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Abstract

The object of this research is making sculpture that grows, that is, not merely changing in shape, but developing, one
small step at a time, from small to large, maintaining definite, reproducible shape all the while. Recent advances
in graph theory have shown that the simple quadrangulations of the sphere can be generated inductively by a set
of map operations more restricted in their context of application than sets previously known. I show that this new
pair of operations can be realized by local unfolding of quads that have been hinged along both diagonals. Current
development of these ideas is demonstrated in a small hinged-plate model that grows from 2 quads to 6 quads.

Introduction

I have been interested for some time in making sculptures that change shape[6]!. Figure 1 shows my
earlier work, Crumple, which expanded and contracted by unfolding and re-folding in synchrony with the
inflation and deflation of an inner membrane. Such shape changing is a far cry from biological growth: the
proportional increase in volume is small, and the sequence of shapes is uncontrolled and indefinite. My aim
in this research is to get closer, both mathematically and physically, to my goal of sculptures with controlled
growth via unfolding.

Figure 1: Crumple, 2013. A kinetic unfolding/folding sculpture: a) maquette, b) fabrication, c) exhibition.

Background

Complete Folding of Triangulations

Physicists are interested in the folding of surfaces as it relates to simplified models of quantum gravity. In
2005 Di Francesco and Guitter [4] showed that any 3-colorable? triangulation can be “folded on a single
equilateral triangle by sending each node of a given color onto one of the three vertices of this triangle.”

IReference 6 demonstrates how a completely foldable basket can be woven, but does not demonstrate a shape-by-shape sequence
of unfolding that can simulate growth.
2A graph is 3-colorable if each vertex can be assigned one of three colors such that no edge connects vertices of the same color.



This complete folding of a triangulated surface onto one of its triangles is a phantom folding differentiated
from the familiar physical folding of paper. For instance, the mathematical surface is allowed to pass through
itself, both when coinciding with itself in the completely folded state, and possibly also in performing the
folding moves needed to reach that state. If the triangles of the triangulation are not already of the same size
and shape, a topological transformation is permitted to make this the case. Also, it is necessary to slightly
relax isometry during folding (for example, elastic hinges might connect the triangles) to facilitate escape
from geometric obstructions that may arise in transitioning between partially-folded states.

a

Figure 2: In Figure 2a, the four equivalent conditions given by Di Francesco and Guitter for a planar
triangulation to be completely foldable are: its vertices have a proper 3-coloring (red, green,
blue); or its faces have a proper 2-coloring (white, gray); or its edges can be oriented such that
each triangle has a well-defined orientation (arrows); or it is Eulerian (every vertex has even
degree.) In Figure 2b, the dual is therefore planar, bipartite (2-vertex colorable,) and cubic (all
vertices are degree 3,) and can be equipped with a proper 3-coloring of its edges derived from the
systematic (but improper) edge coloring in the triangulation (pale red, green and blue in 2a.)

Complete Folding of Triangulations on the Sphere

We limit ourselves to closed surfaces of spherical topology. Restricting to spherical (a.k.a., planar) topology,
Di Francesco and Guitter found four equivalent characterizations of completely foldable planar triangulations
(see Figure 2a):

1. The triangulation is vertex 3-colorable;

2. its faces are 2-colorable;

3. its edges may be oriented so that the boundary of each triangle receives a well-defined (clockwise or
counterclockwise) orientation;

4. the triangulation is Eulerian (meaning there is an even number of edges—equivalently of triangles—
around each vertex.)

The last characterization yields the simplest statement: an Eulerian planar triangulation can be com-
pletely folded.

