
Online Submission ID:

Gradient Domain Rendering

Category: Research

(1) Original drawing (2) Normal Map / 2D vector field (3) Shading parameter image c(u, v)

(4) Control Image 0: DI0(u, v) (5) Control Image 1: DI1(u, v) (6) Rendering

Figure 1: An example of the applications of 2D gradient domain rendering: re-interpretation of an artwork. (1) An artist’s
original drawing; (2) a 2D vector field (similar to normal map) created from the original drawing; (3) a shading parameter
image, c(u, v) is a gray-scale image that provides the combined effect of our shading, shadow and ambient occlusion computa-
tions; (4) and (5) Two control images provided by the artist; (6) The rendered image created by interpolating the two images
DI0(u, v) and DI0(u, v) using c(u, v) as (1− c(u, v))DI0(u, v) + c(u, v)DI1(u, v). The final image is more volumetric looking
than the original drawing with subtle effects of shadow and shading even though there is no true 3D shape.

Abstract
In this paper, we present an approach to allow artists to
create 3D-looking stylized depictions with complete visual
control. The core of our approach is to compute rendering
effects directly in gradient domain. This approach allows us
to use 2D vector fields that may not necessarily correspond
to any 3D shape, but that can still help to compute a 3D
appearance. To use our approach, an artist provides two
images and a corresponding 2D vector field. Final images
are created by interpolating between the two images using
shading information derived from the 2D vector field.

We show that 2D vector fields is sufficient to obtain qualita-
tively convincing visual effects. Rendering methods we have
developed include diffuse shading, ambient occlusion, soft &
hard shadows; and environment reflection using rectangular
images. Although these methods do not directly correspond
to underlying physical phenomena, they can provide results
that are visually similar to 3D realistic rendering. One of
the major advantages of our approach is the ability to treat

images as “mock-3D” shapes that can be visually acceptable
even when images do not correspond to real 3D shapes.

Another advantage of our approach is that the artists can in-
teractively control the illumination and rendering processes
to intuitively obtain desired visual results. Since 2D vector
fields, themselves, are images, so they can be represented
using any convenient 2D raster or vector image format like
normal maps. The fact that the 2D vector field is itself an
image makes it a very painter-friendly representation, sub-
ject to creation and manipulation by both algorithmic and
direct approaches.

1 Introduction and Motivation

Normal maps became instantly popular as soon as they are
introduced in 1998 [Cohen et al. 1998]. Although,they are
mainly used as texture maps to include details to polygonal

1



Online Submission ID:

meshes, they can directly be used as shape representations.
In fact, Johnston developed Lumo to model normal maps
as mock-3D shapes by diffusing 2D normals in a line draw-
ing [Johnston 2002]. Despite the potential power of normal
maps as shape representations, only a few groups investi-
gated the potential use of normal maps as mock-3D shapes
[Okabe et al. ; Bezerra et al. 2005; Shao et al. 2012]. Existing
methods focused on modeling these normal maps. To ren-
der these mock-3D shapes, only basic 3D rendering methods
are employed and the rendering effects such as shadow or
occlusion has never been included. This shortcoming is not
really unexpected. For standard 3D rendering, shadow or
occlusion computation requires a 3D shape description such
as a height field. However, it is not always possible to re-
construct a height field from the normal maps since a given
vector field may not necessarily be gradient of any height
field.

To unleash the true power of this representation for 2D
artists, there is a need for a new rendering framework that
is designed to work especially in gradient domain. In this
paper, we present such a gradient domain rendering frame-
work. Moreover, our framework is completely 2D: we ignore
z component of normal maps, instead, we use 2D lights and
rectangular environment maps. Most importantly, we ob-
tain realistic looking local shadows and ambient occlusion
directly from 2D vector fields.

This rendering framework based on 2D vector fields is still in
sync with existing normal map representation. For instance,
Lumo modeling requires to interpolate only x, y components
of the normal vectors, z component is ignored and computed
to maintain unit length [Johnston 2002]. In fact, z compo-
nent in any normal map does not add any additional infor-
mation. It is therefore possible to view any normal map as a
2D vector field. However the opposite is not always correct:
the length of a 2D vector can be longer than one even if each
component is smaller than one.

We see this flexibility as a user-interface advantage for
painters who may want to directly paint gradient domains
without considering any constraint. Since our rendering
framework still works with any 2D vector, possible mistakes
in vector length do not affect our results. In other words,
using a relatively flexible 2D vector fields provide efficiency
and ability for artists to directly create and manipulate art-
works and allow intuitive artistic control over visual results.

One advantage of using 2D vector fields and 2D lights is that
the shading parameters we have computed for every pixel
guarantee to provide a whole gamut of numbers between
0 and 1. Using this shading parameter c as interpolation
parameter for every pixel, we interpolate two artist-provided
control images, DI0 and DI1, to obtain final image. There
is really no requirement for creating DI0 and DI1. For any
given pixel (u, v) the color of DI0 is the color the artist
wants to see if there is no light reaches to that pixel, i.e.
c(u, v) = 0. Similarly, for any given pixel (u, v) the color
of DI1 is the color the artist wants to see if this point is
completely illuminated by the light, i.e. c(u, v) = 1. In
other words, this process guarantees to obtain colors exactly
like the artist wanted. An example is shown in Figure 2.

This approach can be used in a wide variety of 2D ap-
plications including digital painting, artistic filtering, re-
interpretation of paintings and illustrations (See Figure 1).
Artists can create artificial, but still believable, versions of
the original images as well as original art work that can be

DI0 DI1

Teapot Normal Map Rendering

Figure 2: This example demonstrates the results for DI0 and
DI0 images that are freely painted by an artist. The teapot
normal map is a Lumo model, used in permission.

dynamically manipulated with complete control over final
results or they can reinterpret existing artworks such as the
one shown in Figure 3.

