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Abstract

The use of lattices and microstructures in geometric design have been recognized as potentially superior to solid
structures due to the potential benefits in improved strength-to-weight ratios, better control over heat exchange and
heat transfer, and so on.

In this work, we present a construction scheme to create parametric microstructures in a boundary representation
(B-rep) model, M, that are conformal to an arbitrary specification, including the boundary of M. Given a B-rep
model, M, either a polygonal or trimmed-spline based, a cage, T , is constructed around M to guide the synthesis of
the microstructures in M. Micro-elements are synthesized following T , and verified to be inside M while bridging
tiles are added as necessary. These parametric micro-elements can be heterogeneous in their material content, as well
as locally vary in their geometric properties.

We demonstrate these abilities with example microstructures synthesized from both polygonal B-rep models and
spline-based B-rep solids, including 3D printed parts.

1 Introduction

Consider a watertight boundary representation (B-rep) model, M. Existing methods for synthesizing mi-
crostructures inside B-reps are, for the most part, assuming an axis parallel grid of micro-elements that is
clipped to the shape in hand, M. As a result, micro-elements near the boundary of the model are left clipped
in an arbitrary way. A tiling scheme that is conformal to boundary of M, 𝜕M, while avoiding the need
to clip tiles is highly desired. See Figure 1. When stress tensors or paths of heat flux of the model are
prescribed, microstructure tiles better be conformal to the boundary of M, and also possibly follow some
desired directions in the interior.

Clipping based approaches, as shown in Figure 1 (a), are difficult to optimize as, typically, all tiles are
identical in the initial axis-parallel 3D grid of tiles. If a region in M is found too weak in the analysis stage,
micro-elements in (only) that region should be thickened, but this is a difficult task if the input is based on a
uniform grid of tiles, clipped to the boundary of M, 𝜕M. 𝜕M is a critical zone in analyzing the expected
behavior of M. The fact that individual tiles are locally clipped in an arbitrary way near and by 𝜕M, yields
difficulties in predicting the local physical behaviors, in term of strength, heat transfer, etc., of M, and 𝜕M

in specific.

Recent advances in additive manufacturing (AM) technologies have enabled the fabrication of, and
hence increased the demand for lattice based geometries, in design. AM is an enabling technology not
only for manufacturing complex lattice structures but also for supporting (graded) heterogeneity in material
representations. With AM, individual micro-elements can present different geometries and also potentially
contain different (graded) materials.
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(a) (b)
Figure 1: In (a), an axis parallel grid of micro-elements is being clipped to a macro torus shape of a square

cross section of varying size. In (b), the micro-elements follow the ’flow’ of the same macro torus

shape, while no tile is being clipped.

One approach for embedding microstructured geometries in M, while being conform to 𝜕M, is based
on volumetric representations [16], or V-reps: A functional composition-based framework is proposed to
build microstructures in a given macro volumetric shape T , defined as a trivariate tensor product volume. In
their work, micro-element tiles, {t𝑖}𝑖 , are populating the box domain of T , only to be functionally composed
into T , as {T (t𝑖)}𝑖 . Figure 1 (b) is exploiting such an approach.

The approach of [16] is limited to a single trivariate based macro shape. In [9], an attempt was made
to support conformal microstructures for V-reps that consist of several (trimmed) trivariate functions that
underwent some Boolean operations. Microstructures are synthesized for each individual trivariate only to
be stitched together along common zones.

In this work, we propose a method to create microstructures that are conformal to (the boundary of) a
B-rep model M while following a prescribed vector field/tensor in the interior of M. A cage T is constructed
around M in a similar way to the creation of cages in computer graphics, toward deformations [6]. Herein,
the cage is a volumetric trivariate function that prescribes the interior vector field and guides the synthesis
of microstructure MS. MS will be conformal to the boundary M and properly stitched to its boundary,
while following the arbitrarily prescribed parametrization of T . Micro-elements in MS are never clipped
while MS is synthesized using a functional composition-based approach, similar to [16], but over the cage
T . As stated, the cage T is a trivariate function that fully contains M and can be created by an end user,
as in computer graphics [6], following some stress tensors that result from analysis, or by interpolateing a
given (vector) field, etc. Finally, being parametric, individual tiles in MS can also be locally controlled and
modified, in their geometric properties but also in their material content.

The rest of this paper is organized as follows. In Section 2, the relevant previous work on designing,
mostly conformal, microstructures is presented. In Section 3, we present our algorithm to conformally
populate a B-rep model with parametric micro-elements. Then, results are presented in Section 4, and in
Section 5, some extensions are discussed. Finally, we conclude this work in Section 6.

2 Previous work

We split the discussion on previous work into two. In Section 2.1, we review results with a similar aim as
this work - the synthesis of conformal (parametric) microstructures over B-rep model. This work employs
cages that are common in computer graphics, toward deformation mostly, and those are briefly discussed in
Section 2.2.

