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Preface 

History of Shape Creation Using Layouts, 
Programs, & Technology (SCULPT) Event  

 

The SCULPT started as an experiment in expanding the scope of shape modeling international (SMI) 
conference in 2012. It was originally called Fabrication and Sculpting Event (FASE). We also had 
another FASE event in SMI’2013. There were very 
positive responses to the FASE papers and 
presentations in both 2012 and 2013. Although we 
skipped FASE in SMI’2014, based on the success 
of earlier events, we continued the FASE event 
from 2015 to 2021 as a part of SMI conference.    

In 2013, Nat Friedman, the chair of the 
International Society of the Arts, Mathematics, and 
Architecture (ISAMA), asked me if we could 
organize the event as an annual ISAMA 
conference. I presented the idea to the SMI steering 
committee. The Committee unanimously agreed 
with the suggestion. As a result, this event can now 
be considered also as the Twentieth 
Interdisciplinary Conference of ISAMA.   

 The ISAMA conference has a rich history. The first Art and Mathematics Conference (AM 92) was 
organized by Nat Friedman at SUNY-Albany in June, 1992. This conference was followed by annual 
conferences AM93-AM97 at Albany and AM 98 at the University of California, Berkeley, co-organized 
with Carlo Séquin. ISAMA was founded by Nat Friedman in 1998 along with the ISAMA publication 
Hyperseeing co-founded with me in 2006. In addition, the Art/Math movement has taken off with the 
formation of many additional conferences and organizations. In particular, we mention the very 
successful Bridges conference organized by Reza Sarhangi in 1998 and the excellent Bridges 
Proceedings. The significance of the art/math movement is now recognized internationally and in 
particular by the extensive art/math exhibit at the annual Joint Mathematics Meeting of the American 
Mathematical Society and the Mathematical Association of America organized by Robert Fathauer.  

In 2022, we decided to name the event as SCULPT to communicate the concept better. It is a short form 
of Shape Creation Using Layouts, Programs, & Technology (SCULPT). The main difference with other 
math/art conferences is that SCULPT focuses solely on physical realization of 3D shapes.  We invite 
submissions mainly from practitioners such as sculptors and architects to describe their methods. We 
expect that such papers and the following discussions can provide new problems, issues, and questions for 
theoretical shape modeling research.   

 
Ergun Akleman 
 
Editor, Hyperseeing  
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Preface 

Shape Creation Using Layouts,  
Programs, & Technology (SCULPT) 2022 

 
There are at least two aspects to shape modeling: theoretical and practical.  The mathematical and 
theoretical aspects of shape modeling have traditionally been supported by the SMI conference. With the 
Fabrication and Sculpting Event (FASE) our goal is to include more hands-on, application-oriented ways 
by designers and sculptors who construct sophisticated real-world objects.   

FASE has its own program committee, and the accepted papers are published in Hyperseeing. With 
FASE, we hope to attract practitioners who might usually be less inclined to write papers containing 
formal algorithms or mathematical proofs, but who nevertheless have important things to say that are of 
interest to the shape modeling community and who also might provide visually stimulating material.  

For this year’s Fabrication and Sculpting Event, we solicited papers that pose new questions and motivate 
further research in designing, fabrication and sculpting. Topics should be useful, for example, in the 
following areas: Fabrication of digital models, Advanced manufacturing techniques such as additive 
manufacturing, laser cutting or CNC milling, Interactive or procedural design of manufacturable shapes, 
Interconnections of complex modeling and fabrication processes, visually stimulating fabrication 
techniques or printed structures. 

Thus, the scope of FASE is the 
intersection of shape modeling and 
fabrication methods/algorithms, 
and papers may focus on both the 
digital/theoretical and the physical 
domain or just one of these 
domains – as long as the 
connection to the other domain is 
clear. It is not a requirement that 
the techniques presented in the 
paper involve computation as such, 
but they need to have a clear algorithmic or mathematical element.  

We received six submissions this year and three of them were accepted as twelve-page or longer full 
papers, and another one were accepted as short papers eight pages or shorter. The five accepted papers 
span a wide range of topics and views on the fabrication process of various artistically interesting 
artifacts.   We wish to thank the authors and the reviewers for their participation in the SMI/ISAMA 2022 
SCULPT Event. We hope that new ideas and partnerships will emerge from the FASE papers that can 
offer a glimpse into a much larger territory and the event can enrich interdisciplinary research in Shape 
Modeling. We hope that the attendees of SMI 2022 will enjoy this event of the conference.  

 
Oleg Fryazinov, and Carlo Séquin 
 
SCULPT Papers chairs 
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Partitioning and Assembly of Gosper Sculptures 

 
Carlo H. Séquin 

 
University of California, Berkeley;  sequin@berkeley.edu 

 
Abstract  

This paper addresses the technical challenges of physically realizing some tubular geometrical sculptures, using 
two examples from opposite ends of a spectrum of possible Gosper sculptures.  A first example concerns a large-
scale metal sculpture of a Gosper-Ball with only 38 tubular segments, but which still exhibits the characteristics 
of a 3D Gosper curve quite nicely.  The challenge is how to accurately assemble the 38 tubular pieces while 
realizing the required angles at all 38 joints.  The paper presents a judicious partitioning of the overall sculpture 
and some simple jigs that help to put the different sub-assemblies together. 
The second example concerns 3D-printing of desk-top models of complex Gosper-Globes with up to 756 
segments, where a variant of a 2D plane-filling Gosper curve is constrained to a spherical shell.  The lengthy 
tubular loop representing the Gosper curve requires a lot of support material during the additive fabrication 
phase. This support material is difficult to remove from the inside of the spherical shell.  Partitioning the shell 
into a few smaller domains reduces this problem without unduly complicating the assembly of the overall 
sculpture. 
 

 
Introduction and Previous Work 

Taking a self-similar, 2D plane-filling curve, such as the Hilbert curve [10] or the Gosper curve (Fig.1a) 
into the third dimension offers interesting mathematical design challenges and can result in attractive 
geometrical sculptures [3].  For the last two years, I have been specifically interested in transforming 
variants of the Gosper curve [9][12] into attractive 3D geometrical sculptures [4] (Fig.1c).  Making a 3D 
space-filling Gosper-like curve (Fig.1b) has its own geometrical and algorithmic challenges, which have 
been discussed elsewhere [8][4][5].  Physically realizing such sculptures, either in the form of a 3D-print 
with several hundred cylindrical segments, or as a human-scale sculpture made from metal tube segments, 
poses additional challenges.  Some of these problems can be addressed by judiciously partitioning the 
overall sculpture into a few sub-assemblies that are relatively easy to fabricate, and which then are not too 
difficult to compose into the final sculpture.  In this study, I use two examples from opposite ends of a 
spectrum of possible Gosper sculptures to discuss these fabrication challenges – in accordance with the 
stated interests of the SCULPT track.   
 

                  
                          (a)                                                    (b)                                                     (c)                     

Figure 1:  (a) 2D Gosper curve;  (b) a 3D Gosper curve;  (c) a small Gosper sculpture. 
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The first example concerns a Gosper-Ball of low complexity with only 38 segments made from metal 
tubes.  Here the main problem is how to join the pre-cut metal tube segments while accurately realizing 
the required angles at all the joints, so that the overall sculpture will close nicely into a symmetrical loop.  
The first step is to pick the right sub-structures that can be assembled easily with good accuracy because 
they contain several co-planar segments.  These sub-assemblies are then joined with simple, helpful jigs 
that assist in implementing proper angles and proper spacings. 

The second example concerns 3D-printing of Gosper-Globes, where a variant of a 2D plane-filling 
Gosper curve is constrained to a spherical shell. I discuss making desk-top models of complex Gosper-
Globes with up to 756 segments on low-end 3D-printers.  The thin, lengthy tubular loop needs a lot of 
support material during the additive fabrication phase, which then is difficult to remove from the inside of 
the spherical shell.  Partitioning the shell into a few smaller domains reduces this problem without unduly 
complicating the assembly of the overall sculpture. 

 
Metal Sculpture:  Gosper-Onion_38 

Gosper-Balls fill a roughly spherical domain with a 3D polyline that tries to capture the basic 
characteristics of a 2D Gosper curve.  In one approach, the Gosper strand visits the atomic sites of a face-
centered cubic (FCC) lattice by making equal-size, nearest-neighbor steps.  The FCC lattice is the lattice 
that allows densest sphere-packing.  Figure 1c shows such a Gosper-Ball covering 140 FCC lattice sites. 

Chris Ohler, who has created several abstract geometrical sculptures in metal [2], is interested in 
building a Gosper sculpture from metal tubing.  When planning to make a first Gosper sculpture from 
individual metal tube segments, it is prudent to keep it rather simple.  This raises the question:  What is 
the minimal number of tube segments that can still present the characteristics of a 3D Gosper curve?  One 
promising approach is to place some typical, hexagon-shaped “Gosper-Claws” in the outermost, 
peripheral layer of the sculpture, where these features can easily be seen, and to construct a small inner 
core that holds these outer elements in place.  I call this the Gosper-Onion approach [4].  Working on the 
FCC lattice, I start with a core of six vertices on the corners of an octahedron (Fig.2a).  I then surround 
this core with a second shell based on a truncated octahedron. This second shell has 24 atomic sites to 
define its convex hall and eight more atoms in the centers of the eight hexagonal faces (Fig.2b).  This 
Onion-Shell approach can be continued.  The third shell would have a total of 102 atomic sites (Fig.2c). 

           
                           (a)                                                   (b)                                                   (c)          

Figure 2:  (a) 6 atoms in shell 1;  (b) 24+8=32 atoms in shell 2;  (c) 6+48+48=102 atoms in shell 3. 
 

Various Design Options 
The 38 sites on the FCC lattice can be connected in many different ways.  To make a simple but 
convincing representation of a 3D Gosper curve, a Level-2 Gosper-Onion seems particularly well suited.  
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The seven sites in the hexagonal faces of shell 2 are perfectly suited to accommodate one typical Gosper-
Claw.  In a first approach, I place two such claws on adjacent faces and combine them into a “Double-
Claw” (Fig.3).  I can do this on two pairs of faces (yellow and orange), and this naturally splits the outer 
shell into two equal halves.  The remaining sites in the other four hexagonal faces are used to connect the 
two outer half-shells to the inner octahedral sites.  I found two different ways of doing this.  In Model A 
(Fig.3a), the two Double-Claws are cross-connected with two inner struts (green and blue) that each use 
three vertices of the central octahedron.  Each of the two internal connecting branches passes through two 
opposite vertices of the central octahedron and exhibits a right-angle bend in between.  This structure 
exhibits 4-fold D2-symmetry (with 3 mutually perpendicular C2 rotation axes).  Some purists may object 
to the 90° bend.  In a second approach (Model B), the two connector branches each use three vertices 
associated with a single triangular face of the central octahedron.  This structure employs only 60° and 
120° bends, like the 2D Gosper curve, but it exhibits only 2-fold C2-symmetry (Fig.3b). 
 

       
                                                    (a)                                                           (b)                                                                   

Figure 3:  Gosper-Onion_38 paths:  (a) Model A with D2 symmetry,  (b) Model B with C2 symmetry. 
 
As an alternative solution, the four hexagon-shaped Gosper-Claws can be placed on four non-adjacent 
hexagonal faces of the truncated octahedron ‒ instead of forming two Double-Claws on two pairs of 
adjacent faces. This approach offers additional possibilities, since the four claws can be rotated or 
reflected individually, whereas in the construction of the Double-Claws, the orientation of the individual 
claws is prescribed.  On the other hand, it is quite a challenging puzzle to find good ways to connect the 
four individual claws into a single loop, while avoiding, as much as possible, bending angles of 90° or 0°, 
and while maintaining at least C2-symmetry. 

         
                               (a)                                                 (b)                                               (c)          

Figure 4:  (a) Claw faces shown as hexagonal rings;  (b) rings replaced with claws to form Model C;   
(c) rings replaced with reversed claws to form Model D. 
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To tackle this design challenge, I present the four hex-faces that were supposed to carry the four 
individual claws as simple hex-rings (Fig.4a). I can then focus on finding four connector paths that 
connect the four claws into a single loop.  This requires that the two connecting points to each of the four 
hex-rings are placed 120° apart with respect to the center of the hex-faces.  The individual claws can then 
be rotated to have their two endpoints (which lie 120° apart) line up with the two path connection points. 

After some amount of searching through possible solutions, I found a nice configuration that exhibits 
C2-symmetry around the (vertical) z-axis (Fig.4b).  This design also keeps the four hex-faces that do not 
carry an individual Gosper-Claw relatively “flat”, without the pointy spikes produced by 120°-bends that 
jut out in the centers of these faces, as is the case in both Model A and Model B.  This model still has two 
of the square faces of the cuboctahedron spanned by four spiky 120°-bends, which may serve as the 
“legs” of an actual sculpture ‒ to give it a rather “airy” look (Figs.19b,c).  However, this model does have 
six bends of 90°.  More recently I found that by reversing the orientation of the four Gosper-Claws I could 
get rid of four of the 90° bends (Fig.4c).  By mixing and matching the orientation of the four Gosper-
Claws, there are other interesting possibilities to create different internal connecter paths. 

Fabrication Issues 
Chris Ohler [2], has committed himself to construct such a low-complexity Gosper sculpture based on 
Model A, using metal tubing with a diameter of 133mm.  He has worked out the relevant cutting angles 
for all 38 tubular segments.  For each tube segment, one needs to know the mitre angle at which the ends 
of the tube must be cut, as well as the torsion angle between the two cuts.  For a poly-line path that lies in 
a plane, these torsion angles are 0° as long as the bending continues in the same CW- or CCW-sense, and 
they are 180° wherever there is an inflection point.  For an arbitrary polyline in 3D space, many possible 
torsion angles may occur.  It is interesting to note that for these Gosper curves that connect nearest 
neighbours on the FCC lattice, only four non-planar torsion angles appear: 54.74°, 70.53°, 109.47°, and 
125.26°.  Figure 5a shows Ohler’s list of cutting angles α and torsion angles β for one quarter of Model A 
discussed above.  The remainder of the model follows the same list ‒ or it’s reversal ‒ because of the 
symmetry of the sculpture.  Figures 5b and 5c show some of the pre-cut metal tubes and the formation of 
a properly mitred turning angle of 120°. 