1.1 Summary of Contributions

The existing computer graphics approaches for creating and
manipulating 2D artworks are mostly based on image pro-
cessing techniques. 3D graphics techniques, on the other
hand, can potentially be useful to develop efficient and sim-
ple to use methods for 2D artwork creation and manipula-
tion. 2D vector fields provides a natural bridge between 2D
and 3D computer graphics.

Our 2D vector field based framework can be broadly iden-
tified as a gradient domain approach. Solving problems in
gradient domain turned out to be very useful for a wide range
of 2D computer graphics applications such as tone mapping
[Fattal et al. 2002], image editing [Perez et al. 2003], mat-
ting [Sun et al. 2004], image stitching [Levin et al. 2006], and
even bas relief construction [Weyrich et al. 2007]. Existing
approaches mainly employ the gradient domain for process-
ing data. After the processing, they return back the original
domain usually by solving an optimization problem, such as
Poisson formulation [Fattal et al. 2002].

DI0 DI1 2D vector field Rendering

Figure 4: Rendering an impossible object with local shadows
and ambient occlusion. Particularly note the line drawing
effect coming from ambient occlusion. Control images and
2D vector field are painted by an artist in a digital painting
program.

2



Online Submission ID:

DI0(u, v) DI1(u, v) 2D vector field Rendering 1 Rendering 2

Figure 3: A example of re-rendering of a cubist painting: A diffusely relit re-interpretation of Picasso’s self-portrait from 1907.
Note that although this image is intentionally flattened and do not correspond any real shape, it is still possible to illuminate
it with our approach. 2D vector field and control images are all painted manually by an artist inspired by Picasso’s original
painting. The whole process of creating 2D vector field and control images did not take more than one hour using a digital
painting program.

In this paper, we make all our computations in gradient do-
main, but we never reconstruct 3D shapes. As a result our
computations are naturally efficient. However, the real ben-
efit of our approach is not computational efficiency. Since
we do not have to deal with 3D reconstruction, we can rep-
resent, model, render and composite with inconsistent and
impossible shapes. This property makes our approach artist
friendly. Our practical contributions can be summarized as
follows:

Simplified Gradient Domain Representation: We
have identified that a 2D vector field is sufficient to rep-
resent mock-3D shapes. Using this minimal information, we
can compute all 3D effects as if they are real 3D shapes. As
a result of this minimalist approach, our 2D vector fields are
backward compatible, i.e. they can be stored as images and
can be considered normal maps. As a consequence of this
result, any image processing method can be used to create
and manipulate 2D vector fields and any image can be des-
ignated as a 2D vector field. A formal definition of a 2D
vector field is made in section 2.
Parametric Shading with Control Images: We intro-
duce a shading approach, in which the final images are com-
puted by interpolating a set of artist-provided control im-
ages. This approach provide simple and intuitive control to
artist over visual results. For practical reasons, we use only
two control images, but artists can provide more control im-
ages for finer control of final results.
Shadow and Ambient Occlusion computation in Gra-
dient Domain: We have developed image processing meth-
ods to compute ambient occlusion, soft and hard shadows
directly from the 2D vector field. To compute an acceptable
shading we do not require precise, correct, or consistent 2D
vector fields. In addition, we have developed a generalized
version of Gooch shading [Gooch et al. 1998] that provides
predictable results for art direction. Basic rendering oper-
ations are formally discussed in section 3. Rectangular
Images for Mirror Reflection: We have developed an
alternative to sphere mapping to obtain mirror reflection.
Sphere mapping uses circular images for reflection mapping.
Photographing circular images are easy using gazing balls.
However it is not intuitive to paint circular images. We,
therefore, show that rectangular images can be used for mir-
ror reflection. Painting such rectangular images is simple

and intuitive for any painter.

While it is preferable for artists to directly paint 2D vector
fields with complete control, it is always possible to convert
real objects into 2D vector fields. The procedure for obtain-
ing a 2D vector field is a straightforward rendering process.
The x and y components of the 3D-normal vector of the vis-
ible point are simply converted to red and green colors in
the image.

A better option, particularly for illustrators, is to model 2D
vector fields directly with sketch based interface. To create
the 2D vector fields, we have implemented a simple model-
ing system based on boundary gradients interpolation sug-
gested by Johnston [Johnston 2002]. For interpolation, we
use a simple medial-axis based [Igarashi et al. 1999] sketch
based modeling tool which uses subdivision [Nasri et al.
2009]. Since modeling is not the focus of this paper, we
do not include details here. Our rendering approach does
not depend on our models. Normal maps created by Lumo
[Johnston 2002] or CrossShade [Shao et al. 2012] can be ren-
dered in our framework with shadow and reflection. Figure 6
shows examples of shadow and reflection effects on Lumo and
CrossShade models.