2.1 Microstructure Construction

Populating the interior of a volumetric object with microstructures (or a set of micro-elements) has become a
common practice in the modeling of 3D geometric object, while exploiting additive manufacturing (AM). One



can control, with flexibility, the geometric properties of the structure while allowing the use of heterogeneous,
possibly graded, materials. Microstructures have been adopted in the design of artificial bones, medical
applications, or industrial designs such as airplane wings, heat exchanger, and solid rocket fuel [2]. Further
details regarding the methodologies and challenges in microstructure-based modeling have complied in
several survey papers, including [23, 18, 15].

Handling the micro-elements near the boundary has been one of the important issues in modeling
microstructured objects. There are several different strategies to process micro-elements near or across the
boundary shape: the elements can be purged as a whole, partially trimmed, or deformed with respect to the
boundary shape. These strategies are chosen based on various factors in microstructure models, such as the
shape of the micro-element, the representation of the microstructure and the macro (boundary) geometry, or
the method used in populating or deforming the micro-elements to fit within the boundary shape.

Aremu et al. [3] define a voxel-based unit cell as a microstructure. The microstructure in a unit cell is
tessellated with voxels and populated to cover the domain of the macro object. Tessellated microstructures
are then trimmed by applying bitwise Boolean intersection between the microstructures and the macro shape,
which is also voxelized. Each voxel is masked when the micro-element occupies the voxel, or remain void
otherwise. The boundary skin is covered with a net of struts and combined with the interior microstructures
using bitwise Boolean operations on voxels.

Tang et al. [24] construct lattice frames to populate uniform, conformal or random lattice microstructure
in the macro volumetric object. The macro shape is voxelized according to the lattice frame and filled with
strut-based micro-elements. Microstructures that are conformal to the boundary shape are fabricated by
deforming voxels with respect to the lattice frame which follows the boundary shape.

Topology optimization [5] is one of the major methods in constructing microstructures with (stress)
analysis and numerical optimization. In topology optimization, the microstructure is often initialized with
uniform grid-like lattice or voxel-based elements. The microstructure is parameterized in terms of the radii
of lattices or material distributions of the voxels, and these parameters are optimized with (stress) analysis
and additional constraints. When topology optimization is used, the micro-elements near the boundary
elements are aligned with the boundary shape as a result of numerical optimization. For instance, Zhu et
al. [29] execute a two-stages optimization to identify the optimal material distributions and topology of the
microstructures that minimize the objective energy function. Arora et al. [4] identify the optimal parameters
of a truss-based lattice which aligns the lattice along the stress field of the macro object. Wu et al. [28]
determine the orientation of each lattice element based on the principal directions of the macro object during
the topology optimization.

Conde-Rodriguez et al. [7] models the shape of the boundary object and heterogeneous material dis-
tributions using Bézier hyper-patches. Instead of defining the geometry of the microstructure explicitly, the
microstructure shape is determined by thresholding material distribution functions. Cutoff functions are used
to differentiate the core material from the matrix, or separate distributions of multiple materials. Herein, the
shape of the boundary object derives the boundary of microstructures.

Sosin et al. [26] viewed the construction process of the microstructure as a sphere-packing problem,
where the macro object is filled with contacting spheres. To make the microstructure connected to the
boundary shape, they introduced a special type of fillets to connect the outmost spheres to the boundary
shape.

Some research have proposed adaptive methods to construct a microstructure. They adaptively manip-
ulate either the macro shape or a coarse microstructure to yield a microstructure that is conformal to the
boundary of the macro shape, as much as possible. For instance, Leblanc et al. [14] model a volumetric
object using blocks, which are subdivided hierarchically to fit to the given macro shape. Adaptive Voids [17]
fill the interior of the mesh adaptively, with tetrahedra, by tessellating the dual mesh of the boundary mesh



and placing the tetrahedra hierarchically. The construction of the microstructure is started from the boundary
shape, and some margins around the boundary mesh are filled with solid materials, while the interior of the
shape is modeled with an adaptive size of porous cellular structures. Sitharam et al. [22] fill the boundary
mesh with the microstructure of corner-sharing tetrahedra (CoSTs). Starting from the coarse CoSTs, the
structure is refined with smaller tetrahedra when further details of the boundary shape must be maintained.
Kambampati et al. [12] adopt function-based representation (F-rep) to represent the microstructure in the
macro object, which is adaptively voxelized with different level of sparsity. A level set method is used to
identify active voxels that are part of the shape. The F-rep based microstructures are filled in the macro shape
and combined with the macro level surface, just as Pasko et al. [20] do.