         
                      (a)                                                  (b)                                                          (c)              

Figure 5:  (a) Cutting angles α and torsion angles β for one quarter of all the tube segments.   
(b) Pre-cut metal tube segments.  (c) A mitered 120° tubular junction. (Images by C. Ohler). 

Assembly Issues 
The next issues to be addressed are:  In what sequence should the individual tube segments be assembled? 
And:  What kinds of jigs are required to hold individual tube segments and partial subassemblies in 
exactly the right positions, so that in the end the Gosper-loop closes nicely on itself?  It would not be 
accurate enough to just match the elliptical cross sections of two consecutive tube segments to obtain a 
clean realization of the whole sculpture.  It is advantageous to have additional help from some suitably 
designed jigs to hold small pre-assembled chains of a few consecutive tubular segment in their proper 
positions.  In the following I present a proposed assembly scheme, verified on a small 3D-print model. 
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In each Gosper-Claw there are six consecutive segments that lie in the same common plane.  It 
makes a lot of sense to preassemble those tube-chains, since this is mostly a 2D layout and we need not 
worry about obtaining the proper torsion angles.  It may also be practical to add one or two additional 
tubular segments at the ends of such a Gosper-Claw.  In the following tests and evaluations of the 
proposed assembly sequences, these parts with five to eight tube segments were 3D-printed as cohesive 
units.  The large, planar regions of the Gosper-Claws then permit the insertion of some judiciously chosen 
“spacer slabs,” which allow additional parts to be added in suitably offset, parallel neighbor-planes. 

An Initial Assembly Step 
Figure 6 shows the six tubular chains that form the sculptural sub-assemblies of Model A: two internal 
cross-connector branches (Fig.6a), two complete Gosper-Claws (Fig.6b), and two partial Gosper-Claws 
that constitute the remainder of a Double-Claw (Fig.6c).   

    
                                       (a)                                  (b)                              (c) 

Figure 6:  Sub-assembly tube chains:  (a) internal connectors,  (b,c) peripheral Gosper claws. 
 

     
                                          (a)                                                                        (b) 

Figure 7:  (a) Jig with proper dihedral angle.  (b) Two simple claws fused into a Double-Claw. 
 

The two Gosper-Claws making up a Double-Claw occupy two adjacent faces of the outer Onion shell and 
form a dihedral angle of 109.47° between them.  A jig with a wall properly slanted at this angle (Fig.7a) 
makes it easy to put two such parts together (Fig.7b) to form one of the two Double-Claws (Fig.8a,b).  
This is also the first step for assembling Model B. 

Next, I needed to find a suitable jig for lining up the two internal connectors.  The two different 
sculpture models, Model A and Model B (Fig.3a,b), require slightly different approaches.   
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                                                     (a)                                                        (b)                

Figure 8:  The resulting peripheral Double-Claws:  (a) inside view,  (b) outside view. 
 

Assembling Model A 
In Model A (Fig.3a) the internal connectors form some “crooked” struts that cross each other in the central 
octahedron.  Figure 9 shows how the two inner struts relate to one another.  Pairs of some tubular 
segments in one strut happen to be collinear with the corresponding segments in the other strut.  
Furthermore, the 3-segment, planar end-chains in each strut are parallel to the corresponding end-chains 
in the other strut.  Thus, two spacer-slabs of proper thickness can be used to keep the two struts in proper 
position with respect to one another.  The thickness of this spacer-slab is calculated as the basic path-
segment separation, ss, minus the given tube diameter, td.  In 2D, the distance between nearest parallel 
path segments is:  ul * cos(30°) = 0.866 ul,  where ul is the unit-length step of the Gosper path.  In the 3D 
sculpture, the critical separation of a whole group of coplanar segments from another group in an adjacent 
parallel plane is further reduced by:  sin(109.47°) = 0.9428, (the dihedral angle of the octahedron).  Thus:  

ss = 0.8165 ul,  and thus the spacer-slab thickness, st, should be:  st = 0.8165 ul – td. 
 

With the two spacer slabs in place (Fig.9a), the collinearity mentioned above can be checked and fine-
adjusted, and the two crossing struts can be bundled into a single rigid assembly (Fig.9b).  
 

     
                                     (a)                                                                            (b) 

Figure 9:  (a) Alignment of the two inner cross-connectors:  (a) end-view,  (b) side-view. 
 

The same thickness spacer-slab is also used to define the proper distancing of that central bundle from the 
outer claws. Thus, a spacer-slab can be placed inside one of the Double-Claws (Fig.10a) and the central 
bundle is then placed on top of this slab (Fig.10b).  This brings two connection points into close 
proximity and allows them to be fused with the proper orientation and alignment (see red arrows in 
Figures 10b and 10c). 
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                          (a)                                                    (b)                                                       (c)                       
Figure 10:  Inserting cross connectors:  (a) spacer-slab in a Double-Claw;  (b) connector bundle placed; 

(c) the result with two connections made (shown upside down). 
 
Because of the symmetry of this sculpture, the same type of spacer-slab also controls the spacing of the 
central cross-connector bundle to the second Double-Claw.  A spacer-slab is placed onto the central 
bundle, and the second Double-Claw is then draped across this assembly (Fig.11a).  This would allow me 
to make the final two connections to this upper Double-Claw.  However, in reality, it is better to just make 
the connections between the bottom Double-Claw and the connector bundle, and then remove the spacer 
slab.  This results in Figure 10c.  This structure, turned upside down, can then be placed on a second 
configuration that looks like Figure 10a, and the final two connections can be made (Fig.11b).  Eventually 
the last spacer slab is also removed, revealing the completed Model A (Fig.12). 
 

      
                                                     (a)                                                              (b) 

Figure 11:  (a) All four parts properly spaced.  (b) Pre-connected part (Fig.10c) on top of spacer slab. 
 

               
                                                        (a)                                                            (b)                     
Figure 12:  Resulting sculptural maquette:  (a) resting on one Gosper-Claw,  (b) standing on four “legs.” 
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Assembling Model B 
Figure 13 shows the six sub-assemblies for Model B.  The first step is the same as for Model A:  The two 
Double-Claws are formed by re-using the jig shown in Figure 7.  In Model B the internal connectors are 
more compact and do not cross each other.  Figures 13b,c show that in this model, too, there are open 
slots that can accommodate appropriate spacer-slabs.   

         
                                        (a)                                                           (b)                                      (c) 

Figure 13: (a) Sub-assemblies for Model B.  (b,c) Open slots for spacer-slabs in Model B.  
 

First, the two connector parts are aligned and fused against the bottom Double-Claw.  To do this, I form a 
configuration with one spacer-slab placed inside one Double-Claw, as seen in Figure 10a.  On this slab I 
place one of the connector pieces and fuse it with one end to the underlying Double-Claw (yellow arrow 
in Fig.14a).  Then the spacer slab is removed and re-inserted flush against the other half of the same 
Double-Claw.  In this configuration, I add the second connector unit and fuse it to the other end of the 
Double-Claw (yellow arrow in Fig.14b).  Next, I form a new cradle (like Fig.10a) with the 2nd Double-
Claw.  Into this cradle, I drop the assembly described above and fuse both ends of the Double-Claw to the 
two connector units (Fig.15a).  Removal of the spacer slab reveals the completed Model B (Fig.15b). 

      
                                                 (a)                                                       (b)                       

Figure 14:  (a) Placing and fusing a first connector;  (b) switching spacer slab to place 2nd connector. 

       
                                                        (a)                                                       (b)                       

Figure 15:  (a) One Double-Claw plus two connectors placed on 2nd Double-Claw plus spacer-slab. 
(b) Resulting sculptural maquette, Model B, standing on four “legs.” 
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Assembling Model C 
Model C can also be partitioned into parts that start with a planar, 6-segment Gosper-Claw.  However, in 
this model there are no clearly identifiable internal connector parts.  Instead, the Gosper-Claws are 
enhanced in two different ways.  In the simpler part (Fig.16a), one extra segment is added to each end of 
the Gosper-Claw.  In the more complex part (Fig.16b), one of the ends of the Gosper-Claw carries a chain 
of four tubular segments that form a “zig-zag” path that lies in a plane parallel to the Gosper-Claw 
(Fig.16b).  Figure 16 shows the four 3D-printed subunits, composed of 8 and 11 segments, respectively.   

For a metal tube construction, the 11-segment part may be further partitioned into another simple 
part with 8 segments plus a separate planar branch of three segments, which can be added in a plane offset 
from the Gosper-Claw by using one of the spacer slabs described below. 
 

     
                                       (a)                                                                               (b)           

Figure 16:  Model C:  (a) the two simple parts,  (b) the two complex parts. – (different views). 
 
To assemble these parts, spacer-slabs again come in handy!  Figures 17a,b show that there are spacer-
slabs that fit snuggly into both the simple and the complex part.  Note that the orientation of these slabs is 
perpendicular to the dominant coordinate axes of the octahedron, and the thickness of these spacer-slabs 
thus is only:  ss = 0.7071 * ul – td.   Pairs of identical parts with their inserted slabs then fit together 
nicely, so that the two slabs become parallel to each other.  Between them, they squeeze the zig-zag 
branch that needs to be joined, and they guarantee that this branch remains planar (Fig.17c,d).  
 

            
                    (a)                                       (b)                                         (c)                                  (d) 

Figure 17:  Spacer-slabs:  (a) in the simple part;  (b) in the complex part;   
(c) joining two simple parts;  (d) joining two complex parts. 

 
Figures 18a,b show the resulting joined pairs of identical parts.  To assemble these into the final model, 
two spacer-slabs are used simultaneously (Fig.18c).  These slabs are again parallel to the claw-faces, and 
thus their thickness is again:  st = 0.8165 ul – td,  as discussed above for Model A.  After removal of the 
spacer-slabs, the sculpture Model C emerges (Fig.19). 



22

 
 

         
                                (a)                                            (b)                                                (c)                       
Figure 18:  The two glued double-parts:  (a) simple;  (b) complex;  (c) aligned with proper spacer-slabs. 
 

         
                           (a)                                                    (b)                                                  (c)                       

Figure 19:  Final sculpture Model C:  (a) placed on one Gosper-Claw,  (b,c) standing on four “legs.” 
 
Similar sub-assemblies and compositions with the help of corresponding spacer-slabs also apply in the 
construction of Model D – and probably for most other variants of this Gosper-Onion_38 with four 
separate Gosper-Claws in different orientations and different rotations. 

Scaling Issues 
In our SLIDE [6] or JIPCAD [1] programs for designing and visualizing these sculptural models, I can 
readily adjust the tube diameter used in the sweep along the Gosper polyline to find the best level of 
“transparency” into the inner parts of the sculpture.  I like a value that leaves a little more than a tube 
diameter of empty space between adjacent parallel tube segments, say, a tube diameter of:  td = 0.4 ul. 

When considering a physical sculpture made from metal tube segments, the diameter of the tubes 
used is typically given, and thus the unit step length, ul, that results in the desired separation between 
nearest parallel tube segments would then be calculated as:  ul = 2.5 td.  Thus, if the sculpture is 
constructed from tubes with a diameter of 133mm, the Gosper polyline would be scaled so that the unit-
step-length, ul, is about 33cm.  The overall Gosper-Onion_38 sculpture would then have a diameter of 
about:  3 ul + td,  or a little more than 1 meter. 
 

3D-Printed  Gosper-Globes 
In my Gosper-Globes the Gosper strand is confined to lie in a thin spherical shell.  The sites where the 
strand makes a turn lie on a sphere.  But these sites do not form a completely regular array, and the step-
length between nearest neighbors will vary somewhat.  In the examples discussed in this section, I 
approximate the sphere with a pentakis-dodecahedron (Fig.20a) [11].  I then cover each of the 60 triangles 
with an array of subdivision sites ranging from a subdivision level of 3 (Fig.20c) for the smaller globe 
(Fig.24) to a subdivision level of 5 in the final sculpture (Fig.28). 
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Stability Issues 
To stay true to the 2D Gosper curve, a Gosper sculpture should consist of just one (possibly closed-loop) 
strand.  However, if the Gosper strand has more than a few hundred segments and no intermediate 
support, it would result in a rather flimsy sculpture, where parts of it would sag under the influence of 
gravity.  In order to make more complex Gosper-Globes, I allow the Gosper strand to assume a more 
complex graph structure.  In the following, this graph has the topology of the wire-frame of a cube.  Thus, 
there will be eight 3-way branching points.  The “edges” between two nearest branching points then 
“fractalized,” i.e., deformed into Gosper-like polylines that together will cover the surface of a sphere as 
uniformly as possible.   

To define the best set of “lattice” points on the sphere surface, I want to start with as “round” a 
polyhedron as possible, ‒ not with a cube.  Good candidates are the dodecahedron, or better yet, the 
pentakis-dodecahedron (Fig.20a).  The 60 triangles can then readily yield an array of subdivision points.  
When these points are projected onto the circum-sphere, they yield a nice pattern of almost uniformly 
spaced points.  It is also easy to integrate the desired wire-frame cube with this dodecahedral geometry.  
Each pentagonal region carries one of the 12 cube edges, and these edges connect two non-adjacent 
vertices in each pentagon (Fig.20b).  These 12 wire segments are then “fractalized” to cover the whole 
pentagonal region.  In Figure 20c, one “fractalized cube edge” runs from vertex A to vertex C. 
 

              
                         (a)                                                   (b)                                                     (c)                       

Figure 20:  (a) Pentakis-dodecahedron.  (b) Cube-frame embedded in a dodecahedron.  
(c) Level-3 fractalized cube edge to cover a pentagonal region. 