Physical Reality of the Completely Folded State on the Sphere

Modeling physical (self-avoiding) folding is notoriously difficult; we do not yet know very much about
general cases. A first possible obstruction to the physical reality of complete folding is that there might not
be any arrangement of physical triangles in a stack such that elastic hinges joining triangles adjacent in the



Figure 3: Example of an edge-colored BCP (bipartite cubic planar) graph with its vertices arranged in a
dispersable order: edges of like color do not cross each other. A theorem due to Overbay [7]
states that all such dispersable orders for regular graphs alternate in vertex color.

surface would be uncrossed. A recent advance in graph theory has, for the spherical case, dispensed with this
possible obstruction. The dual of an Eulerian planar triangulation (see Figure 2b) is a cubic (a.k.a., 3-regular)
planar graph; it is also bipartite, meaning its vertices can be properly 2-colored (since the faces of the primal
were 2-colorable.) The edges of the primal triangulation can take on an improper3 edge-coloring by taking
the color of the opposite vertex; the edges of the dual, on the other hand, pick up a proper coloring by taking
the color of the primal edge that they cross. So we now have an alternate mathematical model of our Eulerian
triangulation, namely a bipartite cubic planar (BCP) graph endowed with a proper 3-coloring of its edges. In
seeking a physical stacking order of the triangles, we are seeking a linear order for the vertices in the BCP
graph that allows each color class of edges to be drawn without crossings (Figure 3.) Such a linear order
of vertices is known as a dispersable order in the theory of book embeddings. Three recent papers present
proofs that all BCP graphs indeed have a dispersable order [5, 1, 8].

Differences from Origami

Complete folding of a triangulation has some aspects in common with origami, but it is worth underscoring
the differences. Origami begins with a unitary, topological disk that is geometrically flat, while the completely
foldable triangulations we are considering begin as a topological sphere in whatever geometric configuration
was convenient for connecting the individual triangles (that may well have been the completely folded
configuration.) No part of the triangulation, other than the individual facets, is guaranteed to be flat. Folded
paper enforces a strict constancy of distances measured in the folded plane of the origami paper (isometry,)
but elastic joins between triangles are a necessity for transitioning between geometric configurations (or even
for achieving the completely folded configuration, if the triangles have thickness.) Finally, unfolding is the
problem rather than folding: the completely folded state is a mathematical given, we wish to unfold it into
something bigger.

Foldable Quadrangulations

Quadrangulations

We will only deal with quadrangulations of the sphere that are simple, that is, they have no parallel edges;
equivalently they have no cycles—facial or non-facial—of length 2 or less. All quadrangulations on the sphere
are bipartite (2-vertex colorable), so they can have no odd cycles. Thus the smallest cycle we encounter in

3an edge coloring is proper if no two edges incident to the same vertex have the same color.



Figure 4: Quadrangulations on the sphere are vertex 2-colorable, so central triangulations of their faces
are vertex 3-colorable, and therefore completely foldable.

a simple quadrangulation on the sphere is of length 4. Being bipartite, a quadrangulation on the sphere has
a proper vertex 2-coloring. We assume one of the two possible bicolorings has already been fixed: thus we
are always dealing with a bicolored quadrangulation. A new vertex added to the center of each face can bear
a third color, and thus, after triangulating each quad face using this central vertex (Figure 4), we obtain a
planar triangulation equipped with a proper vertex 3-coloring. Therefore, when folding along both diagonals
is permitted, any simple quadrangulation of the sphere can be completely folded onto a single triangle.

Inductive Generation of Simple Quadrangulations of the Sphere

In 2005, Brinkmann et al. [3] showed that two context-restricted operations dubbed Py and P, can generate
all the simple quadrangulations of the sphere, starting from the square. We will show that these two operations
can be realized by local unfolding of triangulated quad faces, and therefore local unfolding is one possible
way to grow a shape whose surface is defined by a quadrangulation of the sphere. We will explore this
possibility with a small physical model.

Po -expansion
—->

P+ -expansion

—

Figure 5: Quads hinged along both diagonals can unfold in ways that realize the Py-expansion (top) and
the Pi-expansion (bottom.) In the initial position the undeployed quads lie in a piggy-back
configuration (i.e., flat against the already deployed surface, with their hinges in alignment with
the hinges underneath.) The realization of the Pi-expansion actually unfolds two quads and then
folds one away. The narrow triangles in the schematic diagrams represent any number (= 0) of
additional edges incident at that position.