A different approach to the construction of microstructures in a given macro shape is to apply a
functional composition-based approach, where a micro-element is defined as a function in a unit box domain
of a trivariate function, only to be functionally composed into the trivariate that represents the macro shape [8].
Massarwi et al. [16] propose a method to construct predefined or random microstructures in the macro object
formed of trivariate splines, using functional composition. Their functional composition-based approach
allows the construction of nested microstructures by multiple levels of functional compositions. Hong and
Elber [9] extend Massarwi et al. [16] to populate the microstructures in a more general macro shape formed
of trimmed trivariate splines, or V-reps. Toward this end, they construct the microstructures in the untrimmed
trivariates and then, following the respective Boolean operation tree of the macro shape, properly trimmed the
microstructures to the trimmed trivariates. As a final step, special bridging tiles are inserted to connect the
existing tiles near the boundary of one trimmed trivariate to its neighboring tiles in a neighboring trimmed
trivariate.

The above presented functional composition-based approaches have advantages in that they guarantee
the microstructures are conformal to the macro shape, while the macro-shape is a V-rep and the resulting
microstructure is parametric. In this work, we assume that the input is a watertight B-rep, and some parametric
trivariate cage. Either a polygonal mesh or B-spline based B-rep is assumed. Yet, the resulting microstructure
is conformal and represented as a parametric spline based. To the best of our knowledge, no microstructure
construction method that is arbitrarily parametric, while conformal to the boundary of the macro shape, exists
for B-reps.

2.2 Cage-based Deformation

The idea of embedding geometric objects in space and deforming the objects by deforming their embedding
space, has been introduced in the 80s by Sederberg [21], and has been in a wide use in driving or manipulating
skeletonal or skin based deformation in computer graphics, especially in interactive graphics [6]. The cage
is a coarse net structure surrounding the geometry in hands, and each component in the driven geometry is
associated with the degrees of freedom of the cage, so that high dimensional deformation is prescribed in
terms of the lower dimensional changes in the cage. (A survey paper regarding the early work in cage-based
deformation can be referred [19]).

Research regarding a cage-based methods often focus on the deformation of surfaces (or polygonal
meshes), but there are also several publications which adopt the cage to deform not only the boundary shape
but also volumetric object or other properties in the embedded model [11, 10, 25]. Our work is different from
this standard usage of cages; we exploit a trivariate cage that is populated with the microstructures’ tiles,
while the cage is indirectly associated with the boundary shape, only to purge tiles that are not completely in
the input model.
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Figure 2: The parametric tile used in this work, consisting of seven trivariates, all differently colored. In

(a), the tile is uniform in all direction. However, the tile, being parametric, can, for instance,

have varying arm thicknesses, as can be seen in (b).

3 The algorithm

In order to conformally populate the volume enclosed in a B-rep model M with micro-elements, we augment
M with a parametric trivariate volume T , that is arbitrarily parameterized while fully containing M. T

will govern the construction of the micro-element tiles, {t𝑖}𝑖 , that will then be validated against M. the
construction of T (e.g., via a GUI in computer graphics) is beyond the scope of this work, while we will
briefly discuss that, in Section 5.

With the understanding that a tile t𝑖 can be of a variety of geometric types, following [8, 16], herein, for
uniformity, we use the same tile, as in Figure 2, unless otherwise stated. This tile consists of seven trivariate
spline functions that will be functionally composed into the different trivariate cages, T . Being a parametric
tile, its geometric properties can be modified, as is shown, for example, in Figure 2 (b).

To fully support the proposed conformal tiling with microstructures, of a B-rep model M, this B-rep
must support the following operations:

1. PointInclusion. Denote by M◦ the interior of M. Given a point 𝑝, is 𝑝 ∈ M◦?

2. PointProjection. Given a point 𝑝 ∈ M◦, what is the closest point to 𝑝 on 𝜕M, the boundary of M?

3. BrepIntersection. Given a second B-rep model N , is 𝜕M ∩ 𝜕N = ∅?

See Appendix A, for some explanation how these operations can be evaluated for trimmed surfaces based
B-reps as well as polygonal B-reps.

With the availability of these operations over a B-rep model, Algorithm 1 portrays the top level process.
The input to the whole algorithm is the B-rep model M, a trivariate cage T that fully encloses M, and a
parametric tile t to populate T with, following some 𝑥𝑦𝑧 tile-density prescriptions 𝑘, 𝑚, 𝑛. Finally, input 𝛼
represents a shape control over the bridging tiles that will be created in Algorithm 4. Figure 3 demonstrates
each of the steps of Algorithm 1.

Following [8], we build microstructure MST inside T using tile t, in Line 1 of Algorithm 1. Then, in
Lines 2 and 3 of the algorithm, we handle two types of tiles:

1. Tiles in MST that are fully contained in M are assigned to MSF , in Line 2, calling Algorithm 2.

2. New bridging tiles to 𝜕M are built between tiles in MSF that are close to 𝜕M, and 𝜕M, and
accumulated in MSB , in Line 3, calling Algorithm 3.

Then, in Line 4 of Algorithm 1, these two sets are merged into the final microstructure, MSM .