Fabrication Issues 
Complex spherical balls or shells (Figs. 1c, 22a) formed by an intricate web of tubular pathways, such as 
3D polylines following a Hilbert curve [10] or mimicking a Gosper curve [9][12], are difficult to print on 
most 3D printers that do not provide an all-around, support structure as is the case in SLS (Selective Laser 
Sintering) or in Z-Corp printers [13].  

               
                (a)                                   (b)                                     (c)                                           (d) 
Figure 21:  (a) Down-spike in the Gosper curve,  (b) collapsed because of insufficient support structure, 

(c) fabricated with a copious amount of support material.  (d) Half of a spherical Gosper-Globe. 
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One reason is that it is difficult to remove the support material from the inside regions of the sphere.  A 
second difficulty, more specific to the Gosper sculptures that I am currently interested in, is related to any 
downward-pointing spikes (Fig.21a).  These spiky points may not get an adequate support structure 
(Fig.21b) that would allow them to be anchored in a sturdy enough way, so that they can then support any 
lengthy, complex tubular pathways that connect to this down-spike [4].  This problem can be mitigated by 
using a very generous amount of scaffolding material to support every model facet with a downward-
pointing face normal (Fig.21c).  However, this creates an enormous amount of scaffolding, which may 
fuse into a rather solid block that is near-impossible to remove from the inner parts of the whole structure 
– unless the support material is soluble. 

One idea to work around this problem is to split the spherical shell into two hemispheres and print 
each in the orientation of a hemispherical bowl (Fig.21d).  This places the support material on the outside 
of the bowl and instantiates it radially only as far until the slope of the bowl becomes steep enough so that 
no further support is required.  However, for a hemispherical shell, the amount of support material is still 
relatively voluminous, and down-spikes in the upper, steeper parts of the bowl surface are still a problem. 

The situation improves as we split the sphere surface into more, and correspondingly “flatter” parts.  
A natural next step is to split the sphere into four quadrants – or rather “tetrants” – since I plan to use a 
partitioning based on tetrahedral symmetry (Fig.22b).  Now the total volume of support material is much 
smaller, and there are no longer any truly “down-pointing” spikes.  Such a partitioning of the sphere also 
allows me to construct maquettes that are somewhat larger than the build volume of the available printer.  
 

Gosper-Globe_276  
As a first demonstration, I am constructing a spherical shell, which I call Gosper-Globe_276 (Fig.22a), on 
an Ultimaker printer [7] with PLA build-material and also with PLA support-material.  In order to make 
this approach work, I want all tubular elements appearing in each sphere-tetrant to be connected to each 
other, forming a reasonably rigid part that can be used as a building block for the whole sphere shell.  
Thus, rather than designing a single-loop Gosper path that winds its way serially through all four tetrant 
domains, I have introduced some branching points.  The resulting tubular structure in the spherical shell 
now has the same connectivity as the wire-frame of a cube: Twelve zig-zag-y paths connect eight 3-way 
branch points.  One of these valence-3 branching points can be found in the center of each of the four 
tetrant domains; the other four junctions appear at three symmetrically spread-out locations on the rims of 
the tetrant domains. 

It was more difficult than anticipated to find a reasonable Gosper path to replace all twelve cube 
edges, so that three of them lie entirely in each tetrant part.  To facilitate the assembly of the four tetrant 
parts, I combined the geometries of the three partial 3-way branch points lying on the periphery of the 
tetrant part into one fully modeled 3-way junction.  I then placed just one of those onto the border of each 
tetrant part, ‒ shown in contrasting colors in Figure 22b. Straight, cylindrical tube connections then 
accommodate the two incoming paths from the other two tetrant parts that connect to this branch point. 

           
                       (a)                                                 (b)                                                          (c) 
Figure 22:  (a) CAD model of Gosper-Globe_276;  (b) one “tetrant” of it.  (c) A first, unsuccessful print. 
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In my first attempt, I used the default settings for the Ultimaker printer as supplied by the Cloud 
3DPrinterOS service [14] offered through the Jacobs Institute for Design Innovation at Berkeley. The 
resulting print had an incomplete support structure that caused some breaks in the 3D tubular pathways 
(Fig.22c).  In my second attempt, I used the expert mode in the 3DPrinterOS.  I lowered the support 
overhang angle from 60° to 40°, and I increased the support density from 15% to 20%.  This resulted in a 
good support structure and nice, sturdy parts.  Figure 23a shows one tetrant part as it came off the 
Ultimaker printer. The reduced overhang angle was sufficient to firmly support the many tubular 
segments that then serve as anchors for additional tubular branches, which may take off at steeper angles 
and which need no further support. The support was easy to break away, and the “spidery” parts 
(Figs.23b,c) were rigid enough to keep their shapes when handled for clean-up and for assembling the 
complete spherical shell. 

      
                               (a)                                                         (b)                                            (c)     

Figure 23:  (a) Tetrant part as it came off the Ultimaker printer.  (b, c) Outside and inside view  
of the tetrant part after its (white) support structure had been removed. 

 
The first two tetrants connect to each other with just two tubular joins.  This leaves the angle of rotation 
around the line through these two connection points rather poorly defined.  To make sure that the two 
parts join at the right angle so that they nicely adhere to the sphere of the final sculpture, I formed a bowl-
shaped supporting jig that kept the parts tilted at the right angles.  Joining a third tetrant part is less 
ambiguous, since it joins the previous two parts at three tubular join-points (Fig.24a).  Adding the fourth 
tetrant by fusing another three joints then completes Gosper-Globe_276  (Fig.24b). 

       
                                              (a)                                                                               (b) 

Figure 24:   (a) Three tetrant parts assembled into a partial spherical shell.  
 (b) The complete spherical shell of Gosper-Globe_276. 
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Gosper-Globe_756 
The construction of the purple Gosper-Globe_276 gave me the confidence that this approach is indeed 
practical.  So, I embarked on building a globe of much higher complexity and of a size that exceeds the 
build volume of the Ultimaker printers to which I had access through the Cloud 3DprintOS.   

The 3D-printed parts from which the Gosper-Globe_276 was assembled have three zig-zag paths 
running from a central 3-way branch point to the three branch points on the periphery of the tetrant in 23 
steps on a set of vertices that correspond to a level-3 subdivision of the 60 triangles of the pentakis-
dodecahedron [11].  In the new Gosper-Globe_756, I used a level-5 subdivision of these triangles, which 
results in the three zig-zag paths in each tetrant having 63 steps.  Figure 25 shows one of those parts as it 
comes off the printer, and later, after about half the support material has been removed (Figs.25b,c). 
 
 

         
                           (a)                                                        (b)                                               (c) 

Figure 25:  One tetrant of the Gosper-Globe_756:  (a) as it comes off the Ultimaker 3D printer,  
 (b) after some support removal,  (c) seen from the support side. 

 
At first, I was worried that each tetrant part would be rather “flimsy” and would deform seriously under 
gravity once it was freed from its support structure.  Therefore, I kept much of the support in place until I 
had properly joined two such tetrants, and I planned to remove the remaining support structure after 
having joined all four parts. 

The first two tetrant parts connect in only two of the 3-way branch points.  To make sure that they 
get joined at the right angle, I constructed a jig that provides two mounting planes with the dihedral angle 
of the tetrahedron (70.5 degrees) between them (Fig.26a).  Figure 26b shows the resulting assembly of the 
first two tetrants joined in this jig. 
 

     
                                           (a)                                                                               (b)  

Figure 26:  (a) Jig to hold two tetrants at the proper angle between them.  
 (b) The resulting fused tetrant pair. 
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At this point I started the tricky task of removing some support material from this joined pair without 
stressing or breaking the actual Gosper path.  It tuned out that handling this assembly was awkward, and 
soon one of the glued joints broke.  This encouraged me to remove all the support from one of the tetrants 
to see how “flimsy” the unsupported tetrant part really was.  Fortunately, it turned out that it was stable 
enough, so that I no longer had to worry whether I could properly join unsupported tetrant parts (Fig.27a). 
 

       
                                         (a)                                                                               (b)  

Figure 27:  (a) Two tetrant parts fused together.  (b) Combining the two pairs in a suitable bowl. 
 
The tetrant parts #3 and #4 were individually freed of all support material and then joined into a pair-
constellation like Figure 27a, using again the jig shown in Figure 26a.  Joining the two pairs into the 
complete sphere turned out to more difficult.  The two pairs were indeed rather “flimsy” or “squishy” 
components!  I joined them by placing both parts with the appropriate rough alignment between them into 
a small salad bowl of the right size (Fig.27b) and then lining up and gluing together a first joint between 
the two assemblies (using Duco Cement).  After that joint had hardened sufficiently, I then lined up and 
glued a second joint.  I repeated this process for joints #3 and #4.  With all joints properly fused, the 
completed globe was firm enough to hold its shape under the influence of gravity, even when just placed 
on a flat surface or onto a small supporting ring (Fig.28a).  A nicer way to show off the assembled 
Gosper-Globe_756 is to support it with a small transparent cylinder or a small glass bowl (Fig.28b). 
 

           
                                         (a)                                                                                (b)  

Figure 28:  The final Gosper-Globe_756:  (a) Side view,  (b) View from below. 
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Conclusions 

There are many different kinds of Gosper-Sculptures, and there is no standard procedure to design and 
fabricate such sculptures.  Every type of geometry has different design challenges, and the size and type 
of realization of such a sculpture presents additional difficulties.  But in all cases where the complete 
model cannot be built as a single coherent object on a suitable 3D-printer, judiciously partitioning the 
overall sculpture into a few sub-assemblies is an important step.  Smaller sub-assemblies may be easier to 
build, but then the composition of these smaller parts into the final sculpture becomes a bigger problem.  
Complicated scaffolding may be required for the assembly of many small parts into an accurately aligned 
and balanced sculpture.   

For the simple Gosper-Onion_38 metal sculpture, the described, promising approach was driven by 
looking for sub-assemblies that have large co-planar regions, for which it was easy to accurately 
implement the proper torsion angles; these sub-assemblies can then be assembled with the help of a few 
simple jigs.  For the complex Gosper-Globes, I was aiming to have as few partitions as possible and to 
make the largest parts that could be 3D-printed without a lot of difficult-to-remove support material.  
Different Gosper-Sculpture types and different construction materials will require a re-evaluation of these 
tradeoffs. 
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Abstract

The use of lattices and microstructures in geometric design have been recognized as potentially superior to solid
structures due to the potential benefits in improved strength-to-weight ratios, better control over heat exchange and
heat transfer, and so on.

In this work, we present a construction scheme to create parametric microstructures in a boundary representation
(B-rep) model, M, that are conformal to an arbitrary specification, including the boundary of M. Given a B-rep
model, M, either a polygonal or trimmed-spline based, a cage, T , is constructed around M to guide the synthesis of
the microstructures in M. Micro-elements are synthesized following T , and verified to be inside M while bridging
tiles are added as necessary. These parametric micro-elements can be heterogeneous in their material content, as well
as locally vary in their geometric properties.

We demonstrate these abilities with example microstructures synthesized from both polygonal B-rep models and
spline-based B-rep solids, including 3D printed parts.

1 Introduction

Consider a watertight boundary representation (B-rep) model, M. Existing methods for synthesizing mi-
crostructures inside B-reps are, for the most part, assuming an axis parallel grid of micro-elements that is
clipped to the shape in hand, M. As a result, micro-elements near the boundary of the model are left clipped
in an arbitrary way. A tiling scheme that is conformal to boundary of M, 𝜕𝜕M, while avoiding the need
to clip tiles is highly desired. See Figure 1. When stress tensors or paths of heat flux of the model are
prescribed, microstructure tiles better be conformal to the boundary of M, and also possibly follow some
desired directions in the interior.

Clipping based approaches, as shown in Figure 1 (a), are difficult to optimize as, typically, all tiles are
identical in the initial axis-parallel 3D grid of tiles. If a region in M is found too weak in the analysis stage,
micro-elements in (only) that region should be thickened, but this is a difficult task if the input is based on a
uniform grid of tiles, clipped to the boundary of M, 𝜕𝜕M. 𝜕𝜕M is a critical zone in analyzing the expected
behavior of M. The fact that individual tiles are locally clipped in an arbitrary way near and by 𝜕𝜕M, yields
difficulties in predicting the local physical behaviors, in term of strength, heat transfer, etc., of M, and 𝜕𝜕M

in specific.

Recent advances in additive manufacturing (AM) technologies have enabled the fabrication of, and
hence increased the demand for lattice based geometries, in design. AM is an enabling technology not
only for manufacturing complex lattice structures but also for supporting (graded) heterogeneity in material
representations. With AM, individual micro-elements can present different geometries and also potentially
contain different (graded) materials.

∗Corresponding author. email: younhong@cs.technion.ac.il
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(a) (b)
Figure 1: In (a), an axis parallel grid of micro-elements is being clipped to a macro torus shape of a square

cross section of varying size. In (b), the micro-elements follow the ’flow’ of the same macro torus

shape, while no tile is being clipped.

One approach for embedding microstructured geometries in M, while being conform to 𝜕𝜕M, is based
on volumetric representations [16], or V-reps: A functional composition-based framework is proposed to
build microstructures in a given macro volumetric shape T , defined as a trivariate tensor product volume. In
their work, micro-element tiles, {t𝑖𝑖}𝑖𝑖 , are populating the box domain of T , only to be functionally composed
into T , as {T (t𝑖𝑖)}𝑖𝑖 . Figure 1 (b) is exploiting such an approach.

The approach of [16] is limited to a single trivariate based macro shape. In [9], an attempt was made
to support conformal microstructures for V-reps that consist of several (trimmed) trivariate functions that
underwent some Boolean operations. Microstructures are synthesized for each individual trivariate only to
be stitched together along common zones.