1.2 Motivation got Gradient Domain Representa-
tions

We are inspired by the recent results that suggest the gra-
dient domain representations can be natural for humans.
In particular, Cole et al. [2009] showed that people can
correctly estimate normal vectors from line drawings and,
Shado et al. [2012] developed CrossShade, a sketch based
interface to design complicated shapes as normal maps. The
normal maps generated by CrossShade can be depicted as if
they are 3D shapes. Based on these results, we observe that
(1) it is easy for humans to estimate the gradient domain,
and (2) it should be easy to create gradient domain repre-
sentations instead of full 3D representations. This suggests
that gradient domain representations could be easily manip-
ulated by artists and play an important role for designing
expressive and artistic images. We expect that in the near
future, we will start to see more examples of gradient domain

3



Online Submission ID:

DI0 DI1 Normal Map Rendering Detail

Figure 5: Shadow and reflection on a Lumo cat normal map model. Note in the detail image (1) the reflection of a hand-drawn
rectangular environment map on eyes and nose of the cat (2) local shadows around the convex shapes such as mouth and
cheeks, (3) line drawing effect obtained directly from ambient occlusion. Control images are painted by an artist starting from
one of the rendered images in the paper. We only changed the backgrounds of original images from white to yellow differentiate
outside regions (i.e. blue component is zero). The model is used in permission.

DI0 DI1 Normal Map Rendering

Figure 6: Shadow and subtle reflection on CrossShade WV normal map model. DI0 and DI1 images are painted by an artist
starting from the rendered images in the paper. We only changed the backgrounds of original images from white to yellow
differentiate outside regions (i.e. blue component is zero). The model is used in permission.

approaches.

Another motivation for gradient domain representations
comes mainly from inconsistencies that frequently exist in
images of shapes. Turning such images of objects into 3D-
realistic shapes is not always possible. The gradient domain
representations provide a flexible, efficient and practical so-
lution to this reconstruction problem. Images of objects,
particularly in paintings and illustrations, introduce signifi-
cant challenges for shape reconstruction. Even when images
in paintings look 3D-realistic, there can still be inconsisten-
cies. Most artists do not even try to draw truly 3D-realistic
images of shapes. It is, therefore, extremely hard to create a
3D-realistic shape and identify correct transformations (in-
cluding perspective) such that the boundaries of transformed
3D-realistic shapes exactly match the boundaries of painted
shapes. This registration problem has been an important
issue in visual perception since it is visually easier to detect
discrepancies in boundary regions.

Gradient domain mock-3D shapes provides solution to this
registration problem bypassing the whole process of estimat-
ing 3D transformations and shapes of objects. When we di-
rectly design corresponding shapes in 2D we effectively elim-
inate registration problems. In 2D it is easy to exactly match
the boundaries of the images and models. This approach di-
rectly leads in re-interpretations of paintings. The 2D vec-
tor fields created by these re-interpretations are imprecise
everywhere except at boundaries. Accuracy at boundaries
is sufficient to avoid registration errors. To obtain accurate
boundaries in 2D, many such methods exist [Li et al. 2004].

The simplicity of the gradient domain representation can
also be useful in a wide variety of applications. 3D recon-
struction of physical objects from a single photograph is one
such application. Although these objects are real and have a
well-defined shape in 3D, we still do not know actual trans-
formations that turn them into images. In addition, the
physical objects can have a wide variety of “shape imperfec-
tion”, which cannot easily be captured with 3D-models. In
other words, to replace any photographic image of a physical
object with a virtual object, registration always presents a
challenge. The problem can be even more difficult if the
physical objects are transparent and reflective. In those
cases, it can be impossible to estimate exact 3D shape from
a single photograph [Zongker et al. 1999]. A remarkable ex-
ample in this direction is Single-view relighting with normal
map painting [Okabe et al. ].

Another potential application of this approach is charac-
ter design. When artists design unusual and exaggerated
characters, 3D-realism is less important than how inter-
esting the character will look from a set of given view-
points. This design approach allows for the drawing of char-
acters that look appealing in 2D, but are impossible to be
converted into 3D-models without view-dependent models
[Rademacher 1999]. In such cases, it again makes sense to
bypass the 3D-modeling process such as Lumo [Johnston
2002; Bezerra et al. 2005]. Figure 1 is another example of
2D character that is rendered with our approach by interpo-
lating two images.

An additional application of this approach is rendering im-

4



Online Submission ID:

possible shapes (See Figure 4). This is particularly useful
since it is not possible to reconstruct corresponding height
fields for most impossible objects. For some of the impossible
shapes corresponding 3D shapes can be constructed [Elber
2011], but they cannot simply be obtained by automatic re-
construction. Purposely non-realistic images such as cubist
paintings, multi-perspective images, expressionist and ab-
stract paintings can also be turned into such mock-3D mod-
els that can be dynamically manipulated/re-interpreted/re-
rendered (See Figure 3).

2 Definition of Gradient Domain

2D vector fields are essentially orthographic projections of
shapes in z, i.e. (0, 0, 1) direction. Let a square M =
[0, 1]× [0, 1] denote a 2D vector field and let (u, v) ∈M de-
note two coordinates of the field. Let (x(u, v), y(u, v)) denote
the 2D vector field with x : M → [−1, 1],, y : M → [−1, 1],
and d : M → [0, 1].
We have identified that it is sufficient to provide two coordi-
nates of the normal vector, (x(u, v), y(u, v)), to obtain realis-
tic looking diffuse shading, ambient occlusion, local shadows,
shadows, mirror and glossy reflection with artistic control.
Artists can completely ignore the third dimension during
the creation of this vector field. It is even possible to allow
inconsistencies and imperfections.

2D vector fields are a natural conceptual follow-up of nor-
mal maps [Cohen et al. 1998]. If we consider x, y of normal
maps as a 2D vector field, any normal map can directly be
used as a 2D vector field. If the 3D-normal vector is a unit
vector, a 2D-vector field, (x, y), is sufficient to extract the
third dimension information since the value of z can always

be computed as a z(u, v) =
√

1− x2 − y2 (z can never be
negative). This assumption is correct only if normal vec-
tors are computed correctly as unit vectors from a given 3D
shape. Fortunately, even when the 2D vector field is impre-
cise it is still possible assume that z component is implicitly
provided. The main issue is that in 2D vector fields it is pos-
sible to have x2 + y2 > 1 since the 2D vector field data can
be imprecisely created by users. This is not really a prob-
lem since we can always assume that the 2D vector field is
uniformly scaled by a parameter w ∈ [0, 1]. For w values

smaller than 1/
√

2, the unit 3D normal vector always exist

n(u, v) = (wx,wy,
√

1− w2x2 − w2y2).