Algorithm 2 filters out tiles in MST that are not fully contained in M. Toward this end, we exploit
two operations over our B-rep: BrepIntersection and PointInclusion. Each tile, t𝑖 , is tested, in Line 3 of
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Figure 3: An example of microstructures tiled in a B-rep trimmed surfaces model. In (a), A B-rep model M

is drawn in gray, with a cage trivariate T drawn in a red wireframe. In (b), microstructure tiles

in MST are drawn in cyan. In (c), we show one layer of the tiles from MST (the opaque tiles in

(b)). In (d), the tiles in (c) are filtered, and yellow and green tiles are included in MSF . In (e),

yellow tiles are joined to the boundary model 𝜕M using bridging tiles (in blue).

Algorithm 1 Microstructure tiling algorithm of M.

Input:
M: a B-rep model;
T (𝑢, 𝑣, 𝑤): a trivariate volumetric cage, containing M;
t: a parametric tile to populate T (and M) with;
𝑘, 𝑚, 𝑛: controls over tiling density of t in T , in 𝑢𝑣𝑤;
𝛼: a shape control over the created bridging tiles;
Output:
MSM : a microstructure tiling of M, using tile t, and following the ’flow’ of T ;
Algorithm:

1: MST := a microstructure tiling of T , using tile t and controls 𝑛, 𝑚, 𝑘 , following [8];
2: MSF := FilterTilesToM(M, MST); // Alg. 2.
3: MSB := BridgeTilesToM(M, MST , MSF , 𝛼); // Alg. 3.
4: MSM := MSF ∪MSB;
5: return MSM ;

Algorithm 2, for a full containment in M. First, we (via BrepIntersection) examine if 𝜕t𝑖 ∩ 𝜕M ≠ ∅, in
which case t𝑖 intersects M and is purged. Otherwise, if t𝑖 and M do not intersect, a single point 𝑝 on t𝑖 is
selected, only to (via PointInclusion) test 𝑝 for inclusion in M. Only if t𝑖 passes both tests, it is added to
MSF as a fully contained tile inside M.

Having the subset of tiles in MST that are in M, as MSF , in Algorithm 3, a bridging tile to 𝜕M is
constructed for each tile in MSF that is close to 𝜕M. We start by identifying the tiles in MSF that are close
to 𝜕M, in Line 4 of Algorithm 3. Consider a tile t𝑖 that is fully contained in M, being in MSF , while t𝑖 has



Algorithm 2 FilterTilesToM: Filtering stage to isolate all microstructure tiles that are fully inside M.
Input:
M: a B-rep model;
MST : a microstructure formed using a trivariate that fully contains M;
Output:
MSF: a filtered microstructure of MST , with tiles completely inside M;
Algorithm:

1: MSF := ∅;
2: for each tile t𝑖 ∈ MST do

3: if t𝑖 ⊂ M then

4: MSF := MSF ∪ {t𝑖};
5: end if

6: end for

7: return MSF;

an adjacent tile t𝑛𝑏𝑟 that is not completely in M. In other words, t𝑛𝑏𝑟 ∉ MSF .

Detecting a tile t𝑖 close to 𝜕M, that shares a boundary surface with t𝑛𝑏𝑟 that is not in MSF , we create
a bridging tile from t𝑖 to 𝜕M. Further, this bridging tile will be created from the face of t𝑖 that is shared with
t𝑛𝑏𝑟 . This bridging tile is constructed in Algorithm 4. The function Neighborhood in Line 3, Algorithm 3,
computes all the immediate neighbors (or adjacent tiles sharing a face) of a given tile in MST , a function
that exploits the known topology of all tiles in MST .

Algorithm 3 BridgeTilesToM: Builds bridging tiles from MSF to the boundary of M.
Input:
M: a B-rep model;
MST : a microstructure of volume T fully containing M;
MSF: a filtered microstructure of MST , completely inside M;
𝛼: a shape control over the created bridging tiles;
Output:
MSB: a set of bridging tiles from tiles in MSF , to 𝜕M;
Algorithm:

1: MSB := ∅;
2: for each tile t𝑖 ∈ MSF do

3: for each tile t𝑛𝑏𝑟 ∈ Neighborhood(t𝑖 ,MST) do // All tiles adjacent to t𝑖 , in MST .
4: if t𝑛𝑏𝑟 ∉ MSF then

5: // t𝑖 is fully in M while a neighbor t𝑛𝑏𝑟 is not. Create a bridging tile from t𝑖 to 𝜕M.
6: 𝑏 := BuildBridgeTile(t𝑖 , t𝑛𝑏𝑟 ,M, 𝛼); // Alg. 4.
7: if TileVerify(𝑏) then // Make sure neither deformed nor singular.
8: MSB := MSB ∪ {𝑏};
9: end if

10: end if

11: end for

12: end for

13: return MSB;

Finally, Algorithm 4 presents one approach to creating the bridging tiles. Bridging tiles join the
outermost faces of the filtered tiles in MSF to the boundary of M and enable to maintain the conformality



between the microstructures and the macro object. The shared face between t𝑖 and t𝑛𝑏𝑟 is identified as 𝐹, in
Line 1, and a central point 𝑝𝐹 in 𝐹 and an outgoing normal are computed, in Lines 2 and 3. In Line 4, we
estimate the distance from 𝑝𝐹 to the boundary (exploiting the B-rep PointProjection operation) and employ
the shape control 𝛼 to compute point 𝑞, only to project 𝑞 on M to find the closest location to 𝑞 on M, as
location 𝑟 . 𝑝𝐹 , 𝑞, and 𝑟 are employed as the control points of a quadratic Bézier axis curve, 𝐶, through which
a sweep trivariate bridging tile is derived, sweeping 𝐹 through 𝐶, in Lines 8 and 9, that is 𝐺1 continuous to
t𝑖 .