In this work, we propose a method to create microstructures that are conformal to (the boundary of) a
B-rep model M while following a prescribed vector field/tensor in the interior of M. A cage T is constructed
around M in a similar way to the creation of cages in computer graphics, toward deformations [6]. Herein,
the cage is a volumetric trivariate function that prescribes the interior vector field and guides the synthesis
of microstructure MS. MS will be conformal to the boundary M and properly stitched to its boundary,
while following the arbitrarily prescribed parametrization of T . Micro-elements in MS are never clipped
while MS is synthesized using a functional composition-based approach, similar to [16], but over the cage
T . As stated, the cage T is a trivariate function that fully contains M and can be created by an end user,
as in computer graphics [6], following some stress tensors that result from analysis, or by interpolateing a
given (vector) field, etc. Finally, being parametric, individual tiles in MS can also be locally controlled and
modified, in their geometric properties but also in their material content.

The rest of this paper is organized as follows. In Section 2, the relevant previous work on designing,
mostly conformal, microstructures is presented. In Section 3, we present our algorithm to conformally
populate a B-rep model with parametric micro-elements. Then, results are presented in Section 4, and in
Section 5, some extensions are discussed. Finally, we conclude this work in Section 6.

2 Previous work

We split the discussion on previous work into two. In Section 2.1, we review results with a similar aim as
this work - the synthesis of conformal (parametric) microstructures over B-rep model. This work employs
cages that are common in computer graphics, toward deformation mostly, and those are briefly discussed in
Section 2.2.

2.1 Microstructure Construction

Populating the interior of a volumetric object with microstructures (or a set of micro-elements) has become a
common practice in the modeling of 3D geometric object, while exploiting additive manufacturing (AM). One
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can control, with flexibility, the geometric properties of the structure while allowing the use of heterogeneous,
possibly graded, materials. Microstructures have been adopted in the design of artificial bones, medical
applications, or industrial designs such as airplane wings, heat exchanger, and solid rocket fuel [2]. Further
details regarding the methodologies and challenges in microstructure-based modeling have complied in
several survey papers, including [23, 18, 15].

Handling the micro-elements near the boundary has been one of the important issues in modeling
microstructured objects. There are several different strategies to process micro-elements near or across the
boundary shape: the elements can be purged as a whole, partially trimmed, or deformed with respect to the
boundary shape. These strategies are chosen based on various factors in microstructure models, such as the
shape of the micro-element, the representation of the microstructure and the macro (boundary) geometry, or
the method used in populating or deforming the micro-elements to fit within the boundary shape.

Aremu et al. [3] define a voxel-based unit cell as a microstructure. The microstructure in a unit cell is
tessellated with voxels and populated to cover the domain of the macro object. Tessellated microstructures
are then trimmed by applying bitwise Boolean intersection between the microstructures and the macro shape,
which is also voxelized. Each voxel is masked when the micro-element occupies the voxel, or remain void
otherwise. The boundary skin is covered with a net of struts and combined with the interior microstructures
using bitwise Boolean operations on voxels.

Tang et al. [24] construct lattice frames to populate uniform, conformal or random lattice microstructure
in the macro volumetric object. The macro shape is voxelized according to the lattice frame and filled with
strut-based micro-elements. Microstructures that are conformal to the boundary shape are fabricated by
deforming voxels with respect to the lattice frame which follows the boundary shape.

Topology optimization [5] is one of the major methods in constructing microstructures with (stress)
analysis and numerical optimization. In topology optimization, the microstructure is often initialized with
uniform grid-like lattice or voxel-based elements. The microstructure is parameterized in terms of the radii
of lattices or material distributions of the voxels, and these parameters are optimized with (stress) analysis
and additional constraints. When topology optimization is used, the micro-elements near the boundary
elements are aligned with the boundary shape as a result of numerical optimization. For instance, Zhu et
al. [29] execute a two-stages optimization to identify the optimal material distributions and topology of the
microstructures that minimize the objective energy function. Arora et al. [4] identify the optimal parameters
of a truss-based lattice which aligns the lattice along the stress field of the macro object. Wu et al. [28]
determine the orientation of each lattice element based on the principal directions of the macro object during
the topology optimization.

Conde-Rodriguez et al. [7] models the shape of the boundary object and heterogeneous material dis-
tributions using Bézier hyper-patches. Instead of defining the geometry of the microstructure explicitly, the
microstructure shape is determined by thresholding material distribution functions. Cutoff functions are used
to differentiate the core material from the matrix, or separate distributions of multiple materials. Herein, the
shape of the boundary object derives the boundary of microstructures.

Sosin et al. [26] viewed the construction process of the microstructure as a sphere-packing problem,
where the macro object is filled with contacting spheres. To make the microstructure connected to the
boundary shape, they introduced a special type of fillets to connect the outmost spheres to the boundary
shape.

Some research have proposed adaptive methods to construct a microstructure. They adaptively manip-
ulate either the macro shape or a coarse microstructure to yield a microstructure that is conformal to the
boundary of the macro shape, as much as possible. For instance, Leblanc et al. [14] model a volumetric
object using blocks, which are subdivided hierarchically to fit to the given macro shape. Adaptive Voids [17]
fill the interior of the mesh adaptively, with tetrahedra, by tessellating the dual mesh of the boundary mesh
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and placing the tetrahedra hierarchically. The construction of the microstructure is started from the boundary
shape, and some margins around the boundary mesh are filled with solid materials, while the interior of the
shape is modeled with an adaptive size of porous cellular structures. Sitharam et al. [22] fill the boundary
mesh with the microstructure of corner-sharing tetrahedra (CoSTs). Starting from the coarse CoSTs, the
structure is refined with smaller tetrahedra when further details of the boundary shape must be maintained.
Kambampati et al. [12] adopt function-based representation (F-rep) to represent the microstructure in the
macro object, which is adaptively voxelized with different level of sparsity. A level set method is used to
identify active voxels that are part of the shape. The F-rep based microstructures are filled in the macro shape
and combined with the macro level surface, just as Pasko et al. [20] do.

A different approach to the construction of microstructures in a given macro shape is to apply a
functional composition-based approach, where a micro-element is defined as a function in a unit box domain
of a trivariate function, only to be functionally composed into the trivariate that represents the macro shape [8].
Massarwi et al. [16] propose a method to construct predefined or random microstructures in the macro object
formed of trivariate splines, using functional composition. Their functional composition-based approach
allows the construction of nested microstructures by multiple levels of functional compositions. Hong and
Elber [9] extend Massarwi et al. [16] to populate the microstructures in a more general macro shape formed
of trimmed trivariate splines, or V-reps. Toward this end, they construct the microstructures in the untrimmed
trivariates and then, following the respective Boolean operation tree of the macro shape, properly trimmed the
microstructures to the trimmed trivariates. As a final step, special bridging tiles are inserted to connect the
existing tiles near the boundary of one trimmed trivariate to its neighboring tiles in a neighboring trimmed
trivariate.

The above presented functional composition-based approaches have advantages in that they guarantee
the microstructures are conformal to the macro shape, while the macro-shape is a V-rep and the resulting
microstructure is parametric. In this work, we assume that the input is a watertight B-rep, and some parametric
trivariate cage. Either a polygonal mesh or B-spline based B-rep is assumed. Yet, the resulting microstructure
is conformal and represented as a parametric spline based. To the best of our knowledge, no microstructure
construction method that is arbitrarily parametric, while conformal to the boundary of the macro shape, exists
for B-reps.

2.2 Cage-based Deformation

The idea of embedding geometric objects in space and deforming the objects by deforming their embedding
space, has been introduced in the 80s by Sederberg [21], and has been in a wide use in driving or manipulating
skeletonal or skin based deformation in computer graphics, especially in interactive graphics [6]. The cage
is a coarse net structure surrounding the geometry in hands, and each component in the driven geometry is
associated with the degrees of freedom of the cage, so that high dimensional deformation is prescribed in
terms of the lower dimensional changes in the cage. (A survey paper regarding the early work in cage-based
deformation can be referred [19]).

Research regarding a cage-based methods often focus on the deformation of surfaces (or polygonal
meshes), but there are also several publications which adopt the cage to deform not only the boundary shape
but also volumetric object or other properties in the embedded model [11, 10, 25]. Our work is different from
this standard usage of cages; we exploit a trivariate cage that is populated with the microstructures’ tiles,
while the cage is indirectly associated with the boundary shape, only to purge tiles that are not completely in
the input model.
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(a) (b)

Figure 2: The parametric tile used in this work, consisting of seven trivariates, all differently colored. In

(a), the tile is uniform in all direction. However, the tile, being parametric, can, for instance,

have varying arm thicknesses, as can be seen in (b).

3 The algorithm

In order to conformally populate the volume enclosed in a B-rep model M with micro-elements, we augment
M with a parametric trivariate volume T , that is arbitrarily parameterized while fully containing M. T

will govern the construction of the micro-element tiles, {t𝑖𝑖}𝑖𝑖 , that will then be validated against M. the
construction of T (e.g., via a GUI in computer graphics) is beyond the scope of this work, while we will
briefly discuss that, in Section 5.

With the understanding that a tile t𝑖𝑖 can be of a variety of geometric types, following [8, 16], herein, for
uniformity, we use the same tile, as in Figure 2, unless otherwise stated. This tile consists of seven trivariate
spline functions that will be functionally composed into the different trivariate cages, T . Being a parametric
tile, its geometric properties can be modified, as is shown, for example, in Figure 2 (b).

To fully support the proposed conformal tiling with microstructures, of a B-rep model M, this B-rep
must support the following operations:

1. PointInclusion. Denote by M◦ the interior of M. Given a point 𝑝𝑝, is 𝑝𝑝 ∈ M◦?

2. PointProjection. Given a point 𝑝𝑝 ∈ M◦, what is the closest point to 𝑝𝑝 on 𝜕𝜕M, the boundary of M?

3. BrepIntersection. Given a second B-rep model N , is 𝜕𝜕M ∩ 𝜕𝜕N = ∅?

See Appendix A, for some explanation how these operations can be evaluated for trimmed surfaces based
B-reps as well as polygonal B-reps.

With the availability of these operations over a B-rep model, Algorithm 1 portrays the top level process.
The input to the whole algorithm is the B-rep model M, a trivariate cage T that fully encloses M, and a
parametric tile t to populate T with, following some 𝑥𝑥𝑥𝑥𝑥𝑥 tile-density prescriptions 𝑘𝑘𝑘 𝑘𝑘𝑘 𝑘𝑘. Finally, input 𝛼𝛼
represents a shape control over the bridging tiles that will be created in Algorithm 4. Figure 3 demonstrates
each of the steps of Algorithm 1.

Following [8], we build microstructure MST inside T using tile t, in Line 1 of Algorithm 1. Then, in
Lines 2 and 3 of the algorithm, we handle two types of tiles:

1. Tiles in MST that are fully contained in M are assigned to MSF , in Line 2, calling Algorithm 2.

2. New bridging tiles to 𝜕𝜕M are built between tiles in MSF that are close to 𝜕𝜕M, and 𝜕𝜕M, and
accumulated in MSB , in Line 3, calling Algorithm 3.

Then, in Line 4 of Algorithm 1, these two sets are merged into the final microstructure, MSM .

Algorithm 2 filters out tiles in MST that are not fully contained in M. Toward this end, we exploit
two operations over our B-rep: BrepIntersection and PointInclusion. Each tile, t𝑖𝑖 , is tested, in Line 3 of
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(a)

(b)

(c) (d) (e)

Figure 3: An example of microstructures tiled in a B-rep trimmed surfaces model. In (a), A B-rep model M

is drawn in gray, with a cage trivariate T drawn in a red wireframe. In (b), microstructure tiles

in MST are drawn in cyan. In (c), we show one layer of the tiles from MST (the opaque tiles in

(b)). In (d), the tiles in (c) are filtered, and yellow and green tiles are included in MSF . In (e),

yellow tiles are joined to the boundary model 𝜕𝜕M using bridging tiles (in blue).

Algorithm 1 Microstructure tiling algorithm of M.

Input:
M: a B-rep model;
T (𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢𝑢): a trivariate volumetric cage, containing M;
t: a parametric tile to populate T (and M) with;
𝑘𝑘𝑢 𝑘𝑘𝑢 𝑘𝑘: controls over tiling density of t in T , in 𝑢𝑢𝑢𝑢𝑢𝑢;
𝛼𝛼: a shape control over the created bridging tiles;
Output:
MSM : a microstructure tiling of M, using tile t, and following the ’flow’ of T ;
Algorithm:

1: MST := a microstructure tiling of T , using tile t and controls 𝑘𝑘𝑢 𝑘𝑘𝑢 𝑘𝑘 , following [8];
2: MSF := FilterTilesToM(M, MST); // Alg. 2.
3: MSB := BridgeTilesToM(M, MST , MSF , 𝛼𝛼); // Alg. 3.
4: MSM := MSF ∪MSB;
5: return MSM ;

Algorithm 2, for a full containment in M. First, we (via BrepIntersection) examine if 𝜕𝜕t𝑖𝑖 ∩ 𝜕𝜕M ≠ ∅, in
which case t𝑖𝑖 intersects M and is purged. Otherwise, if t𝑖𝑖 and M do not intersect, a single point 𝑝𝑝 on t𝑖𝑖 is
selected, only to (via PointInclusion) test 𝑝𝑝 for inclusion in M. Only if t𝑖𝑖 passes both tests, it is added to
MSF as a fully contained tile inside M.