We want to point out that such a scaling in gradient do-
main corresponds to the flattening of the 3D shape and it
is a visual equivalent of flattening sculptures into bas reliefs
[Weyrich et al. 2007]. The rendering results, therefore, are
not expected to create visual problems and it is possible to
obtain visually acceptable results from imperfectly defined
2D vector fields using low w values. For high quality 2D
vector fields, it is always possible to use w = 1 . For others
a value smaller than w = 0.7 always works. In practice, our
default value for w is w = 0.5.

The advantage of 2D vector fields is that they are not re-
quired to correspond to any given shape. Even when there
is no imperfection in the data, there may still not exist any
height field whose gradient can produce the given 2D normal
vector field. To obtain a height field, that can minimize er-
rors, we have to solve Poisson Equation [Fattal et al. 2002].
This expensive computation is unnecessary for 2D vector
fields. It is still possible to estimate shadows in a given

light direction without explicitly obtaining a height field by
computing a line integral convolution [Cabral and Leedom
1993].

2.1 Gradient Domain Painting

One significant advantage of using normal maps is that we
can readily convert 2D vector fields into Low Dynamic Range
(LDR) images and save them using any common image for-
mat which can easily passed to GPU. We assume that a LDR
image on M is denoted by c(u, v) = (r(u, v), g(u, v), b(u, v))
where c : M → [0, 1]3. The conversion from (x, y) to (r, g) is
given as (r = 0.5(x+ 1), g = 0.5(y + 1)).

Our figures show examples of 2D vector fields that are en-
coded as images. Note that in these images blue values are
not zero although we do not really need blue component. In
our case, we use blue as a thickness parameter; i.e. b = 0
means object does not exist. The yellow backgrounds in our
2D vector field images are simply non-object regions. Inside
of the object, blue value can be anything other than zero.
As can be seen in the figures, the 2D vector field images
are more colorful than normal maps since we do not really
compute the blue color in tandem with red and green.

The main advantage of thinking of 2D vector fields as images
is that artists can create 2D vector fields directly using a 2D
painting software. Most importantly, the painters do not
need to think that they are working on a gradient domain
to paint these images. They imagine an object lit by 2-point
lighting illuminated from left with a directional (parallel) red
light and from above by a directional green light. Ignoring
shadows, they can paint the image based on how much red
and green light they want to see in every pixel. For instance,
a pixel color red=0.75 and green=0.3 means, the artist wants
75% of the light from the left and 30% of the light from the
top can illuminate that particular pixel.

These red-green paintings, although imperfect, provide good
estimations of 2D gradient domains. Since red and green
light vectors (1, 0) and (0, 1) are linearly independent from
each other, any 2D light can be given a linear combination of
the two as (xL, yL) = xL(1, 0)+yL(0, 1). Therefore, to com-
pute illumination coming from an arbitrary parallel light, we
simply compute the contribution from two linearly indepen-
dent components.

Providing direct control to artists is essential for the cre-
ation of unusual images since the artists can deliberately
introduce imperfections that lead to expressive and artistic
effects. The same imperfections also provided crosshatching
in cartoon shading under diffuse illumination as shown in
Figure 7. It is also easy to paint these 2D vector fields as
images. Creation of none of painted 2D vector fields shown
in this paper took more than one hour using a digital paint-
ing program by an experienced painter.

2.2 Parametric Shading with Control Images

One of the contribution of this paper is the introduction of
the concept of control images to obtain predictable visual
results. We assume that final diffuse image is simply com-
puted as a weighted average of control images using a Bezier
curve as

I(u, v) =

N∑
i=0

DIi(u, v)Bi(c(u, v)) (1)

5



Online Submission ID:

2D vector field Normal Cartoon

Figure 7: The effect of the cartoon shading. In this case, con-
trol images are simply black and white. Note that in this case
crosshatching effect comes directly from hand-drawn vector
field. We expect direct involvement of painters into the pro-
cess of creating normal maps can result in innovative solu-
tions.

where Bi(c(u, v)) denotes Bezier basis functions, DIi(u, v)
denotes Bezier control images, 0 ≤ c(u, v) ≤ 1 is a shading
parameter that is computed for one key light. One advan-
tage of this approach is that the color of the key light and
ambient illumination is embedded in the control images and
directly controlled by the painter. Because of convex hull
property of Bezier curves, the equation guarantees that the
result is also an image and it stays in the convex hull of con-
trol images. The advantage of Bezier basis functions over
others that provide convex hull property such as B-spline is
that Bezier formulation guarantees that the curve interpo-
lates the first and last control images. In other words, if our
shading computation can guarantee to obtain 0 and 1, the
painter defined colors are always obtained in final image. As
a conclusion, the obvious advantage of this formulation is
that it can help artists to plan exactly what kind of results
they expect to see.