Algorithm 4 shows that the bridging tiles are independently constructed by joining 𝐹’s to the closest
boundary surfaces of M. Similar to the bridging tiles constructed in [9], the bridging tiles herein can also
suffer from collisions between tiles. As a post-process of constructing the bridging tiles, we detect possible
collisions between bridging tiles by computing the smallest distance between the axis curves. Two bridging
tiles are declared too close if the sum of the radii of the shared faces is larger than the minimum distance
between the axis curves. We attempt to resolve such collisions, by moving away the end point of the axis
curves (𝑟 in Algorithm 4) on 𝜕M. When the distance 𝑑 in Line 5 in Algorithm 4 is too small, (e.g., 𝑑 becomes
almost zero when the filtered tile nearly contacts the boundary of M, the resulting bridging tile is almost flat.
The bridging tile, in addition, can be highly distorted, or even self-intersecting, if ®𝑛𝐹 deviates too much from
the surface normal of 𝜕M at point 𝑟 . See TileVerify in Algorithm 3, Line 7 - we do not include the bridging
tiles in these extreme cases.

Algorithm 4 BuildBridgeTile: Builds a bridging tile from t𝑖 along shared boundary with tile t𝑛𝑏𝑟 , to 𝜕M.
Input:
M: a B-rep model;
t𝑖: a tile fully inside M;
t𝑛𝑏𝑟 : a tile adjacent to t𝑖 , and intersecting/out-of M;
𝛼: a shape control over the created bridging tile;
Output:
b: a bridging tile from t𝑖 , from its adjacent face with tile t𝑛𝑏𝑟 , to 𝜕M;
Algorithm:

1: 𝐹 := shared face of t𝑖 and t𝑛𝑏𝑟 ;
2: 𝑝𝐹 := center location of 𝐹;
3: ®𝑛𝐹 := outgoing unit normal of 𝐹 at 𝑝𝐹 ;
4: 𝑝M := closest point on 𝜕M to 𝑝𝐹 , calculated via B-rep PointProjection;
5: 𝑑 := 𝑑𝑖𝑠𝑡 (𝑝𝐹 , 𝑝M);
6: 𝑞 := 𝑝𝐹 + 𝛼𝑑®𝑛𝐹 ;
7: 𝑟 := closest point on 𝜕M to 𝑞, calculated via B-rep PointProjection;
8: 𝐶 := quadratic Bézier curve, using 𝑝𝐹 , 𝑞, and 𝑟 as its control points.
9: b := sweep volume of surface 𝐹 along curve 𝐶;

10: return b;

4 Results

Unless otherwise stated, tiles used in this section are trivariates, typically tricubic. Clearly, tiles consisting
of surfaces will be faster to process and more so for curves, etc. We will demonstrate that, in this section as
well. We start, in Figure 4, with a simple trimmed surfaces based B-rep model that is a union of a sphere
and a cylinder. The original cage trivariates and the original set of micro-elements MST , are presented in
Figure 4 (i), while the final set of conforming micro-element tiles is presented in (ii) to (iv). The filtered
(interior toM) tiles, MSF , are drawn in green and yellow, with the yellow tiles are those from which bridging



tiles to 𝜕M are formed. Finally, the bridging tiles themselves, MSB , are painted in blue. A low-resolution
(recall 𝑘, 𝑚, 𝑛 in Algorithm 1) tiling is presented in (a) whereas (b) presents a higher resolution version of
(a) in all three axis, using the same cage trivariate. Finally, in (c), a high resolution tiling is shown, with a
different, radial, cage trivariate function, T .

(a)

(b)

(c)
(i) (ii) (iii) (iv)

Figure 4: Three examples of microstructures, tiled in a B-rep trimmed surfaces model. (a) shows a fairly

low resolution microstructure whereas (b) presents twice higher the resolution compared to (a),

in all three (𝑢, 𝑣, 𝑤) axes. In (c), a high resolution version, similar to (b), is presented but with a

different cage trivariate field, being radial. The columns, left to right, depict (i) the original cage

trivariate with the full set of tiles, MST , in cyan, (ii) the model with the final set of tiles, MSM ,

in the B-rep model (transparent), and the cage (red wireframe), (iii) the final microstructure

MSM , and (iv) a zoom-in on a portion of the microstructure in (iii). The filtered (interior to M)

tiles, MSF , are drawn in green and yellow, with the yellow tiles are those from which bridging

tiles to 𝜕M are formed. Finally, the bridging tiles themselves, MSB , are painted in blue.