Having the subset of tiles in MST that are in M, as MSF , in Algorithm 3, a bridging tile to 𝜕𝜕M is
constructed for each tile in MSF that is close to 𝜕𝜕M. We start by identifying the tiles in MSF that are close
to 𝜕𝜕M, in Line 4 of Algorithm 3. Consider a tile t𝑖𝑖 that is fully contained in M, being in MSF , while t𝑖𝑖 has
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Algorithm 2 FilterTilesToM: Filtering stage to isolate all microstructure tiles that are fully inside M.
Input:
M: a B-rep model;
MST : a microstructure formed using a trivariate that fully contains M;
Output:
MSF: a filtered microstructure of MST , with tiles completely inside M;
Algorithm:

1: MSF := ∅;
2: for each tile t𝑖𝑖 ∈ MST do

3: if t𝑖𝑖 ⊂ M then

4: MSF := MSF ∪ {t𝑖𝑖};
5: end if

6: end for

7: return MSF;

an adjacent tile t𝑛𝑛𝑛𝑛𝑛𝑛 that is not completely in M. In other words, t𝑛𝑛𝑛𝑛𝑛𝑛 ∉ MSF .

Detecting a tile t𝑖𝑖 close to 𝜕𝜕M, that shares a boundary surface with t𝑛𝑛𝑛𝑛𝑛𝑛 that is not in MSF , we create
a bridging tile from t𝑖𝑖 to 𝜕𝜕M. Further, this bridging tile will be created from the face of t𝑖𝑖 that is shared with
t𝑛𝑛𝑛𝑛𝑛𝑛 . This bridging tile is constructed in Algorithm 4. The function Neighborhood in Line 3, Algorithm 3,
computes all the immediate neighbors (or adjacent tiles sharing a face) of a given tile in MST , a function
that exploits the known topology of all tiles in MST .

Algorithm 3 BridgeTilesToM: Builds bridging tiles from MSF to the boundary of M.
Input:
M: a B-rep model;
MST : a microstructure of volume T fully containing M;
MSF: a filtered microstructure of MST , completely inside M;
𝛼𝛼: a shape control over the created bridging tiles;
Output:
MSB: a set of bridging tiles from tiles in MSF , to 𝜕𝜕M;
Algorithm:

1: MSB := ∅;
2: for each tile t𝑖𝑖 ∈ MSF do

3: for each tile t𝑛𝑛𝑛𝑛𝑛𝑛 ∈ Neighborhood(t𝑖𝑖 ,MST) do // All tiles adjacent to t𝑖𝑖 , in MST .
4: if t𝑛𝑛𝑛𝑛𝑛𝑛 ∉ MSF then

5: // t𝑖𝑖 is fully in M while a neighbor t𝑛𝑛𝑛𝑛𝑛𝑛 is not. Create a bridging tile from t𝑖𝑖 to 𝜕𝜕M.
6: 𝑏𝑏 := BuildBridgeTile(t𝑖𝑖 , t𝑛𝑛𝑛𝑛𝑛𝑛 ,M, 𝛼𝛼); // Alg. 4.
7: if TileVerify(𝑏𝑏) then // Make sure neither deformed nor singular.
8: MSB := MSB ∪ {𝑏𝑏};
9: end if

10: end if

11: end for

12: end for

13: return MSB;

Finally, Algorithm 4 presents one approach to creating the bridging tiles. Bridging tiles join the
outermost faces of the filtered tiles in MSF to the boundary of M and enable to maintain the conformality
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between the microstructures and the macro object. The shared face between t𝑖𝑖 and t𝑛𝑛𝑛𝑛𝑛𝑛 is identified as 𝐹𝐹, in
Line 1, and a central point 𝑝𝑝𝐹𝐹 in 𝐹𝐹 and an outgoing normal are computed, in Lines 2 and 3. In Line 4, we
estimate the distance from 𝑝𝑝𝐹𝐹 to the boundary (exploiting the B-rep PointProjection operation) and employ
the shape control 𝛼𝛼 to compute point 𝑞𝑞, only to project 𝑞𝑞 on M to find the closest location to 𝑞𝑞 on M, as
location 𝑟𝑟. 𝑝𝑝𝐹𝐹 , 𝑞𝑞, and 𝑟𝑟 are employed as the control points of a quadratic Bézier axis curve, 𝐶𝐶, through which
a sweep trivariate bridging tile is derived, sweeping 𝐹𝐹 through 𝐶𝐶, in Lines 8 and 9, that is 𝐺𝐺1 continuous to
t𝑖𝑖 .

Algorithm 4 shows that the bridging tiles are independently constructed by joining 𝐹𝐹’s to the closest
boundary surfaces of M. Similar to the bridging tiles constructed in [9], the bridging tiles herein can also
suffer from collisions between tiles. As a post-process of constructing the bridging tiles, we detect possible
collisions between bridging tiles by computing the smallest distance between the axis curves. Two bridging
tiles are declared too close if the sum of the radii of the shared faces is larger than the minimum distance
between the axis curves. We attempt to resolve such collisions, by moving away the end point of the axis
curves (𝑟𝑟 in Algorithm 4) on 𝜕𝜕M. When the distance 𝑑𝑑 in Line 5 in Algorithm 4 is too small, (e.g., 𝑑𝑑 becomes
almost zero when the filtered tile nearly contacts the boundary of M, the resulting bridging tile is almost flat.
The bridging tile, in addition, can be highly distorted, or even self-intersecting, if �𝑛𝑛𝐹𝐹 deviates too much from
the surface normal of 𝜕𝜕M at point 𝑟𝑟. See TileVerify in Algorithm 3, Line 7 - we do not include the bridging
tiles in these extreme cases.

Algorithm 4 BuildBridgeTile: Builds a bridging tile from t𝑖𝑖 along shared boundary with tile t𝑛𝑛𝑛𝑛𝑛𝑛 , to 𝜕𝜕M.
Input:
M: a B-rep model;
t𝑖𝑖: a tile fully inside M;
t𝑛𝑛𝑛𝑛𝑛𝑛 : a tile adjacent to t𝑖𝑖 , and intersecting/out-of M;
𝛼𝛼: a shape control over the created bridging tile;
Output:
b: a bridging tile from t𝑖𝑖 , from its adjacent face with tile t𝑛𝑛𝑛𝑛𝑛𝑛 , to 𝜕𝜕M;
Algorithm:

1: 𝐹𝐹 := shared face of t𝑖𝑖 and t𝑛𝑛𝑛𝑛𝑛𝑛 ;
2: 𝑝𝑝𝐹𝐹 := center location of 𝐹𝐹;
3: �𝑛𝑛𝐹𝐹 := outgoing unit normal of 𝐹𝐹 at 𝑝𝑝𝐹𝐹 ;
4: 𝑝𝑝M := closest point on 𝜕𝜕M to 𝑝𝑝𝐹𝐹 , calculated via B-rep PointProjection;
5: 𝑑𝑑 := 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (𝑝𝑝𝐹𝐹 , 𝑝𝑝M);
6: 𝑞𝑞 := 𝑝𝑝𝐹𝐹 + 𝛼𝛼𝑑𝑑�𝑛𝑛𝐹𝐹 ;
7: 𝑟𝑟 := closest point on 𝜕𝜕M to 𝑞𝑞, calculated via B-rep PointProjection;
8: 𝐶𝐶 := quadratic Bézier curve, using 𝑝𝑝𝐹𝐹 , 𝑞𝑞, and 𝑟𝑟 as its control points.
9: b := sweep volume of surface 𝐹𝐹 along curve 𝐶𝐶;

10: return b;

4 Results

Unless otherwise stated, tiles used in this section are trivariates, typically tricubic. Clearly, tiles consisting
of surfaces will be faster to process and more so for curves, etc. We will demonstrate that, in this section as
well. We start, in Figure 4, with a simple trimmed surfaces based B-rep model that is a union of a sphere
and a cylinder. The original cage trivariates and the original set of micro-elements MST , are presented in
Figure 4 (i), while the final set of conforming micro-element tiles is presented in (ii) to (iv). The filtered
(interior toM) tiles, MSF , are drawn in green and yellow, with the yellow tiles are those from which bridging
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tiles to 𝜕𝜕M are formed. Finally, the bridging tiles themselves, MSB , are painted in blue. A low-resolution
(recall 𝑘𝑘𝑘 𝑘𝑘𝑘 𝑘𝑘 in Algorithm 1) tiling is presented in (a) whereas (b) presents a higher resolution version of
(a) in all three axis, using the same cage trivariate. Finally, in (c), a high resolution tiling is shown, with a
different, radial, cage trivariate function, T .

(a)

(b)

(c)
(i) (ii) (iii) (iv)

Figure 4: Three examples of microstructures, tiled in a B-rep trimmed surfaces model. (a) shows a fairly

low resolution microstructure whereas (b) presents twice higher the resolution compared to (a),

in all three (𝑢𝑢𝑘 𝑢𝑢𝑘 𝑢𝑢) axes. In (c), a high resolution version, similar to (b), is presented but with a

different cage trivariate field, being radial. The columns, left to right, depict (i) the original cage

trivariate with the full set of tiles, MST , in cyan, (ii) the model with the final set of tiles, MSM ,

in the B-rep model (transparent), and the cage (red wireframe), (iii) the final microstructure

MSM , and (iv) a zoom-in on a portion of the microstructure in (iii). The filtered (interior to M)

tiles, MSF , are drawn in green and yellow, with the yellow tiles are those from which bridging

tiles to 𝜕𝜕M are formed. Finally, the bridging tiles themselves, MSB , are painted in blue.

The polygonal model of a bone 1 has been fitted with three trivariate cages, shown in (a) to (c) in
Figure 5. Figure 6 presents the placement of conforming microstructures into another polygonal B-rep model
- the Stanford Bunny 2 3. The tiling density (Recall 𝑘𝑘𝑘 𝑘𝑘𝑘 𝑘𝑘 in Algorithm 1) is similar in all three cases.
Three different cages are presented, two of which, in (b) and (c), have a 𝐶𝐶−1 discontinuity that allows the
cages to split into two, near the ears of the Bunny. The trivariate cage in (c) is the tightest among the three,
with respect to the bunny, and the result is clearly visible near the ears, as shown in the zoom-in, in (iii). In
both the (a) and (b) cases, the ears can not be completely populated with tiles, and further, some tiles in the
ear are floating and are disconnected from the rest of the microstructure.

Finally, in Figure 7, a B-rep model of a duck, formed out of trimmed surfaces is presented. Two trivariate
cages were created for this model and the differences are mostly visible in the area of the head. The shape

1from https://www.turbosquid.com/3d-models/3d-cartoon-bone-1614756
2see http://graphics.stanford.edu/data/3Dscanrep
3downloaded from https://www.thingiverse.com/thing:3731/files
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(a) (b) (c)
Figure 5: A polygonal B-rep model M of a bone (4252 polygons) tiled with microstructures. Three

different cages are shown, from (a) to (c), each of which with two images - the cage in red

wireframe and the bone model transparent on the left and the final microstructure MSM on the

right. The filtered (interior to M) tiles, MSF , are drawn in green and yellow, with the yellow

tiles are those from which bridging tiles to 𝜕𝜕M are formed. Finally, the bridging tiles themselves,

MSB , are painted in blue.

and the size of the individual microstructure depend on the Jacobian of the cage where the microstructure
occupies, which is determined by geometry, parametrization of the trivariate cage, and the prescribed tiling
parameters 𝑘𝑘𝑘 𝑘𝑘𝑘 𝑘𝑘. When the cage contains regions close to being singular, as shown near the tail of the duck
in Figure 7, we can adjust 𝑘𝑘𝑘 𝑘𝑘𝑘 𝑘𝑘 to yield less distorted tiles in near-singular areas. Alternatively, bifurcation
tiles can be employed as is done in [16].

The most expensive step in these computations, especially for trimmed surfaces based B-rep, is the
intersection test. Table 1 presents the computation time for some of these examples. All experimental results
are measured on an Intel Core i7-7700K 4.2GHz PC with 32 GB RAM and eight cores. Construction (Line
1 in Alg. 1) and filtering (Alg. 2) computations are parallelized using eight threads, for each tile ti, whereas,
bridging tiles (Alg. 3 and Alg. 4) are computed on a single thread, due to the collision detection between
different bridging tiles.

Some results, as seeing in Table 1, should be discussed. The tiles’ construction time of Figure 5 (b) is
far longer compared to Figure 5 (a) and (c) due to the higher order of the cage trivariate, which is linear in
𝑢𝑢 and 𝑣𝑣 in (a) and (c) and cubic in (b). The same results are also observed in the Bunny model (Figure 6),
in which the construction time is slower in (a) due to the higher order of the cage trivariate in (a). Filtering
of polygonal B-reps is much faster due to the usage of BVH, compared with filtering of spline based B-reps
that requires the computation of surface-surface intersections. Further, while we mostly employed trivariate
tiles in these examples, tiles consisting of surfaces are faster to process and more so for curves based tiles.
Table 1 also shows the functional composition computation times for the same tile shapes but with surfaces,
which are clearly faster, mostly due to the lower dimensions of the composed results.

5 Extensions

The presented approach can be extended in several ways. To begin with, the input enclosing trivariate T can
be prescribed directly but it can also be defined by fitting T to any input field (or tensor). Such a field can
come, for example, from stress analysis over the geometry that will identify the principle stress directions
that must be re-enforced. Further, the same analysis can also control the local shapes or material content
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(a)

(b)

(c)

(i) (ii) (iii)
Figure 6: Three examples of microstructures tiled in the polygonal B-rep model of the Stanford Bunny

(66848 polygons). (a) to (c) show three different trivariate cages, with (c) being the tightest. The

cages are depicted transparent in (i) and using wire-frames in (ii) and (iii). Note the trivariate

cages in (b) and (c) have a 𝐶𝐶−1 discontinuity that allows its split near the ears of the bunny. The

tiling density in all three examples is similar.

of individual tiles. For example, thin tiles in low stress (or minimal heat transfer) zones and thick tiles in
locations where the identified stresses are significant (or the required heat flux is considerable).