If there are more than one light source, we simply use tensor
product Bezier functions. For such cases, the artist needs to
provide K(N + 1) images for K lights and N degree Bezier
functions. In practice, it is hard to create such a large num-
ber of images consistently especially when both K and N is
large. In practice, we noticed that only one key light and
N = 1 is sufficient for basic control of visual results. There-
fore, without loss of generality, all our examples in this paper
uses only two control images and only one key light. In this
case, the general Bezier curve equation simplifies into

I(u, v) = DI0(u, v)(1− c(u, v)) +DI1(u, v)c(u, v) (2)

where DI0(u, v) and DI1(u, v) denote two images that are
provided by the artist. The first image defines the color
when the key light does not illuminate any given point (u, v).
The second image DI1(u, v) defines the color when the key
light fully illuminates any given point. In all our examples
DI0 and DI1 are always painted by an artist. It is also
noted that that this formulation Gooch shading formulation
[Gooch et al. 1998]. The advantage of Bezier formulation can
be demonstrated by comparing this equation with classical
rendering formulation that is given in a ray formula as

I(u, v) = DI0(u, v) + V I(u, v)c(u, v) (3)

Note that we did not change DI0(u, v), since mathemati-
cally speaking it corresponds to the ambient term of classical

shading equation. However, the term correspond to diffuse
term of classical equation is a vector and will be computed as
V I(u, v) = DI1(u, v)−DI0(u, v) to obtain the same result.
Note that V I(u, v) may not necessarily be an image since
for some (u, v) values DI1 −DI0 can be negative. In prac-
tice this can happen very frequently for artist defined control
images (See control images in Figure 2). In other words, if
we do not use a formulation that does not guarantee convex
hull property, such as ray equation, we significantly restrict
the creativity of the artist.

In this formulation, it is also possible to turn diffuse shading
into cartoon shading by re-mapping c values. We provide
controls to create sharp change from one control image into
another, which can also results in cartoon shading (See Fig-
ure 7).

In conclusion, to create dynamic 2D artworks, artists have to
create at least three images: one 2D vector field, two control
images. In most figures we included artist created control
images to provide an idea about the process.

3 Gradient Domain Diffuse Shading

In this section, we show how 2D vector fields can be used
to compute diffuse shading, ambient occlusion and soft and
hard shadows using simple image operations. We provide
formulations for single parallel or point lights, but these for-
mulations can be extended to multiple and area lights.

Let cd(u, v), ca(u, v), cs(u, v) ∈ [0, 1] denote shading param-
eters that are calculated for every pixel using our diffuse
shading, ambient occlusion and shadow computations re-
spectively. In other words, these three parameters are B&W
images that describe particular effect for all pixels. For in-
stance, for a given (u, v), ca(u, v) = 0 means that that par-
ticular point is completely occluded and ca(u, v) = 1 means
that (u, v) is not occluded at all. These three parameters
can be used in Bezier formulation separately to obtain fi-
nal diffuse image. On the other hand, to have a consistent
visual results, we think that it is better to combine these pa-
rameters into one overall shading parameter c(u, v) ∈ [0, 1]
if we use only ne key light. To obtain an overall shading
parameter c(u, v) ∈ [0, 1] we need an operator that guaran-
tees c(u, v) is always between max(cd(u, v), ca(u, v), cs(u, v))
and min(cd(u, v), ca(u, v), cs(u, v)). Examples of such oper-
ators are multiplication c(u, v) = cdcacs and mean c(u, v) =
wdcd+waca+wscs where wd+wa+ws = 1 and wd, wa, ws ≥
0. In this paper, we use multiplication operator. The c(u, v)
value, then, is used to create the final diffuse rendered image
using Equation 2.

3.1 Shading Computation

As discussed in section 2.1 by a linear combination of two
lights we obtain the equation rxL + gyL = 0.5(x + 1)xL +
0.5(y+1)yL = 0.5(x.xL+y.yL)+0.5(xL+yL). In this equa-
tion, the first term 0.5(x.xL + y.yL) corresponds to the dot
product and the second term 0.5(xL + yL) is a constant –
a fraction of light intensity computed in L1 norm, which is
not exactly 0.5 but it is close to 0.5 since the light vector is
a unit vector. We, therefore, observed that the second term
can be further simplified to provide a better user control as

cd = 0.5(x.xL + y.yL) + 0.5 (4)

6



Online Submission ID:

One advantage of this particular equation; x = 0 and y = 0
always correspond to c = 0.5. Therefore, regardless of the
light direction, the value of cd in the position where x = 0
and y = 0 does not change. We use a scaling term that can
be considered as light intensity. This scaling term (combined
with truncation operator, which keeps the shading parame-
ter values between zero and one) also helps to obtain cartoon
shading.

For parallel light, the light vector (xL, yL) is the unit vec-
tor and it is the same for every point. Therefore, it is re-
ally straightforward to implement parallel lights. For point
lights, the 2D cursor position uc, vc will be the position of
the point light and the light direction is computed for ev-
ery point as (xL(u, v), yL(u, v)) = normalize(u−uc, v−vc),
where normalize() is a function that normalizes a given vec-
tor. One problem with such point light is that the light dis-
tribution around u = uc and v = vc is singular. Such a
singularity does not look visually appealing. Fortunately it
is possible to make this singularity acceptable by increasing
the intensity of the light around u = uc and v = vc with a
linear fall-off term. Note that since our computations are in
2D, the linear, instead of quadric, fall-off makes more sense
mathematically.