The polygonal model of a bone 1 has been fitted with three trivariate cages, shown in (a) to (c) in
Figure 5. Figure 6 presents the placement of conforming microstructures into another polygonal B-rep model
- the Stanford Bunny 2 3. The tiling density (Recall 𝑘, 𝑚, 𝑛 in Algorithm 1) is similar in all three cases.
Three different cages are presented, two of which, in (b) and (c), have a 𝐶−1 discontinuity that allows the
cages to split into two, near the ears of the Bunny. The trivariate cage in (c) is the tightest among the three,
with respect to the bunny, and the result is clearly visible near the ears, as shown in the zoom-in, in (iii). In
both the (a) and (b) cases, the ears can not be completely populated with tiles, and further, some tiles in the
ear are floating and are disconnected from the rest of the microstructure.

Finally, in Figure 7, a B-rep model of a duck, formed out of trimmed surfaces is presented. Two trivariate
cages were created for this model and the differences are mostly visible in the area of the head. The shape

1from https://www.turbosquid.com/3d-models/3d-cartoon-bone-1614756
2see http://graphics.stanford.edu/data/3Dscanrep
3downloaded from https://www.thingiverse.com/thing:3731/files



(a) (b) (c)
Figure 5: A polygonal B-rep model M of a bone (4252 polygons) tiled with microstructures. Three

different cages are shown, from (a) to (c), each of which with two images - the cage in red

wireframe and the bone model transparent on the left and the final microstructure MSM on the

right. The filtered (interior to M) tiles, MSF , are drawn in green and yellow, with the yellow

tiles are those from which bridging tiles to 𝜕M are formed. Finally, the bridging tiles themselves,

MSB , are painted in blue.

and the size of the individual microstructure depend on the Jacobian of the cage where the microstructure
occupies, which is determined by geometry, parametrization of the trivariate cage, and the prescribed tiling
parameters 𝑘, 𝑚, 𝑛. When the cage contains regions close to being singular, as shown near the tail of the duck
in Figure 7, we can adjust 𝑘, 𝑚, 𝑛 to yield less distorted tiles in near-singular areas. Alternatively, bifurcation
tiles can be employed as is done in [16].

The most expensive step in these computations, especially for trimmed surfaces based B-rep, is the
intersection test. Table 1 presents the computation time for some of these examples. All experimental results
are measured on an Intel Core i7-7700K 4.2GHz PC with 32 GB RAM and eight cores. Construction (Line
1 in Alg. 1) and filtering (Alg. 2) computations are parallelized using eight threads, for each tile ti, whereas,
bridging tiles (Alg. 3 and Alg. 4) are computed on a single thread, due to the collision detection between
different bridging tiles.

Some results, as seeing in Table 1, should be discussed. The tiles’ construction time of Figure 5 (b) is
far longer compared to Figure 5 (a) and (c) due to the higher order of the cage trivariate, which is linear in
𝑢 and 𝑣 in (a) and (c) and cubic in (b). The same results are also observed in the Bunny model (Figure 6),
in which the construction time is slower in (a) due to the higher order of the cage trivariate in (a). Filtering
of polygonal B-reps is much faster due to the usage of BVH, compared with filtering of spline based B-reps
that requires the computation of surface-surface intersections. Further, while we mostly employed trivariate
tiles in these examples, tiles consisting of surfaces are faster to process and more so for curves based tiles.
Table 1 also shows the functional composition computation times for the same tile shapes but with surfaces,
which are clearly faster, mostly due to the lower dimensions of the composed results.

5 Extensions

The presented approach can be extended in several ways. To begin with, the input enclosing trivariate T can
be prescribed directly but it can also be defined by fitting T to any input field (or tensor). Such a field can
come, for example, from stress analysis over the geometry that will identify the principle stress directions
that must be re-enforced. Further, the same analysis can also control the local shapes or material content



(a)

(b)

(c)

(i) (ii) (iii)
Figure 6: Three examples of microstructures tiled in the polygonal B-rep model of the Stanford Bunny

(66848 polygons). (a) to (c) show three different trivariate cages, with (c) being the tightest. The

cages are depicted transparent in (i) and using wire-frames in (ii) and (iii). Note the trivariate

cages in (b) and (c) have a 𝐶−1 discontinuity that allows its split near the ears of the bunny. The

tiling density in all three examples is similar.

of individual tiles. For example, thin tiles in low stress (or minimal heat transfer) zones and thick tiles in
locations where the identified stresses are significant (or the required heat flux is considerable).

The geometry of a tile in the final result is affected not only by the shape of the tile in the domain of the
cage trivariate T , but also by the local Jacobian of T . While we have little control over (the Jacobian of)
T , we have full control over the shape of individual tiles, as they are parametric. As long as the geometry
preserves the desired continuity, any global specification can be employed here, e.g., direct prescription by
the end user as a function of Euclidean coordinates in 𝑅3 or trivariate parametric coefficients 𝑢𝑣𝑤, due to
stress or heat transfer analyses, etc.