Py and P; are shown in Figure 5 as schematic diagrams along with photographs of the unfoldings
that realize them. In the growth, or inductive, direction these operations are called Py-expansions or Pi-
expansions, in the inverse, or reductive, direction they are called Py-reductions or Pi-reductions. The
reduction operations are of interest because, when we wish to grow a particular quadrangulation starting
from, say, the square embedded on the sphere, the simplest way to discover a growth sequence is to find a



sequence of reduction operations that reduces the quadrangulation down to a square. In that way, we discover
a growth sequence from the square that is simply the corresponding expansion operations applied in the
reverse order.

The Py-reduction attacks any degree-2 vertex in the quadrangulation, eliminating one of its two neigh-
boring quads. In accordance with the proof provided in [3], we must use Py-reductions iteratively until no
degree-2 vertices are in the quadrangulation, before any resort is made to the P;-reduction. The P;-reduction
attacks any degree-3 vertex in the quadrangulation, eliminating one of its three neighboring quads—except
in some cases where the choice is reduced to two because eliminating one of quads would create a parallel
edge. That quad cannot be eliminated (yet) because doing so would not preserve the simple-ness of the
quadrangulation.

The unfolding that realizes the Pyp-expansion (top of Figure 5) is very simple and trouble-free. The
unfolding that realizes the P;-expansion (bottom of Figure 5) unfolds two quads and then eliminates one with
a Py-reduction. This work-around introduces complications in deploying this unfolding, extra thickness, and
possible mechanical interferences with neighboring P; folds.

Figure 6: Paper models of hinged triangles were made (L to R) by printing the pattern, creasing over a
sharp edge at the six tick-marks around the perimeter, trimming just inside the straight lines, then
putting the piece in the folded position before trimming just inside the circular arcs. After
looping elastic bands on the three wings (bands go on the dark triangles only, and stay there
permanently) fold the wings down in order of decreasing height, and finish by tucking the shortest
wing under the tallest.

Figure 7: A growth sequence for a quadrangulation can be worked out with a physical modeling system.
Build the quadrangulation, then label the faces by inserting numbered ‘black’ diagonals (i.e.,
diagonals connecting the black vertices of the bicolored quad.) Reduce the quadrangulation
observing the rules for Py- and Py-reductions. At each step in the reduction two quad edges and a
numbered black diagonal are eliminated. Record at each step the number of the diagonal
removed and whether the face reduction contracted the ‘black’ or the ‘white’ diagonal of the face.
This all the information needed to connect the hinged triangles and sequence their deployment.



Making the Models

In 1961, Architect Frederick Bassetti [2] invented a clever way to make hinges using elastic bands and folded
cardboard. The models in the photographs were made from 65-1b (176 g/m?2) cardstock. The template in
Figure 6 was printed at a scale that made the dimension indicated by the arrows equal to 54 mm. At that
scale, the little elastic bands made for the Rainbow Loom® work well for both hinge widths. Instructions for

folding, trimming, looping on the elastic bands, and assembly are found in the caption of Figure 6. I found
®

a growth sequence empirically for this model (Figure 7) using the Flexeez
sequence in action is seen in Figure 8.

construction toy. The growth

Figure 8: A growth sequence for the cube. Each growth stage is a simple quadrangulation of the sphere.

Summary

I have shown that the (P, P;) inductive generation of simple quadrangulations on the sphere can be realized
by the unfolding of hinged triangular plates. A number of theoretical and practical issues remain to solved:
possible mechanical interferences in the P;-unfolding, and whether an optimal growth sequence can avoid
such interferences; and practical issues of sequencing and actuating the unfolding in a sculpture that works
without assistance.
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