3.2 Ambient Occlusion

Ambient occlusion can simply be considered a function of
mean curvature [Griffin et al. 2011]. Since 2D vector fields
do not necessarily correspond to any real shape, a mean
curvature cannot be defined. Fortunately, it is still possible
to estimate the curvature around any point by just looking
at the 2D vector field. For a given δu and δv, let δSMi,j(u, v)
denote the vector that is given as the difference between the
two 2D vectors of given point (u, v) and its neighborhood
point (u+ iδu, v + jδv) as

δSMi,j(u, v) =

(
x(u+ iδu, v + jδv)− x(u, v)
y(u+ iδu, v + jδv)− y(u, v)

)
(5)

We can determine if this vector is directed to or from the
given point (u, v) by simply computing the dot product as

Ai,j(u, v) = δSMi,j(u, v) • (iδu, jδv). (6)

Positive Ai,j means the vector is directed to (u, v) and neg-
ative Ai,j means that it is directed from (u, v). We observe
that if all Ai,j(u, v)’s are positive, the point is a maximum.
If they are all negative, the point is a minimum. If some
are positive and some are negative, the point correspond to
a saddle point. Therefore it is easy to differentiate between
these points by simply computing the following summation
which roughly corresponds to mean curvature:

ca(u, v) = 0.5

N∑
i=−N

N∑
j=−N

wi,jAi,j(u, v)∑N
i=−N

∑N
j=−N wi,j

+ 0.5 (7)

The weight terms, wi,j ’s, are Gaussian coefficients that are

given as wi,j = e−(i2+j2)/γ2 . These coefficients are used to
make sure that distant neighbors do not impact the result
more than close neighbors and the summation in the de-
nominator is just a normalization term to make sure that
ca(u, v) will not be larger or smaller than the maximum and
minimum values of Ai,j . Despite the normalization term,
the result can still be larger than 1, or smaller than 0 since

Ai,j ’s can be smaller than −1 and larger than 1. We there-
fore apply the re-mapping operation given in Equation ??
to guarantee that the results fall in the range between 0 and
1.

δu ≈ 1.5 δu ≈ 2.5

Figure 8: The effect of δu = δv parameter in ambient oc-
clusion computation for N = 2. In this case, DI0(u, v) is a
black image and DI1(u, v) is a white image and background
is chosen white. The value of δc is set to 1 to display the full
range of computed ambient values.

The quality of ambient occlusion depends on the size of the
filter 2N + 1 and the terms δu and δv. Figure 8 shows the
effect of δu in the visual quality of ambient occlusion. As it
can be seen in the figure, small δu values creates flat images.
On the other hand, large δu values introduce noise for the
same number of samples.

Ambient occlusion is the most expensive rendering operation
since for every point we need to compute the effects of the
(2N + 1)2 neighboring points. Fortunately, for reasonable
quality results ambient occlusion can be computed in real-
time. For very high quality results ca(u, v), can be computed
only once and re-used during interactive sessions since it does
not depend on light position.

δs ≈ 0.5 δs ≈ 1.5

Figure 9: The effect of δs parameter in shadow computation
for N = 10 on the feet of the creature in Figure 1. In this
case, DI0(u, v) is a black image and DI1(u, v) is a white
image and the background is chosen white. The value of
δc = 1 to see the full range of ambient values.

3.3 Shadow Computation

One of our most unexpected results is that realistic looking
soft shadows can be computed by line integral convolution
over a 2D vector field. We again assume that the light is
a unit vector given as (xL, yL). We compute a set of line
integral convolutions in different lengths along the ray that
starts at (u, v) in the direction of (−xL,−yL) to identify
shadows for a given point (u, v).. Among these line integral
convolution values, the highest value provides the tallest ob-
stacle along the direction. The higher the number, the more

7



Online Submission ID:

likely this point would be in shadow. The line integral con-
volution for a given length nδ is given as:

Sn(u, v, δs) =

n∑
i=0

a(u, v, iδs) (8)

where a(u, v, nδs) = (x(u − iδsxL, v − iδsyL).xL +
y(−iδsxL, v − iδyL).yL). Note that Sn(u, v, δs) can be com-
puted recursively as

Sn(u, v, δs) = Sn−1(u, v, δs) + a(u, v, nδs) (9)

We want to clarify that the term (x.xL + y.yL) does not
really come from our diffuse shading computation. Let the
landscape be a piecewise linear surface that consists of pla-
nar regions, in every step we traverse only one planar region
that is represented by a unit normal vector whose (x, y)
coordinates are given by 2D vector field. Under this as-
sumption, if we compute the height difference along the ray
(u − tδsxL, v − tδsyL), for a unit step, we compute height
difference from the beginning of the step to the end of the
step as

h =
(x.xL + y.yL)√

1− x2 + y2
. (10)

In the equation of h, the denominator term
√

1− x2 + y2

creates singularities around shape boundaries, i.e. silhouette
edges. These singularities disturb computation since they
can dominate line integral convolutions. Since the nominator
term x.xL + y.yL is already large in boundary regions, we
remove the denominator term and end up with a completely
2D algorithm. Based on Sn(u, v, δs)’s, final cs is computed
as

cs = 0.5 max{S1, S2, . . . , SN−1, SN} − 0.5 (11)

We can again obtain soft and hard shadows from this formula
by using the re-mapping formula given in Equation ??. If
the light is a parallel light, vectors (xL, yL) are the same
for all points in 2D space, we can also use the same N and
δs for every point. On the other hand, if the light is point
light, some minor adjustments are necessary. For instance,
for points that are closer to 2D light, we do not expect to
see long shadows. Therefore, for larger distances to the point
light, we use higher values for N and δs.

Figure 9 shows the effect of δs over the visual quality of
shadows. As it can be seen in the image, small δs values
creates short shadows. Increasing δs makes shadows longer.
However, once the algorithm detects the highest point in the
given direction, shadows stop growing – as expected.