The geometry of a tile in the final result is affected not only by the shape of the tile in the domain of the
cage trivariate T , but also by the local Jacobian of T . While we have little control over (the Jacobian of)
T , we have full control over the shape of individual tiles, as they are parametric. As long as the geometry
preserves the desired continuity, any global specification can be employed here, e.g., direct prescription by
the end user as a function of Euclidean coordinates in 𝑅𝑅3 or trivariate parametric coefficients 𝑢𝑢𝑢𝑢𝑢𝑢, due to
stress or heat transfer analyses, etc.
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(a)

(b)

Figure 7: A trimmed surfaces based B-rep model of a duck tiled with microstructures. Two different cages

are shown, in (a) and (b), each of which with three images. The cage trivariate is shown in a red

wireframe, the B-rep model is presented transparent, and the final microstructure in yellow, green

(for 𝑀𝑀𝑀𝑀𝐹𝐹 ) and blue (𝑀𝑀𝑀𝑀𝐵𝐵). The zoom-in, on the area of the head, on the right, clearly depicts

the differences in the outcome.

Time (secs.) No. of tiles
Construction Filtering Bridging

Figure (eight threads) (eight threads) (one thread) |MST | |MSF | |MSB |

Trivariate tiles Surface tiles
4 (a) 456.484 1.609 258.281 6.439 576 188 272
4 (b) 1854.469 5.937 946.63 24.26 2304 916 770
4 (c) 214.735 2.921 739.912 23.05 2304 1468 692
5 (a) 10.344 1.047 1.93 7.675 1480 531 728
5 (b) 1534.844 5.063 1.78 5.314 1920 387 510
5 (c) 12.281 1.641 3.565 10.734 2240 939 836
6 (a) 6963.937 22.328 50.667 261.711 8448 1706 1519
6 (b) 1307.093 13.141 58.611 352.709 10368 2315 2066
6 (c) 1054.328 12.906 63.94 412.034 10368 2786 2407
7 (a) 237.5 3.75 10400.717 32.138 2541 889 852
7 (b) 328.25 4.516 10783.349 46.006 3549 1287 983

Table 1: Statistics of the test cases shown in this section. |MST | and |MSF | represent the number of unit

trivariate tiles before and after filtering, and |MSB | represents the number of bridging tiles

connected to M. The number of polygons in the Bunny model (Figure 6) is 66848, and 4252 in the

bone model (Figure 5), respectively. While we employ trivariate tiles throughout, the construction

times for surface-based tiles are much faster and are shown for comparison.

Figure 8 presents a few examples of the same modelM and the same cage trivariate, as in Figure 4, while
the thicknesses of individual tiles are locally modified, herein following some globally specified functions in
𝑅𝑅3.

Clearly, any property in a tile can be similarly controlled and modified and the thickness of individual
tiles is merely one example. This includes the geometry, topology and even material content of a tile. This,
while typically the proper connectivity to neighboring tiles (and 𝜕𝜕M) is maintained. A careful reexamination
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(a) (b) (c)

Figure 8: Several examples of variable thickness tiles in a B-rep model are shown. In (a), the tiles are

thinned at the center, in the central sphere zone, in (b), the tiles are thinned toward the bases of

the cylinder, and in (c), the thicknesses are modulated to follow some sine functions. Compare

with Figure 4.

(a)

(b) (c)

Figure 9: The tile in (a), consisting of three periodic freeform curves in a unit cube (cube is not part of the

tile), is used to tile the B-rep polygonal bone model from Figure 5, in (b), and the B-rep trimmed

surfaces based model, similar to the model in Figure 4, in (c). Interior tiles are drawn in green

and bridging curves are in blue.

of Figure 8 will reveal that a single tile can possess different properties on its different (six) boundaries,
herein different thicknesses, ensuring a 𝐶𝐶0 continuity.

Further, following [16], the geometry in these tiles can consist of univariate curves and polylines,
polygonal meshes, freeform (trimmed) surfaces and solids, and (trimmed) trivariates. Figure 9 demonstrates
this ability for tiles formed out of freeform curves. The three operations of PointInclusion, PointProjection,
and BrepIntersection must be supported between the B-rep model and the specific type of geometry in the
tile. Herein, for a curves-based tile and a B-rep model, a test for curve-model intersection must be supported
as well. For curve-based tiles, the computation is even faster than trivariate- or surface-based tiles. The
curves tiles in Figure 9 (b) were computed in 0.188 Sec, whereas those in Figure 9 (c) were computed in 0.25
Sec.

Finally, Figure 10 shows the duck and the Bunny 3D printed. The duck was printed as a skeletal
microstructure whereas the Bunny was printed (in two sizes) in a translucent body. Some surfaces of the
microstructure of the Bunny were painted with blue dots, demonstrating the ability to prescribe heterogeneous
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Figure 10: 3D printed versions of the Bunny (in two sizes) from Figure 6 and the duck from Figure 7. The

Bunny was printed in a translucent body while for the duck, only the microstructure has been

3D printed. Printed on a J55 printer of Stratasys.

properties in tiles in the microstructure. Following [16], the heterogeneity of the tiles in the microstructure
can be reflected not only in their material properties but also in their topological and/or geometric shape.
All models were printed on a J55 printer 4 of Stratasys, with water-soluble supporting structure. A single
polygonal file (in STL or OBJ file format) has been created for all the B-rep tiles in the microstructure, only
to be sent to the printer.

6 Conclusions and Future Work

In this work, we have presented a constructive approach to populating B-rep models, polygonal or spline-
based, with microstructure tiles, along an arbitrarily specified field. This aim has been accomplished using
a user-defined trivariate cage that encompasses the B-rep model. One potential benefit to be explored is the
exploitation of the presented approach in placement of tiles along desired directions, like stress tensors or
gradients of heat.

While tiles in this work were composed of either curves or surfaces/trivariate B-splines, nothing in this
work prevents one from employing a single tile with mixed geometry type, including other geometric types,
such as polygonal meshes and polylines. Yet, considering such a tile as a whole, would still entail the support
of the three operations over B-reps, as discussed in Section 3.

There is also a clear room for further development. The presented scheme assumes the bridges are built
from faces in tiles that are close to the boundary of M (Face 𝐹𝐹 in Algorithm 4). Face 𝐹𝐹 is typically almost
planar but not exactly planar. Further, the location where the bridge contacts M is typically also non planar.
Hence, the bridge typically contacts M in a non tangential way and can penetrate the boundary, instead of
being precisely tangent to it. While in a minute amount, a better bridging scheme to ensure proper tangency
contact might be desired. For example, if 𝜕𝜕M is a shell of some 𝜖𝜖 thickness and that 𝜖𝜖 is larger than the
non-planarity of 𝐹𝐹, Boolean operations can be employed between the shell 𝜕𝜕M and MSB . Further, M can
have 𝐶𝐶1 discontinuities (e.g., along intersection curves of two surfaces), which will require either moving
the contact point of the bridge on M (𝑟𝑟 in Algorithm 4) away from the discontinuity, or mimicking the

4https://www.stratasys.com/en/3d-printers/printer-catalog/polyjet/j55-prime
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discontinuity in the bridge.

In addition, the cageT and tiling parameters such as tiling density should be prescribed by the end user, in
the proposed method. Providing a cage and tiling parameters that are satisfying physical boundary conditions
and/or additive manufacturing constraints is another future work of the proposed method, incorporating
analysis and optimization tools into the design loop.

The topology of a B-rep model can be arbitrary complex and herein we only employed a single caging
trivariate for the entire model M. M can have arbitrary number of handles coming out or have a large genus.
A generalized cage based approach that is similar to polycubes [27] and/or trimmed trivariate V-reps [9],
might be of value here, for a complex model M, and needs to be further explored.
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A. B-rep queries

In this appendix, we briefly discuss how are the three key operations of PointInclusion, PointProjection,
and BrepIntersection, evaluated, over trimmed surfaces based B-reps as well as polygonal B-reps. In both
cases, we assume a water-tight model.

Having M as a trimmed surfaces based solids, the PointInclusion test for point 𝑝𝑝 can be reduced to
shooting a ray from 𝑝𝑝 until it is outside the bounding box of M and counting the number of intersections
- odd if 𝑝𝑝 ∈ M and even if 𝑝𝑝 ∉ M. This ray-shooting approach can be unstable if cracks or black holes
exist along the trimmed area and an alternative and more robust approach can be used, that employs winding
numbers - see [13].

The PointProjection query can be reduced to the closest point on M to 𝑝𝑝, which means the minimum
between the closest point-surface tests against the trimmed surfaces in M, closest point-curve tests against
the trimming curves in M, and closest point-point test against the intersection locations of the trimming
curves. By assuming that the trimmed surfaces and trimming curves are 𝐶𝐶1, the minimal distance queries
could be reduced to algebraic constraints and solved.

The final BrepIntersection test can be resolved by using Boolean operation computation where we only
seek to find if the given two B-reps intersect or not.

To accelerate B-rep queries on a polygonal mesh M, we start by building a Bounding Volume Hierarchy
(BVH) structure [1] for M. An internal node in the BVH is an axis-aligned bounding box (AABB), and the
leaf node contains one polygon.

For the PointInclusion test of a point 𝑝𝑝 with respect to the polygonal mesh M, we take the ray-shooting
approach which is similar to PointInclusion test of the trimmed surface based model. However, the ray-
shooting test is now executed while traversing the hierarchy of the BVH; We test the intersection between the
ray and one AABB node on BVH structure. If the ray does not intersect the current AABB node, we do not
investigate the subtree under the box anymore; if the ray does intersect with the node, then we test further for
the intersection between the ray and all the children AABB’s, of the current AABB.

For computing the closest point on the polygonal model to an arbitrary query point (the PointProjection

test), we traverse the BVH by comparing the distance between AABB and the query point. After the traversal
algorithm reaches a leaf node of BVH, we do point-projection to the polygon and get the closest point.

For computing the intersection between a polygonal model and a given tile surface (as part of the B-rep
tile), we first make AABB for the surface and search for intersecting leaf nodes of the BVH of M, via an
hierarchical traversal, of the BVH. Internal nodes of the BVH that do not intersect with the AABB of the
surface are excluded, and hence we can significantly accelerate the algorithm. We complete the algorithm by
examining for intersections between the identified polygons (leaf nodes of the BVH) and the surface.
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Abstract  
This paper describes a method to efficiently define and 3D print unique kaleidoscopic hypercomplex fractals. The 
proposed method allows the user to easily edit fractals in three ways: changing the power the fractal is raised to, 
changing the number of sides of the kaleidoscope, and the angle and position of the fractal, which creates different 
shapes due to the kaleidoscope. In the example of the Mandelbulb and the inverted Mandelbulb fractals, where the 
shape of fractals is manipulated through the “kaleidoscopic effect”, we create 3D fractal sculptures that can be 
realised as physical objects by using 3D printing. The flexible parametrisation of the fractal definition implemented 
as the Houdini tool allows the definition of many unique shapes of kaleidoscopic hypercomplex fractals that can 
be digitally fabricated with a little pre-processing. The paper results can be used for creating fractal-based 
sculptures as a part of 3D fractal art. 

 
Introduction 

Although the term “fractal” was introduced in the 20th century, self-similarities in geometry were 
well-known long before. The mathematics of fractals is not being considered mainstream; however, fractals 
consistently are used in art. Artists can use their infinite recursion to create beautiful, artistic forms that 
have made a basis for “fractal art”, which describes primarily computer-generated art that uses fractals in 
its imagery. Recently the hypercomplex fractals started to appear in feature animation films and other visual 
media. It is worth mentioning that fractal art is predominantly 2D, as the algorithms that create fractals in 
3D are hard to manipulate.   

This paper explores hypercomplex fractals and presents the method to create fractal sculptures with 
unique shapes. By extending the definition of the 3D Mandelbulb algorithm together with the subsequent 
self-defined kaleidoscopic effect, we allow defining many various fractal sculptures with allowing for 
artistic control at the same time. The implementation of the algorithm as a Houdini tool allows the user to 
create a unique shape that can be converted into a format suitable for 3D printing. We have 3D printed 
several models to demonstrate the applicability of the algorithm. The presented pipeline allows the 
hypercomplex fractals to be available as an artistic tool to be used for other artists working with fractal 
geometry. 

 
Background and Related Works 

Fractals are infinitely complex patterns that are self-similar on different scales. This recursiveness appears 
in nature, such as mountains, coastlines, clouds[1], and even blood vessels. Mathematical definitions for 
different fractals can vary. This paper focuses on fractals that use complex and hypercomplex numbers in 
their definition, specifically the 3D Mandelbulb created from the 2D Mandelbrot set. 
 
Mathematics of fractals. The Mandelbrot set is made by iterating a simple recursive rule using complex 
numbers where the pattern itself appears on the complex plane. It was first discovered by Robert W. Brooks 
who drew it in 1978 for a study of Kleinian Groups [14]. The mathematical definition of the fractal set was 
done in 1980 by Benoit B. Mandelbrot. A Mandelbrot set is defined by the equation zn+1 = zn2 + c, where z 
and c are complex numbers [6], and the point is said to belong to the set if |z|<2 for all iterations n. While 
the Mandelbrot set separates the set of complex numbers into two subsets, later it was noted that the fractal 
nature could be better perceived if the fractal visualisation is augmented with colours. For example, the 
colours of the points are determined by the number of iterations required to reach rmax  = 2 where r = |z|.  In 
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Figure one, the red points are the points that require 0 iterations, pink points require 1 iteration, violet points 
require 2 and blue points require 3 or more. 
 
