9: Fourier Spectra of Continuous and Sampled Band-limited Sig-
nals

The reasoning in the sampling theorem continues – if we truncate the
Fourier Transform of a sampled signal at exactly us, as shown in Fig-
ure 14.10a, to obtain the filtered Fourier Transform F ∗′

(u), then we have
back the Fourier Transform F (u) of the original signal! In other words,

F ∗′
(u) = F (u), if us/2 > umax.

14 CHAPTER 14. FREQUENCY ANALYSIS OF IMAGES

All we have to do is to take the inverse Fourier Transform to perfectly
recover the full original signal from our sampled data. However, if we have
not sampled fast enough so that us/2 is larger than umax, as is the case in
Figure 14.10b, the resulting Fourier Transform F ∗′

(u) will be misformed,
and our reconstructed signal will have aliasing artifacts no matter what we
do.

...

|F*(u)|

...

-umax -umax

us/2-us/2

|F*’(u)|

-umax -umax

us/2-us/2

a) filtering to remove shifted copies of F (u)

... ...

|F*(u)|

-umax

us/2-us/2

umax

|F*’(u)|

-us/2 -us/2

b) deformation of result when sampling frequency is too low

Figure 14.10: Filtering in Frequency to Recover Fourier Transform of Orig-
inal Signal

Here is the moral again:

If you want to sample sound, image data, anything at all, you
had better sample at more than twice the highest frequency in
the original signal, otherwise you will have aliasing artifacts in
the result no matter what you do later.

Figure 14.11 shows this result in simple graphical form.

14.4 Ideal Low-Pass Filter

In the chapter on removing aliasing and reconstruction artifacts, we stated
that the ideal low-pass filter was the sinc function. The secret to the deriva-
tion of this result is the rather interesting fact that convolution in the spatial
domain is equivalent to multiplication in the frequency domain. It is left as

14.4. IDEAL LOW-PASS FILTER 15

no aliasingwell sampled signal

a) plenty of samples per period

under sampled signal aliased result

b) not enough samples per period

Figure 14.11: Aliasing Due to Undersampling

an exercise for the student to prove this to yourself by taking the Fourier
Transform of the convolution of two functions.

If we denote the convolution operation by the operator ∗, and the pairing
of a function with its fourier transform by the operator ⇔, this result can
be expressed algebraically by

h(t) ∗ f(t) ⇐⇒ H(u)F (u),

where f(t) is the function, F (u) its Fourier transform, h(t) is the convolu-
tion kernel and H(u) its Fourier transform. The law

h(t)f(t) ⇐⇒ H(u) ∗ F (u)

also holds but is not useful here.
Now in the frequency domain, an ideal low-pass filter is easy to describe.

It is simply a unit pulse, centered at the origin in the frequency domain,
with width twice the cutoff frequency. If we multiply any frequency domain
function by the unit pulse, it will be set to zero outside of the extent of the
pulse, and will be unchanged under the pulse. The relationship between
multiplication and convolution means that if we multiply the Fourier Trans-
form FT (u), of a function f(t) sampled at sampling period T , by the unit
pulse and then take the inverse transform, we should get the same result as
if we convolved the inverse Fourier Transform of the pulse with the original

16 CHAPTER 14. FREQUENCY ANALYSIS OF IMAGES

pT (t) =
∫ ∞

−∞
PT (u)ei2πutdu

=
∫ 1/(2T)

−1/(2T)

ei2πutdu

=
eiπt/T − e−iπt/T

i2πt

pT (t) =
sin πt/T

πt

so for T = 1, we have

p1(t) =
sin πt

πt

which is the sinc function with period 2 and maximum amplitude 1 at t = 0.

Figure 14.12: Inverse Fourier Transform of Unit Pulse of Width 2π/T Cen-
tered at Origin

sampled signal fT (t). Thus, the way to get the correct convolution kernel
for the ideal low-pass filter in the spatial domain would be to compute the
inverse Fourier Transform of the unit pulse in frequency. This derivation is
shown in Figure 14.12.