(a)

(b)

Figure 7: A trimmed surfaces based B-rep model of a duck tiled with microstructures. Two different cages

are shown, in (a) and (b), each of which with three images. The cage trivariate is shown in a red

wireframe, the B-rep model is presented transparent, and the final microstructure in yellow, green

(for 𝑀𝑆𝐹 ) and blue (𝑀𝑆𝐵). The zoom-in, on the area of the head, on the right, clearly depicts

the differences in the outcome.

Time (secs.) No. of tiles
Construction Filtering Bridging

Figure (eight threads) (eight threads) (one thread) |MST | |MSF | |MSB |

Trivariate tiles Surface tiles
4 (a) 456.484 1.609 258.281 6.439 576 188 272
4 (b) 1854.469 5.937 946.63 24.26 2304 916 770
4 (c) 214.735 2.921 739.912 23.05 2304 1468 692
5 (a) 10.344 1.047 1.93 7.675 1480 531 728
5 (b) 1534.844 5.063 1.78 5.314 1920 387 510
5 (c) 12.281 1.641 3.565 10.734 2240 939 836
6 (a) 6963.937 22.328 50.667 261.711 8448 1706 1519
6 (b) 1307.093 13.141 58.611 352.709 10368 2315 2066
6 (c) 1054.328 12.906 63.94 412.034 10368 2786 2407
7 (a) 237.5 3.75 10400.717 32.138 2541 889 852
7 (b) 328.25 4.516 10783.349 46.006 3549 1287 983

Table 1: Statistics of the test cases shown in this section. |MST | and |MSF | represent the number of unit

trivariate tiles before and after filtering, and |MSB | represents the number of bridging tiles

connected to M. The number of polygons in the Bunny model (Figure 6) is 66848, and 4252 in the

bone model (Figure 5), respectively. While we employ trivariate tiles throughout, the construction

times for surface-based tiles are much faster and are shown for comparison.

Figure 8 presents a few examples of the same modelM and the same cage trivariate, as in Figure 4, while
the thicknesses of individual tiles are locally modified, herein following some globally specified functions in
𝑅3.

Clearly, any property in a tile can be similarly controlled and modified and the thickness of individual
tiles is merely one example. This includes the geometry, topology and even material content of a tile. This,
while typically the proper connectivity to neighboring tiles (and 𝜕M) is maintained. A careful reexamination



(a) (b) (c)

Figure 8: Several examples of variable thickness tiles in a B-rep model are shown. In (a), the tiles are

thinned at the center, in the central sphere zone, in (b), the tiles are thinned toward the bases of

the cylinder, and in (c), the thicknesses are modulated to follow some sine functions. Compare

with Figure 4.

(a)

(b) (c)

Figure 9: The tile in (a), consisting of three periodic freeform curves in a unit cube (cube is not part of the

tile), is used to tile the B-rep polygonal bone model from Figure 5, in (b), and the B-rep trimmed

surfaces based model, similar to the model in Figure 4, in (c). Interior tiles are drawn in green

and bridging curves are in blue.

of Figure 8 will reveal that a single tile can possess different properties on its different (six) boundaries,
herein different thicknesses, ensuring a 𝐶0 continuity.

Further, following [16], the geometry in these tiles can consist of univariate curves and polylines,
polygonal meshes, freeform (trimmed) surfaces and solids, and (trimmed) trivariates. Figure 9 demonstrates
this ability for tiles formed out of freeform curves. The three operations of PointInclusion, PointProjection,
and BrepIntersection must be supported between the B-rep model and the specific type of geometry in the
tile. Herein, for a curves-based tile and a B-rep model, a test for curve-model intersection must be supported
as well. For curve-based tiles, the computation is even faster than trivariate- or surface-based tiles. The
curves tiles in Figure 9 (b) were computed in 0.188 Sec, whereas those in Figure 9 (c) were computed in 0.25
Sec.

Finally, Figure 10 shows the duck and the Bunny 3D printed. The duck was printed as a skeletal
microstructure whereas the Bunny was printed (in two sizes) in a translucent body. Some surfaces of the
microstructure of the Bunny were painted with blue dots, demonstrating the ability to prescribe heterogeneous



Figure 10: 3D printed versions of the Bunny (in two sizes) from Figure 6 and the duck from Figure 7. The

Bunny was printed in a translucent body while for the duck, only the microstructure has been

3D printed. Printed on a J55 printer of Stratasys.

properties in tiles in the microstructure. Following [16], the heterogeneity of the tiles in the microstructure
can be reflected not only in their material properties but also in their topological and/or geometric shape.
All models were printed on a J55 printer 4 of Stratasys, with water-soluble supporting structure. A single
polygonal file (in STL or OBJ file format) has been created for all the B-rep tiles in the microstructure, only
to be sent to the printer.