 

   
Figure 1: The Mandelbrot set 

 
 

There are different ways to extend the Mandelbrot set from 2D into 3D. One of the ways of doing that 
is to rotate the set around its axis. The most well-known “3D Mandelbrot” is the Mandelbulb, a 3D shape 
discovered by Daniel White [7] where the extension from 2D into 3D is done by converting Cartesian 
coordinates to spherical coordinates, and then converting them back. The algorithm uses the definition 
similar to the Mandelbrot set, zn+1 = zn2 + c however z and c here are hypercomplex (triplex) numbers 
representing 3D Cartesian coordinates. In its definition the exponential term is defined as  
〈𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧〉𝑛𝑛𝑛𝑛 = 𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛〈cos𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 sin𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , sin𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 sin𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , cos𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛〉           (1) 

Where 𝑟𝑟𝑟𝑟 = �𝑥𝑥𝑥𝑥2 + 𝑦𝑦𝑦𝑦2 + 𝑧𝑧𝑧𝑧2, n is the order and angles are defined as 𝑛𝑛𝑛𝑛 = atan2 � 𝑧𝑧𝑧𝑧
�𝑥𝑥𝑥𝑥2+𝑦𝑦𝑦𝑦2

�  and 𝑛𝑛𝑛𝑛 =

atan2 �𝑦𝑦𝑦𝑦
𝑥𝑥𝑥𝑥
�  

 
While the Mandelbulb is a set of 3D points that define an object with a finite volume, it has an infinite 

surface area due to its infinite recursion. In this paper, the Mandelbulbs are frequently referred to as 
Hypercomplex fractals. This is because while the Mandelbrot set uses complex numbers, Mandelbulb uses 
Hypercomplex numbers which are similar to complex numbers but extended into 3D [13].  
 
 
Fractal art. Fractals were used in architecture such as Gothic Cathedrals [15] and art long before the term 
“fractal” was introduced. Fractal art, however, is predominantly 2D with only several exceptions such as 
fractal terrains [1] and relief carvings [3]. The main reason to stick to 2D fractals for artistic purposes is 
that the algorithms that create fractals in 3D are hard to manipulate. 
 

In recent years, hypercomplex fractals have become an integral part of visual effects. They have been 
used in films such as the Guardian of the Galaxy Vol 2 and Annihilation. In Big Hero 6 [4], a variation of 
the Mandelbulb algorithm was used with parameters that allowed the VFX team to easily create a large 
variety of 3 dimensional forms. Similarly, our Houdini tool takes variations of Mandelbulbs with editable 
parameters which then can be applied for 3D printing.  
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“Fractal Effervescence” by David April made in 2006 is an art piece that creates fractal patterns from 
mathematical formulas to create a visually impactful image. The artwork was created by fusing three 
image files which were made with the software Apophysis developed by Mark Townsend. The three files 
had different types of transformations which created this image. [11] 
 

Johan Andersson used 3D fractals to create Surreal Fractal Jewelry and Accessories soon after 
Daniel White discovered the Mandelbulb in 2009 [9]. One of his works involves creating fractal art by 3D 
printing Surreal Chess pieces. [12] His work is based on hypercomplex fractals, converting mathematical 
fractal algorithms to create 3D sculptures.  
 
Houdini. Houdini is a software that uses a procedural system to create artwork. It has a node-based 
workflow which is ideal for visual effects as it allows their users to create dynamic simulations, and it also 
allows the user to build custom nodes with VEX, a language based on the C language. It is suitable for our 
work as it is aimed for visual effects and its custom nodes allow us to quickly visualise mathematical 
algorithms. [18] 
 
 

 
Method and implementation 

As mentioned previously, one of the main goals of this research is to create 3D fractal art with the visual 
being the main component, at the same time allowing for efficient visualization of the resulting fractal 
shapes. Since a Mandelbulb’s surface area is infinite, we approximate the shape of the hypercomplex fractal 
by representing the object with a high-resolution volumetric representation. The first step, however, is to 
allow for modifications in the equations that would result in different shapes, at the same time by keeping 
the visual appearance.  

Despite some flexibility in the definition of the Mandelbulb, where the variations can be achieved by 
modifications of the order n (see equation 1), it is still limited in resulting shapes. To increase the variations, 
we have modified the formulation of the Mandelbulb (the equation 1) in the scope of our experiments. 

First modification to obtain so-called “inverted” Mandelbulb was by using 𝑛𝑛𝑛𝑛 = atan2 �−𝑦𝑦𝑦𝑦
𝑥𝑥𝑥𝑥
�. The 

resulting shape becomes drastically different from the original Mandelbulb, as we show in the Figure 2 (a) 
and (b).  

To create an even larger variety of Mandelbulbs without inventing a new formula, we manipulated 
fractals by experimenting with the conversion of the coordinates from Cartesian to spherical and vice versa. 
In particular, good results can be obtained by changing trigonometric functions used for conversion from 
different coordinate systems and application of different coordinate system conversion in line with 
experiments by Paul Nylander in [13]. 
In figure 2 we present some shapes that we obtained with these experiments.  In figure 2c we use applied 
different trigonometric functions to the inverted Mandelbulb to get 〈cos𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 sin𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , sin𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 tan𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , cos𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛〉 
(compare with the equation 1). In the figure 2d we use further inversion of the coordinates by having  𝑛𝑛𝑛𝑛 =
atan2 � 𝑧𝑧𝑧𝑧

�|𝑥𝑥𝑥𝑥2−𝑦𝑦𝑦𝑦2|
� . Similarly, in the figure 2e we used 𝑛𝑛𝑛𝑛 = (2 sin 𝑧𝑧𝑧𝑧

𝑟𝑟𝑟𝑟
)−1 , the goal was to see how the 

Mandelbulb changes if the coordinates are converted differently before they are rotated. Finally, in 2f we 
applied different trigonometric functions as for 2c, but to the original Mandelbulb.  
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(a)             (b)            (c) 

    
(d)        (e)          (f) 

 
Figure 2:  Hypercomplex fractals of order 2, rendered in Houdini with 
subsurface scattering: (a) Original Mandelbulb, (b) Inverted 
Mandelbulb, (c,d) Inverted Mandelbulb with variations, (e) 
Mandlebulb with adjusted conversion before rotation, (f) Mandelbulb 
with adjusted conversion after rotation. 

 
To allow for larger variation in resulting shapes, we added a self-defined kaleidoscopic effect [9]. As 

noted above, hypercomplex fractals, on the surface, look infinitely complex. However, they are made up of 
repeating patterns even though they are not easily recognizable to the human eyes. We combined this with 
easily identifiable patterns, kaleidoscopes, to see the effect it would create. A part of the fractal is taken by 
using the clip node in Houdini, and mirrored by several sides through a copy node that the user defines. 
This takes a part of the existing Mandelbulb, mirrors it such that the edges of the parts align perfectly, and 
then these parts are repeated a given number of times. Due to this method, the kaleidoscopic Mandelbulb 
can only have an even number of sides, otherwise, one part of the Mandelbulb will not have a mirrored 
version and thus not connect to the rest of the mesh properly. This creates shapes that are more easily 
recognizable as symmetrical, which is a good design choice for 3D printing these sculptures as it is easier 
to balance them. The kaleidoscopic Mandelbulbs can also be edited by simply angling the Mandelbulbs to 
the user’s liking to choose which part of the Mandelbulb will be mirrored. This allows us to create a lot of 
different kaleidoscopic Mandelbulbs that vary in shape. This created some dramatic changes between the 
fractals even though they all were produced from the same equation, as seen in Figure 3. 
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Figure 3:  Mandelbulbs from Figure 2 with the Kaleidoscopic effect 
applied to them.  

 
Figure 3 shows the previous Mandelbulbs shown in Figure 2 after applying the kaleidoscopic effect. 

The Mandelbulbs were purposefully angled in a way where the kaleidoscopic effect creates a visually 
pleasing shape. With this modification, we can create many hypercomplex fractal shapes by slightly 
changing the parameters. However, it is important to keep in mind that these shapes are created for 3D 
printing, therefore there are some limitations in the parameters. It is recommended to keep the power of the 
Mandelbulbs to a low number as, in this case, the resulting fractal shape has a smoother surface which is 
more suitable for 3D printing. It is also recommended to keep the number of sides for the kaleidoscopic 
effect even to avoid visible holes in the geometry and making the resulting object not suitable for 3D 
printing. 

Houdini was used to create these fractals as it allows for quick visualization. The Mandelbulb fractal 
formula mentioned earlier on by Daniel White and Paul Nylander was converted into VEX code (a Houdini 
scripting language based on the C language) by referencing Inigo Quilez’s algorithm as well [11] using a 
volume wrangle, which is a low-level node that allows the user to modify voxel values using code. The 
Vex code takes the Cartesian coordinates (x, y, z) of the points in the volume and converts them into 
spherical coordinates (r, θ, φ). These points were then scaled and rotated and raised to the user defined 
power. They were then converted back to Cartesian coordinates and iterated. This node allows the user to 
edit the power the Mandelbulb is raised to as well as the iteration. 
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Figure 4: Inverted 3D Mandelbulb printed in large scale with 
Ultimaker 2+. The support structure was removed manually. 

 
Results and analysis 

Some of the models presented in the paper were 3D printed. We were using desktop machines of the 
Ultimaker and Prusa family to fabricate these shapes to demonstrate that the resulting models can be 
fabricated on a very low budget in a relatively short amount of time.  
The original and inverted Mandelbulbs were printed on Ultimaker 3 with a soluble support structure to 
allow for fine details to be printed and preserved after the support structure was removed. The choice of the 
sculptures to print was defined by choosing the Mandelbulbs that have a mesh that has no areas that are 
floating and the visual impact the Mandelbulb has as a 3D printed sculpture. Both sculptures were printed 
quite small, on average they are 10 centimetres long. The size was chosen to be as such to keep the fine 
details and at the same time to make the printing process take not too long. These sculptures took about 8 
hours to print. One of the objects was also printed in a larger size on single-material Ultimaker 2+ with a 
support structure that had to be removed manually. Although the single-material printing time on a larger 
scale was similar to multi-material printing, the post-processing time was annoyingly long, and some details 
were still lost because the support structure was impossible to remove without affecting the fine details. 
The resulting sculptures are shown in figures 4, 5 and 6. 

The kaleidoscopic Mandlebulb was printed on Prusa MK3S/MMU2S with soluble support. It was 
printed quite small as well to decrease the duration of printing. Unfortunately, that was proven not the best 
decision as the resulting print has some very fragile parts, and the model is easier to break.  

The availability of the hardware for 3D printing was somehow limited and we could not explore 
alternative ways to fabricate fractal shapes such as using SLS technology [16] or stereolithography (SLA) 
using resins [17]. This would be better choice for these sculptures as it is capable of producing high quality 
prints. This could also allow for translucent materials which would increase the visual aesthetics of the final 
sculpture and could be used for lighting displays.  
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Figure 5:  Mandelbulb and Inverted Mandelbulb 3D printed on Ultimaker 3 with soluble 
support structure  

 

  
 
Figure 6:  Kaleidoscopic Mandelbulb printed on Prusa with a layer of PVA between the 
sculpture and the support. 
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Figure 7:  The final 3D printed Mandelbulbs. 

 
 

Conclusions and discussion  

Fractal art is an exciting area at the intersection of mathematics and digital art, as it allows to create infinitely 
complex shapes with a very simple formulation. In this work, we have shown how easy modifications of 
the Mandelbulb 3D fractal can result in many fractal shapes that can be converted into volume object and 
subsequently realised as a physical model by using 3D printing. We could achieve that by modifying the 
formula as well as by application of the kaleidoscopic effect implemented in Houdini software. 

While the results are aesthetically pleasing and can serve as the first step into fractal art, we feel that 
there are some opportunities to develop the idea further and find applications in art. One of the applications 
of fractals in modern design is fractal jewellery. However, some modifications in shape are required to 
avoid very thin elements in fractal geometry as well as to ensure the printability of the shape. Automatic 
detection of non-printable features and correction of the volume object might be a potential future research 
direction. Another important aspect to consider is the artistic control of fractal shapes. For example, it would 
be interesting to explore how the artist can make modifications in fractal space and when the shape of the 
fractal is defined. We can expect that, in a nutshell, it can be done by manual sculpting over the shape of 
the fractal, but at the same time, an investigation into the semi-automatic methods of doing so can also be 
a direction for future research. To make the final sculpture more aesthetically pleasing, hand-painting or 
spray-painting the Mandelbulbs could achieve a more polished look.  
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Node setup in Houdini: 
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VEX code for original Mandelbulb formula by Daniel White in Volume Wrangle: 
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 Abstract 
 Turing  reaction-diffusion  forms  the  basis  for  a  multi-media,  multi-technology  approach  to  capture  the  mathematical/biological 
 essence  of  morphogenesis  in  sculpture.  The  2D  Kassam  algorithm  for  solving  the  differential  equations  defining 
 reaction-diffusion  is  generalized  to  3D.  A  carefully  chosen  threshold  then  generates  a  compelling  isosurface  that  is  polygonalized 
 for  3D  printing.  Other  steps  in  the  process  are:  1)  Using  Fourier  filtering  to  eliminate  distracting  and  poorly  reproducible  high 
 frequency  components,  2)  Capping  the  isosurfaces  within  the  physical  printing  range  while  maintaining  a  solid  manifold  object 
 for  manufacture,  3)  Printing  the  polygon  model  in  plastic  and  removing  support  struts,  4)  Handcrafting  extrapolations  to  the  caps 
 with  modeling  clay,  while  preserving  tangent  plane  continuity  to  the  original  3D  print,  and  5)  Finishing  aesthetic  details  by 
 sanding  and  painting.  The  resulting  sculpture  possesses  a  pleasing  visual  flow,  geometric  consistency,  tactile  appeal,  and  a  “nooks 
 and  crannies”  element  of  discovery.  On  a  deeper  level,  it  evokes  awe  for  Turing’s  proposed  mechanism  of  biological  development 
 and diversity. 

 Figure 1:  The TuringB reaction-diffusion sculpture: a) view of 2D cuts, and b) full 3D view. 

 “To see a World in a Grain of Sand 
 And a Heaven in a Wildflower 
 Hold Infinity in the palm of your hand 
 And Eternity in an hour.” 