14.5. FAST FOURIER TRANSFORM 17

14.5 Fast Fourier Transform

The Discrete Fourier Transform in the form given by Equations 14.9 and
14.10, and the two-dimensional version given by Equations 14.11 and 14.12
are easy to program. Let us assume that we have defined a type Complex
for working with complex numbers, and that we have defined a function

Complex W(int n, int N)
which returns e−i2πn/N as a complex number. Then, an algorithm based
on Equation 14.9 to compute the Discrete Fourier Transform of the array
f of N elements is:

Complex *DFT(float f[], int N){
int u, n;
Complex *dft;

dft = new Complex[N];
for(u = 0; u < N; u++){

dft[u] = 0;
for(n = 0; n < N; n++)
dft[u] += f[n] * W(u * n, N);

}
return dft;

}

Now, this algorithm is extremely simple, but it has a very real problem.
That is that the two nested for-loops, each iterating N times means that
the algorithm will have a computation time proportional to the square of
N . In the parlance of complexity analysis, we say that the algorithm is
O(N2). Now, this is not a problem if the number of samples N is small,
but imagine a two dimensional version of this algorithm operating on a
512 × 512 image. Since the total number of pixels is approximately 1/4 of
a million, then if we know the computation time to compute a one pixel
Fourier Transform, we would have to expect that the total computation
time will be on the order of 60 billion times greater! This is not likely to
be a useful algorithm for working on real images.

Fortunately, there are several hidden symmetries in the calculation of
the Discrete Fourier Transform that can be exploited for big time savings.
The name given to the fast version of the DFT algorithm that exploits this
is the Fast Fourier Transform. This is a bit of a misnomer, since what it
computes is exactly the Discrete Fourier Transform, it just does it in an
amount of time proportional to N log N . This means that our 512 × 512
DFT that took 60 billion units of time using the naiive algorithm above,

18 CHAPTER 14. FREQUENCY ANALYSIS OF IMAGES

can be done in about 1.5 million units of time, a speed-up of about 40,000
times! Clearly, we need this algorithm.

The Fast Fourier Transform algorithm uses a Divide and Conquer strat-
egy to exploit symmetries in the Discrete Fourier Transform calculation.
What we mean by this is that at each stage in the calculation, the problem
is separated into two problems, each 1/2 the size of the original problem.
This separation is done recursively, for example breaking a size 4 problem
into two size 2 problems, then dividing each of these size 2 problems into
two size 1 problems. When the problem is reduced to a small enough size
(size 1 in this case) so that it can be computed easily, the computation is
done. Then, after computing each subproblem separately, the results are
recombined to eventually form the final solution. By doing this division in
a clever way, redundancies in the calculation of the DFT are uncovered and
easily exploited.

First, let us define the function

WN = e−i2π/N .

Then substituting WN for the complex exponential and the variable n for
t, we can rewrite Equation 14.9 for the DFT as

F (u) =
N−1∑
n=0

f(n)Wnu
N . (14.13)

The summation in Equation 14.13 can be subdivided into two summations,
one that sums over the even numbered terms and one that sums over the
odd numbered terms. This gives

F (u) =
N/2−1∑

n=0

f(2n)W 2nu
N +

N/2−1∑
n=0

f(2n + 1)W (2n+1)u
N ,

the second summation of which can be factored to yield

F (u) =
N/2−1∑

n=0

f(2n)W 2nu
N + Wu

N

N/2−1∑
n=0

f(2n + 1)W 2nu
N . (14.14)

But
W 2

N = e−i2π/(N/2) = WN/2,

so Equation 14.14 can be rewritten

F (u) =
N/2−1∑

n=0

f(2n)Wnu
N/2 + Wu

N

N/2−1∑
n=0

f(2n + 1)Wnu
N/2. (14.15)

14.5. FAST FOURIER TRANSFORM 19

The summations in Equation 14.15 can be recognized as simply two DFT’s,
each of a function 1/2 the size of the original function. Let us define these
two DFT’s to be

Fe(u) =
N/2−1∑

n=0

f(2n)Wnu
N/2,

representing the even numbered terms in the original DFT and

Fo(u) =
N/2−1∑

n=0

f(2n + 1)Wnu
N/2

representing the odd numbered terms in the original DFT. Then we can
rewrite Equation 14.15 to give the equation that forms the heart of the Fast
Fourier Transform Algorithm

F (u) = Fe(u) + Wu
NFo(u). (14.16)

20 CHAPTER 14. FREQUENCY ANALYSIS OF IMAGES

Equation 14.16 gives us a recursive formulation of the DFT calculation,
i.e. the DFT is defined in terms of itself. All that we need to complete this
recursive formulation is to determine a base case to end the recursion. Note
that when N = 1, the DFT of the single sample is just the single sample
itself, since W1 = e−i2π = 1. Thus the base case is that the DFT of a signal
consisting of only a single sample is the sample itself. The following version
of the DFT algorithm (which has a hidden flaw) is based on Equation 14.16
and this base case:

Complex *FFT(float f[], int N){
int n, u;
float *fe, *fo;
Complex *Fe, *Fo;
Complex *fft;

fft = new Complex[N];
if(N == 1)

fft[0] = f[0];
else{

fe = new float[N/2];
fo = new float[N/2];
for(n = 0; n < N/2; n++){
fe[n] = f[2*n];
fo[n] = f[2*n + 1];