6 Conclusions and Future Work

In this work, we have presented a constructive approach to populating B-rep models, polygonal or spline-
based, with microstructure tiles, along an arbitrarily specified field. This aim has been accomplished using
a user-defined trivariate cage that encompasses the B-rep model. One potential benefit to be explored is the
exploitation of the presented approach in placement of tiles along desired directions, like stress tensors or
gradients of heat.

While tiles in this work were composed of either curves or surfaces/trivariate B-splines, nothing in this
work prevents one from employing a single tile with mixed geometry type, including other geometric types,
such as polygonal meshes and polylines. Yet, considering such a tile as a whole, would still entail the support
of the three operations over B-reps, as discussed in Section 3.

There is also a clear room for further development. The presented scheme assumes the bridges are built
from faces in tiles that are close to the boundary of M (Face 𝐹 in Algorithm 4). Face 𝐹 is typically almost
planar but not exactly planar. Further, the location where the bridge contacts M is typically also non planar.
Hence, the bridge typically contacts M in a non tangential way and can penetrate the boundary, instead of
being precisely tangent to it. While in a minute amount, a better bridging scheme to ensure proper tangency
contact might be desired. For example, if 𝜕M is a shell of some 𝜖 thickness and that 𝜖 is larger than the
non-planarity of 𝐹, Boolean operations can be employed between the shell 𝜕M and MSB . Further, M can
have 𝐶1 discontinuities (e.g., along intersection curves of two surfaces), which will require either moving
the contact point of the bridge on M (𝑟 in Algorithm 4) away from the discontinuity, or mimicking the

4https://www.stratasys.com/en/3d-printers/printer-catalog/polyjet/j55-prime



discontinuity in the bridge.

In addition, the cageT and tiling parameters such as tiling density should be prescribed by the end user, in
the proposed method. Providing a cage and tiling parameters that are satisfying physical boundary conditions
and/or additive manufacturing constraints is another future work of the proposed method, incorporating
analysis and optimization tools into the design loop.

The topology of a B-rep model can be arbitrary complex and herein we only employed a single caging
trivariate for the entire model M. M can have arbitrary number of handles coming out or have a large genus.
A generalized cage based approach that is similar to polycubes [27] and/or trimmed trivariate V-reps [9],
might be of value here, for a complex model M, and needs to be further explored.
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A. B-rep queries

In this appendix, we briefly discuss how are the three key operations of PointInclusion, PointProjection,
and BrepIntersection, evaluated, over trimmed surfaces based B-reps as well as polygonal B-reps. In both
cases, we assume a water-tight model.

Having M as a trimmed surfaces based solids, the PointInclusion test for point 𝑝 can be reduced to
shooting a ray from 𝑝 until it is outside the bounding box of M and counting the number of intersections
- odd if 𝑝 ∈ M and even if 𝑝 ∉ M. This ray-shooting approach can be unstable if cracks or black holes
exist along the trimmed area and an alternative and more robust approach can be used, that employs winding
numbers - see [13].

The PointProjection query can be reduced to the closest point on M to 𝑝, which means the minimum
between the closest point-surface tests against the trimmed surfaces in M, closest point-curve tests against
the trimming curves in M, and closest point-point test against the intersection locations of the trimming
curves. By assuming that the trimmed surfaces and trimming curves are 𝐶1, the minimal distance queries
could be reduced to algebraic constraints and solved.

The final BrepIntersection test can be resolved by using Boolean operation computation where we only
seek to find if the given two B-reps intersect or not.

To accelerate B-rep queries on a polygonal mesh M, we start by building a Bounding Volume Hierarchy
(BVH) structure [1] for M. An internal node in the BVH is an axis-aligned bounding box (AABB), and the
leaf node contains one polygon.

For the PointInclusion test of a point 𝑝 with respect to the polygonal mesh M, we take the ray-shooting
approach which is similar to PointInclusion test of the trimmed surface based model. However, the ray-
shooting test is now executed while traversing the hierarchy of the BVH; We test the intersection between the
ray and one AABB node on BVH structure. If the ray does not intersect the current AABB node, we do not
investigate the subtree under the box anymore; if the ray does intersect with the node, then we test further for
the intersection between the ray and all the children AABB’s, of the current AABB.

For computing the closest point on the polygonal model to an arbitrary query point (the PointProjection

test), we traverse the BVH by comparing the distance between AABB and the query point. After the traversal
algorithm reaches a leaf node of BVH, we do point-projection to the polygon and get the closest point.

For computing the intersection between a polygonal model and a given tile surface (as part of the B-rep
tile), we first make AABB for the surface and search for intersecting leaf nodes of the BVH of M, via an
hierarchical traversal, of the BVH. Internal nodes of the BVH that do not intersect with the AABB of the
surface are excluded, and hence we can significantly accelerate the algorithm. We complete the algorithm by
examining for intersections between the identified polygons (leaf nodes of the BVH) and the surface.