4 Specular Reflection

To combine specular and diffuse effects, we use transparency
coming from the two images DI0 and DI1. Let EI(u, v) de-
note “environment image’ and let αI(u, v) denote opacity of
combined diffuse image I. Note that normal maps do not
have a transparency, they only provide information about
how to render the final image. On the other hand both DI0
and DI1 can have transparent regions. The term αI of I re-
sults in combined transparencies of the two images DI0 and
DI1 during rendering. This term is used to make only cer-
tain parts of the image reflective (see Figures 10 and 11). We
also have a user-defined global parameter, αG, such as those
in GIMP or Photoshop, that can make the entire layer more
reflective. Then αC(u, v) = αGαI(u, v) denotes combined

transparency of the layer I(u, v). Using combined trans-
parency, αC , we compute the composited image as follow:

CI(u, v) = αCI + (1− αC)EI(R).

where R(x, y) = (u, v) represents reflection mapping.

For reflection mapping our goal is to provide a simple and
intuitive-to-use method for 2D artists. Our method is closely
related to sphere mapping, which is one of the most widely
used reflection methods and it is used in normal map repre-
sentations such as Lumo to obtain rendering effects [John-
ston 2002; Bezerra et al. 2005]. In sphere mapping a far
away spherical environment is stored as an image that de-
picts what a gazing ball (i.e. mirrored sphere) would reflect
if it were placed into the environment, using an orthographic
projection. Although sphere mapping is one of the simplest
methods for obtaining reflections, it can still be complicated
for some 2D artists who want to work only with rectangular
images. Moreover, in our case, an additional problem comes
from the fact that x2 + y2 can be larger than 1. Therefore,
we need a similar method that can use rectangular environ-
ments. Fortunately, there exists a gazing ball shape that can
reflect the whole environment into a square image. This par-
ticular gazing ball shape can be given by an implicit surface
max(x2, y2) + z2 = 1 [Akleman and Chen 1999]. We do not
provide the details here, but it can be shown that this shape,
when placed in an environment, reflects the whole environ-
ment in a square using orthographic projection along the z
direction. We can, then, create reflection simply by using
the following operation:

(u, v) = R(x, y) = (0.5x+ 0.5, 0.5y + 0.5) (12)

The only caveat in this approach is that every point on the
boundary of a square image reflects the same point in the
environment sphere. Therefore, every point on the bound-
ary of the square image has to be the same. In practice,
any seamlessly tile-able wallpaper image can be used as an
environment map. In our experience, any image works as an
environment map, probably due to humans’ high tolerance
for discontinuities in mirror images.

For realistic reflections, we move the center of the environ-
ment image in tandem with the light position. This creates
visually acceptable specular reflections. Therefore, we do not
think an additional specular highlight is necessary. Glossy
reflection is simply obtained using smoothed versions of envi-
ronment maps provided by mipmap. Glossy reflections com-
bined with other compositing operations such as multiplica-
tion can be used to obtain other effects such as environment
illumination. These artist painted rectangular environment
maps allows to create mirror reflections in re-interpretation
of existing painting as shown in Figure 11

5 Discussion and Conclusion

2D vector fields are particularly useful for 2D artists whose
primary focus is painting and illustration. These artists have
a good understanding of how shading works, but they may
not want to follow the conventional projection for obtaining
2D works. 2D vector fields allows them to create paintings
that can be illuminated exactly as they want. In essence, a
2D vector field provide the rules to combine three control im-
ages, namely DI0 and DI1 with a rectangular environment
image that is used for reflection. The combination operator

8



Online Submission ID:

DI0(u, v) DI1(u, v) 2D vector field Rendering

Figure 10: Reflections on the eyeball is obtained with αI term by using slight transparency on eyeball region. Since the overall
α is 1, the rest of image is diffuse. The 2D vector field, and a line drawing are obtained by a sketch based interface. Control
images are, then, painted by an artist using the line drawing as a guide.

DI0(u, v) DI1(u, v) 2D vector field Rendering 1 Rendering 2

Figure 11: Re-interpretation of Warhol’s Campbell Soup painting with art directed reflections. In his original painting, Warhol
painted mirror reflected black areas on top of the can and a very subtle and almost invisible diffuse reflection on body of the
can. Using a black and white striped image as an environment map and by painting slightly varying control images, an artist
was able to move both subtle diffuse reflection and mirror reflected black in tandem, which can help to better appreciate the
idea behind this painting. Creation of control images and 2D vector field did not take more than one hour.

is, in fact, a bilinear equation, in which environment im-
age appears twice. It is, therefore, reflection dominates the
equation when α is close to 1. Artists can further exploit
this process to obtain abstract images.

As mentioned earlier to create our 2D vector fields we used
a simple sketch based modeling tool, but sketching is not
the only option to model 2D vector fields. 2D polygons or
splines can be used to model 2D vector fields. Basically, the
gradient vectors to the curves provide constraints to com-
pute entire 2D vector field. The entire field can be com-
puted with Poisson equation resulting a method similar to
the diffusion curves [Orzan et al. 2008] or the values can be
interpolated resulting a method similar to mean value coor-
dinates [Floater 2003; Farbman et al. 2009]. These shapes
can also be animated in 2D. With 2D animation, it is easy
to provide topology changes that can provide unrealistic mo-
tion exactly as artists may look for. For instance, one shape
can divide into two, or a hole in the middle of a shape can
appear. With the development of such modeling and ani-
mation tools, we expect this approach has a potential to be
popular also among animators who wants to create small-
budget expressive animations with complete visual control.

For modeling and animating with 2D vector fields it is also
important to have layered 2D vector fields that can be ma-
nipulated individually. Having layers also provide “a quali-
tative depth information” which can improve shadow com-
putation. With this qualitative depth information, it can

be possible to identify the parts that are behind and not
supposed to cast shadow.