 -William Blake,  Auguries of Innocence 



60

 Turing’s Other Thesis 
 The  classical  (Church)  Turing  thesis  asserts  that  a  Universal  Turing  Machine  can  perform  any  calculation 
 that  is  “real-world”  computatable.  It  is  one  of  the  most  famous  concepts  in  computer  science.  Many  years 
 after  this  first  thesis,  Alan  Turing  posited  another,  entirely  different  thesis  of  note;  namely,  that 
 morphogenesis  was  driven  by  chemical  reaction-diffusion.  Morphogenesis  is  the  process  by  which 
 biological  cells  differentiate  during  development.  In  the  final  publication  of  his  amazingly  versatile  career 
 [3],  Turing  asserted  that  the  concentration  of  chemical  reagents  drove  embryonic  cells  to  develop  into 
 more  specific  varieties,  and  that  this  concentration  of  chemicals  resulted  from  the  process  known  as 
 reaction-diffusion (RD). 

 As  with  his  first  thesis,  the  thesis  on  morphogenesis  has  never  been  proven.  Over  the  past  70  years, 
 however,  increasing  anecdotal  and  scientific  studies  have  buttressed  its  likely  validity.  By  the  early 
 nineties,  computers  had  advanced  to  the  point  where  some  impressive  RD  patterns  could  be  produced  by 
 the  computer  graphics  community.  These  were  2D,  often  mapped  to  3D  surfaces  with  compelling  effects 
 as  in  Fig.  2a  [4].  Simulations  have  also  used  the  theory  to  create  synthetic  digits  and  limbs  [5].  Recent 
 discoveries  have  shown  that  epigenetics,  i.e.  how  and  when  DNA  expresses  itself,  depends  on 
 concentrations  of  the  methyl  (CH  3  )  groups  in  the  cells  (methylation),  though  it  is  not  clear  that  this 
 concentration results from RD [6]. 

 Figure 2:  a) 2D RD texture mapped on a 3D surface. b) a 3D RD 

 In  exploring  RD  patterns  we  were  often  struck  by  the  intriguing  appeal  of  the  shapes  that  result,  e.g., 
 Fig.  1.  In  spite  of  the  infinite  variety  of  patterns  possible,  there  was  always  a  consistent  esthetic  and 
 pleasing  flow  throughout  the  pattern.  We  attempt  to  capture  that  essence  in  sculptures.  We  created  two 
 objects  for  this  paper,  one  to  demonstrate  the  construction  process,  called  TuringA  and  another  to  show 
 the  finished  sculpture,  called  TuringB.  We  describe  our  approach  in  the  next  sections,  including  a  brief 
 overview  of  the  necessary  mathematical  theory  and  3D  printing  techniques,  visualization  considerations, 
 and hand-crafted finishing. 
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 concentration results from RD [6]. 

 Figure 2:  a) 2D RD texture mapped on a 3D surface. b) a 3D RD 

 In  exploring  RD  patterns  we  were  often  struck  by  the  intriguing  appeal  of  the  shapes  that  result,  e.g., 
 Fig.  1.  In  spite  of  the  infinite  variety  of  patterns  possible,  there  was  always  a  consistent  esthetic  and 
 pleasing  flow  throughout  the  pattern.  We  attempt  to  capture  that  essence  in  sculptures.  We  created  two 
 objects  for  this  paper,  one  to  demonstrate  the  construction  process,  called  TuringA  and  another  to  show 
 the  finished  sculpture,  called  TuringB.  We  describe  our  approach  in  the  next  sections,  including  a  brief 
 overview  of  the  necessary  mathematical  theory  and  3D  printing  techniques,  visualization  considerations, 
 and hand-crafted finishing. 

 Reaction-Diffusion in 3D 
 Chemical  RD  is  governed  by  mathematical  equations  that  determine  how  a  mixture  of  two  reagents 
 change  concentrations  as  they  1)  react  and  2)  diffuse  within  each  other.  (The  computation  is  a  classic 
 cellular  automata,  finite  difference  technique).  Solutions  at  a  given  point  in  time  for  high  resolutions  can 
 be  very  slow  to  compute.  Kassam  [2]  improved  computational  speed  by  transforming  the  2D  problem  to 
 the  Fourier  domain  and  solving  it  in  terms  of  frequencies,  then  transforming  back  to  the  spatial  domain. 
 We  took  their  method  and  generalized  it  to  3D.  (RD  itself  was  first  generalized  to  3D  images  in  [1],  Fig. 
 2b).  It  is  straightforward  in  theory  to  lift  the  RD  equations  to  3D,  but  as  the  noted  American  philosopher, 
 Yogi  Berra,  once  said,  “In  theory,  theory  and  practice  are  the  same.  In  practice,  they  are  not.” 
 Implementation  of  Kassam  in  3D  required  new  data  structures,  convergence  tolerances,  starting 
 parameters,  time  step  sizes,  and  many  other  algorithmic  details  which  required  a  great  deal  of  thoughtful 
 development, and trial and error. Lomas [7] examines many of these issues. 

 Besides  the  propitious  speed  increases,  which  varied  from  10  to  100  fold,  Kassam’s  use  of  the  Fourier 
 domain  allowed  fine  surface  details  to  be  filtered  out  with  no  extra  cost.  This  was  essential  for  3D 
 printing  since  small  details  could  spoil  the  print,  leading  to  unusable  results  such  as  dangling  threads  and 
 tears  in  the  surface.  It  was  a  nice  piece  of  serendipity.  It  didn’t  change  much  in  the  overall  appearance  of 
 the sculpture; it simply eliminated some sharp points and small, isolated “islands.” 

 RD  evolves  over  time.  In  the  beginning  of  the  simulation,  the  minute  variations  in  concentration 
 showed  up  as  an  extremely  complex  object.  By  the  end,  the  concentrations  had  often  localized  into  a  few 
 prosaic  regions.  Somewhere  between  the  extremes  one  finds  the  more  interesting  states  that  we  used. 
 Finding the right moment in time to sample RD was one of the aesthetic tasks. 

 In  theory  RD  is  computed  as  if  the  chemicals  were  in  an  infinite  vat,  since  boundaries  complicate  the 
 solution.  In  practice,  of  course,  3D  printing  necessitates  boundaries.  We  implemented  our  theory  with 
 given  boundary  slices  in  MATLAB.  Besides  the  necessary  mathematical  functions  to  do  the 
 RD/Fourier/numerical  computations,  MATLAB  had  functions  to  automatically  output  polygons  which 
 approximated the isosurface and could be used for display. 

 Figure 3:  Different views of TuringB model a) Gouraud shaded, b) texture mapped and color coded. 
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 Fig.  3  shows  the  polygon  model  with  boundaries  as  output  by  MATLAB.  We  found  the  flat  print 
 boundaries  themselves  to  have  a  charm  of  their  own,  and  we  colored  them  blue  (Fig.  3b).  Two-D 
 intersection  surfaces  are  common  in  morphogenesis  e.g.  animal  hide  patterns  such  as  the  Holstein  cows 
 (Fig. 2a). Computation on a 3D torus is a future option to avoid boundaries altogether. 

 Visualizing the 3D solution 
 The  concentration  of  reagents  in  a  solution  is  a  function  of  the  three  dimensions  of  volume,  like 
 temperature  in  a  room,  or  humidity  in  the  atmosphere.  Visualizing  3D  functions  has  been  an  important 
 topic  for  scientists  and  computer  graphics  researchers  for  decades.  Two  prominent  methods  are  to 
 visualize  it  as  if  the  concentrations  were  a  colored  gas  with  opacity,  which  is  higher  in  regions  where  the 
 gas  is  more  concentrated,  the  so-called  volume  rendering  .  The  second  is  to  view  contours,  or  isosurfaces, 
 of  the  function  where  all  values  are  equal  concentrations,  e.g.  using  a  technique  known  as  marching 
 cubes.  Fig.  2b  shows  a  volume  rendered  RD  function  from  [1].  Whereas  Fig.  3  is  an  isosurface  rendering 
 of  our  RD  function.  Iso-surface  rendering  is  typically  achieved  by  creating  small  approximating  polygons 
 on  the  surface.  Such  techniques  are  mature  and  readily  available,  as  in  MATLAB.  The  iso-surface 
 rendering  offers  a  convenient  segue  to  3D  printing.  The  same  MATLAB  polygons  used  for  rendering  can 
 also be used to generate the 3D prints. This is the pathway we took. 

 As  an  interesting  aside,  the  polygonalized  isosurface  offers  some  attractive  rendering  options  per 
 se.  Figure  3b  was  texture  mapped  and  then  lit  with  a  light  source.  In  Fig.  4  the  surface  was  colored  based 
 on  its  curvature.  Negative  Gaussian  curvature  is  warm  colored  while  positive  curvature  is  cool.  The 
 visualization  shows  that  the  surface  is  mostly  saddle-like  and  also  that  it  minimizes  the  variation  of 
 curvature.  We  speculate  that  the  minimization  is  one  reason  the  object  feels  like  it  has  an  overall 
 consistency; one senses the harmony. 

 Figure 4:  TuringB stretched and rendered according to Gaussian curvature. 

 The Devil’s in the 3D Printing! 
 Although  MATLAB  ostensibly  gave  us  the  needed  polygons  for  rendering  as  well  as  for  3D  printing 
 “automatically”,  as  anyone  familiar  with  3D  printing  knows,  the  work  is  far  from  complete.  We  ran  the 
 polygon  model  through  the  modeling  software  Blender  to  check  for  back  facing  polys,  small  gaps, 
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 The Devil’s in the 3D Printing! 
 Although  MATLAB  ostensibly  gave  us  the  needed  polygons  for  rendering  as  well  as  for  3D  printing 
 “automatically”,  as  anyone  familiar  with  3D  printing  knows,  the  work  is  far  from  complete.  We  ran  the 
 polygon  model  through  the  modeling  software  Blender  to  check  for  back  facing  polys,  small  gaps, 

 non-manifold  and  folded  over  polys  etc.  It’s  an  exercise  that  all  3D  makerspace  acolytes  know  well. 
 Fortunately,  Blender  has  an  array  of  tools  to  handle  these  issues.  Additionally,  we  had  to  find  isolated 
 “islands”  and  eliminate  them  manually,  as  well  as  size  the  object  and  check  that  the  surface  could  be 
 properly  supported  with  struts  without  generating  too  many  of  them.  Those  very  hard  plastic  supports 
 have  to  be  removed  eventually,  and  sanded  clean.  It  can  be  a  tedious  job  given  the  many  intricacies  of  our 
 Turing  sculptures,  so  the  fewer  the  better.  We  discovered  the  size  of  the  prints  affects  not  just  the  print 
 time  (144  hours  for  a  one  foot  squared  object),  but  more  importantly,  the  likelihood  that  something  will 
 fail  and  the  print  won’t  complete.  3D  printers  still  have  substantial  room  to  improve  on  the  engineering 
 front. We managed to complete one 8” cubed piece in only 44 hours. 

 We  used  a  Lulzbot  TAZ  6  3D  printer.  Watching  the  sculptures  grow  slowly  from  their  base 
 mesmerized,  and  made  it  all  worthwhile.  Even  cutting  out  the  struts  with  a  Swiss  army  knife  while  only 
 partially  avoiding  being  nicked  by  their  sharp  ends  created  satisfaction  as  the  shapes  of  the  objects  began 
 to emerge.  The white plastic in Fig. 5a is the 3D print for TuringA; the terracotta part is the clay.. 

 Modeling Clay and Final Touches 
 We  had  two  guiding  principles  for  rounding  off  the  flat  sides  of  a  3D  print:  1)  The  clay  extension  should 
 maintain  tangency  to  the  curved  surfaces  of  the  3D  print,  and  2)  The  surfaces  should  stay  consistent  with 
 the aesthetic feel of the 3D print, mainly by minimizing the maximum curvature, and repeated eyeballing. 

 The  modeling  became  a  purely  artistic  effort.  It  used  an  air-dried  terracotta  clay,  which  had  all  the 
 tactile/visual  joys  of  pottery  or  any  other  sculpture  form.  Often  the  3D  print  would  strongly  suggest  the 
 shape,  other  times  the  clay  itself  would  reveal  interesting  directions.  Sometimes  the  clay  was  chiseled  off, 
 thrown into the wastebasket and restarted. Fig 5b shows TuringA after sanding, but before painting. 

 In  TuringB  we  chose  to  leave  three  sides  flat.  As  mentioned  above,  the  2D  RD  of  the  boundaries 
 was  also  interesting.  In  3D  the  flow  and  turbulence  of  the  object  suggested  a  liquid  metal.  After  some 
 experimentation  we  decided  that  a  silver  tone  seemed  to  belong.  The  light  metal  brought  out  the 
 highlights,  and  effectively  showed  off  the  internal  contours.  On  the  other  hand,  the  terracotta  of  TuringA 
 suggests a  n organic finish, perhaps a flesh-toned theme? Something yet to be determined. 

 Figure 5:  TuringA sculpture a) clay being added, b) while sanding. 
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 Conclusion 
 The  finished  TuringB  was  invited  to  be  part  of  a  show  at  the  Boulder  Canyon  Gallery,  Boulder,  CO.  It 
 was  exhibited  from  Feb.  4  until  Mar  28.  See  Fig.  6.  It  was  displayed  on  a  raised  plexiglas  pedestal  over  a 
 mirror  so  that  all  the  colored  2D  sides  could  be  viewed  along  with  the  3D  sculptured  sides.  Gallery 
 visitors  were  encouraged  to  handle  the  object,  and  explore  it  by  touch.  In  one  case,  a  blind  woman 
 examined  it  for  an  extended  period  as  Turing’s  thesis  was  explained  to  her.  As  she  returned  the  sculpture 
 she  said,  “It’s  like  holding  the  beginnings  of  life  in  my  hands.”  She  perfectly  captured  the  original 
 motivation  for  doing  RD  sculptures.  In  the  creation  process,  however,  more  pleasure  was  discovered  in 
 the intrinsic harmony, intricacy, and flow of the RD objects. 

 Figure 6:  TuringB sculpture on exhibit, mounted on plexiglass over a mirror. 
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