}

Fe = FFT(fe, N/2);
Fo = FFT(fo, N/2);

for(u = 0; u < N; u++)
fft[u] = Fe[u] + W(u, N) * Fo[u];

delete fe; delete fo; delete Fe; delete Fo;
}

return fft;
}

Did you find the flaw? On careful analysis it is made obvious by the
array sizes – the DFT’s Fe and Fo for the odd and even functions are rep-
resented in the algorithm by arrays Fe and Fo, each of which has only N/2
elements. However, the for-loop that merges the two partial calculations of
the FFT needs to fill in N entries in the output array fft. Three simple

14.5. FAST FOURIER TRANSFORM 21

observations will give us all that we need to fix the problem, and give us a
working algorithm.

First, note that the DFT of a function containing N samples is really
an infinite periodic function, with period N . This relationship can be seen
in Figure 14.13, which depicts the complex exponential function W4 as a
sequence of unit vectors rotating around the origin of the complex plane.
This periodicity can also be seen algebraically, because Wn+N

N = Wn
NWN

N ,
but

WN
N = e−i2π = 1,

yielding
Wn+N

N = Wn
N .

Now, if WN is periodic with period N , then WN/2 must be periodic with
period N/2, and we can simply index the arrays Fe and Fo modulo N/2.

Second, note that Wn
N and W

n+N/2
N are mirror reflections of each other.

Like the periodicity, this relationship can also be seen in Figure 14.13. The
mirroring is because W

n+N/2
N = Wn

NW
N/2
N , but

W
N/2
N = e−iπ = −1,

yielding
W

n+N/2
N = −Wn

N .

Re

Im
W4

W4 = W4
3 4+3

W4
0

W4
1

W4
2

Figure 14.13: Wn
4 is Periodic in n with Period 4

Finally, note that choosing a base case of size 2 instead of size 1 also
leaves us with only a simple calculation. Since W 0

2 = 1 and W 1
2 = −1, we

have
F [0] = f [0] + f [1],

and
F [1] = f [0] − f [1].

22 CHAPTER 14. FREQUENCY ANALYSIS OF IMAGES

Using these three observations, we can recode the FFT algorithm to get
the final working version:

Complex *FFT(float f[], int N){
int n, u;
float *fe, *fo;
Complex *Fe, *Fo;
Complex *fft;

fft = new Complex[N];
if(N == 2){

fft[0] = f[0] + f[1];
fft[1] = f[0] - f[1];

}
else{

fe = new float[N/2];
fo = new float[N/2];
for(n = 0; n < N/2; n++){
fe[n] = f[2*n];
fo[n] = f[2*n + 1];

}

Fe = FFT(fe, N/2);
Fo = FFT(fo, N/2);

for(u = 0; u < N/2; u++){
fft[u] = Fe[u] + W(u, N) * Fo[u];
fft[2*u] = Fe[u] - W(u, N) * Fo[u];

}

delete fe; delete fo; delete Fe; delete Fo;
}
return fft;

}

There is one last thing to note about our algorithm. It is really only good
for values of N that are integer powers of 2. This is because our recursive
subdivision and recombination process expects to be able to eventually
subdivide the array f down to chunks, each of which is of size 2. This
can only be done if N is a power of 2. If N is not a power of 2, then
one or the other of the chunks will eventually reach an odd size and when
it is subdivided the resulting chunks will not be of the same size. This
restriction on the algorithm is not really a big limitation of the algorithm

14.5. FAST FOURIER TRANSFORM 23

since we can always pad our image out so that it fits into the smallest
rectangle the lengths of whose sides are powers of 2.

Now, let us look at the computational complexity of the algorithm.
My claim was that we would be able to achieve O(N log n) performance.
The old algorithm had two nested loops, each of which iterated N times,
yielding O(N2) performance. In the new algorithm the nesting of loops is
gone, being replaced by subdivisions and recursive calls. At each level of
recursion, the main calculation loop iterates N/2L times, where N is the
size of the original problem, and L is the level of recursion, i.e. L = 1
at the top level, 2 after one subdivision, etc. But, at level L the problem
is subdivided into 2L−1 chunks, so the total number of iterations at each
level is (N/2L)2L−1 = N/2. Now, if N = 2M , then the deepest level
of subdivision will be Lmax = log2 N = M . So, the algorithm does N/2
iterations at each of log2 N levels, yielding an algorithm whose performance
will be proportional to N log N .

24 CHAPTER 14. FREQUENCY ANALYSIS OF IMAGES