References

Akleman, E., and Chen, J. 1999. Generalized distance
functions. In Shape Modeling and Applications, 1999. Pro-
ceedings. Shape Modeling International ’99. International
Conference on, 72 –79.

Bezerra, H., Feijo, B., and Velho, L. 2005. An image-
based shading pipeline for 2d animation. In Computer
Graphics and Image Processing, 2005. SIBGRAPI 2005.
18th Brazilian Symposium on, 307–314.

Cabral, B., and Leedom, L. C. 1993. Imaging vector
fields using line integral convolution. In Proceedings of
the 20th annual conference on Computer graphics and in-
teractive techniques, SIGGRAPH ’93, 263–270.

Cohen, J., Olano, M., and Manocha, D. 1998.
Appearance-preserving simplification. In Proceedings of
the 25th annual conference on Computer graphics and in-
teractive techniques, SIGGRAPH ’98, 115–122.

Cole, F., Sanik, K., DeCarlo, D., Finkelstein, A.,
Funkhouser, T., Rusinkiewicz, S., and Singh, M.

9



Online Submission ID:

2009. How well do line drawings depict shape? In ACM
SIGGRAPH 2009 papers, SIGGRAPH ’09, 28:1–28:9.

Edwards, B. 1979. Drawing on the Right Side of the Brain.
Tarcher/Putnam.

Elber, G. 2011. Smi 2011: Full paper: Modeling (seem-
ingly) impossible models. Comput. Graph. 35, 3 (June),
632–638.

Farbman, Z., Hoffer, G., Lipman, Y., Cohen-Or, D.,
and Lischinski, D. 2009. Coordinates for instant image
cloning. ACM Trans. Graph. 28, 3, 67:1–67:9.

Fattal, R., Lischinski, D., and Werman, M. 2002.
Gradient domain high dynamic range compression. In
Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’02, 249–
256.

Floater, M. 2003. Mean value coordinates. Computer
Aided Geometric Design 20, 1, 19–27.

http://www.opengl.org/documentation/glsl/.

Gooch, A., Gooch, B., Shirley, P., and Cohen, E.
1998. A non-photorealistic lighting model for automatic
technical illustration. In Proceedings of the 25th annual
conference on Computer graphics and interactive tech-
niques, SIGGRAPH ’98, 447–452.

Griffin, W., Wang, Y., Berrios, D., and Olano, M.
2011. Gpu curvature estimation on deformable meshes.
In Symposium on Interactive 3D Graphics and Games,
I3D ’11, 159–166.

Igarashi, T., Matsuoka, S., and Tanaka, H. 1999. A
sketching interface for 3d freeform design. In Proceedings
of ACM SIGGRAPH’99, 409–416.

Johnston, S. F. 2002. Lumo: illumination for cel anima-
tion. In Proceedings of the 2nd international symposium
on Non-photorealistic animation and rendering, NPAR
’02, 45–52.

Levin, A., Zomet, A., Peleg, S., and Weiss, Y. 2006.
Seamless image stitching in the gradient domain. In Pro-
ceedings of ECCV, Springer-Verlag, vol. IV, 377–389.

Li, Y., Sun, J., Tang, C.-K., and Shum, H.-Y. 2004.
Lazy snapping. ACM Trans. Graph. 23, 3, 303–308.

Nasri, A., Karam, W. B., and Samavati, F. 2009.
Sketch-based subdivision models. In Proceedings of the
6th Eurographics Symposium on Sketch-Based Interfaces
and Modeling, SBIM ’09, 53–60.

Okabe, M., Zeng, G., Matsushita, Y., Igarashi, T.,
Quan, L., and Shum, H.-Y. Single-view relighting with
normal map painting.

Orzan, A., Bousseau, A., Winnemöller, H., Barla, P.,
Thollot, J., and Salesin, D. 2008. Diffusion curves:
a vector representation for smooth-shaded images. ACM
Trans. Graph. 27, 3, 92:1–92:8.

Perez, P., Gangnet, M., and Blake, A. 2003. Poisson
image editing. In ACM SIGGRAPH 2003 Papers, SIG-
GRAPH ’03, 313–318.

Petrović, L., Fujito, B., Williams, L., and Finkel-
stein, A. 2000. Shadows for cel animation. In Proceed-

ings of the 27th annual conference on Computer graphics
and interactive techniques, SIGGRAPH ’00, 511–516.

Rademacher, P. 1999. View-dependent geometry. In
Proceedings of the 26th annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’99, 439–
446.

Shao, C., Bousseau, A., Sheffer, A., and Singh, K.
2012. Crossshade: shading concept sketches using cross-
section curves. ACM Trans. Graph. 31, 4, 45:1–45:11.

Sun, J., Jia, J., Tang, C.-K., and Shum, H.-Y. 2004.
Poisson matting. ACM Trans. Graph. 23, 3, 315–321.

Weyrich, T., Deng, J., Barnes, C., Rusinkiewicz, S.,
and Finkelstein, A. 2007. Digital bas-relief from 3d
scenes. In ACM SIGGRAPH 2007 papers, SIGGRAPH
’07.

Wu, T.-P., Tang, C.-K., Brown, M. S., and Shum, H.-
Y. 2007. Shapepalettes: interactive normal transfer via
sketching. ACM Trans. Graph. 26, 3, 44.1–44.6.

Zongker, D. E., Werner, D. M., Curless, B., and
Salesin, D. H. 1999. Environment matting and com-
positing. In Proceedings of the 26th annual conference
on Computer graphics and interactive techniques, SIG-
GRAPH ’99, 205–214.

10


