
MultiCam: A System for Interactive Rendering of Abstract Digital Images

JEFFREYSMITH

Visualization Sciences Program
ERGUN AKLEMAN ∗

Visualization Sciences Program†

RICHARD DAVISON‡

Department of Architecture
JOHN KEYSER

Department of Computer Science

Texas A&M University

Abstract

In this paper, we present an artist’s tool,MultiCam, to design abstract paintings with a simple, inter-
active and intuitive rendering technique. This interactive rendering system is inspired by multiple view
ray-tracing techniques that is based on the cubist principle of multiple views and collage.

1 Introduction

This paper presentsMultiCamsystem which provides interactive feedback to artists to design abstract paint-
ings with a simple, interactive and intuitive rendering technique. In this system, many distinct views of a 3D
scene are combined into a final image. The viewing area is initially divided into a grid of randomly jittered
and overlapping viewports, each containing a unique view of the object. When combined, these views form
a composite view of the object which has been hardware-rendered from many cameras.

In our system, a wide variety of parameters including the number of cameras, their fields of views, their
positions in the 3D space, background colors, textures, warm and cool light intensities, and silhouette edge
thickness can be controlled by artists. The ability to control these parameters in real time enhances the
artists’ ability to create unique abstract images with a variety of styles including cubist and surrealist. Ex-
amples of cubist and surrealist-like MultiCam paintings that are designed by the authors are shown in Fig-
ures 1.A and 2.A. The resolution of the images created by our system are limited by the screen resolution.
Moreover, these images do not have the noise that is very common in actual paintings. They, therefore, can
serve as base paintings and can be used as a point of departure for an abstract painting. These base paintings
can be further improved and manipulated by artists either by using computer paint programs as shown in
Figures 1.B and 2.B or by hand as shown Figure 3.

∗Corresponding Author. Address: Visualization Laboratory, 216 Langford Center, College Station, Texas 77843-3137. email:
ergun@viz.tamu.edu. phone: +(979) 845-6599. fax: +(979) 845-4491.

†Visualization Sciences is a unique and cross-disciplinary graduate program that integrates science and art with technology in
both education and research. Primary faculty of the program are three artists and three computer scientists including Fred Parke,
Don House and Co-Author of this paper, Ergun Akleman.

‡Richard Davison is a painter who teaches painting and drawing. At Texas A&M, there is no separate fine/visual art depart-
ment,and most visual art courses are taught in the Department of Architecture.



(A) (B)

Figure 1: (A) An example of cubist-like painting that can be interactively created using our system. (B) is
obtained by applying a slight watercolor effect [10] to the interactively created original. MultiCam rendering
is created by Jeffrey Smith. The original 3D polygonal face is modelled by Stephen Parker.

(A) (B)

Figure 2: (A) An example of a surrealist-like painting that can be interactively created using our system.
(B) is obtained by applying a watercolor effect [10]. MultiCam rendering and the original model are done
by Jeffrey Smith.



(A) (B) (C)

Figure 3: (A) is reprint of an original MultiCam rendering that is worked over with (B) acrylic paint and
pastel chalk (C) charcoal and tinted with pastel chalks. In both images the space in the original rendering
was extended through line and color work. Both paintings are created by Richard Davison.

2 Inspirations and Contributions

MultiCam allows artists to design their own paintings by explorations in an abstract computer graphics
rendering system that is based on the cubist principles of multiple views and collage. This interactive
system is inspired by multiple view ray-tracing techniques introduced simultaneously by Glassner [6] and
Meadows-Akleman [13, 1]. These two techniques generalize ray-tracers by allowing to have a different
camera position for each pixel. Although it is easy to create interesting looking abstract paintings with these
methods, the major disadvantage is that they do not allow interactivity since they are based on ray-tracing.
The main difference between the two techniques is the user’s ability to control camera parameters. Glassner
uses free-form surfaces to control camera parameters; Meadows-Akleman usesRGB colors of the images.
The advantage of free-form surfaces is that they allow total mobility of the cameras. Using images limits
the camera parameters; for instance, cameras stay inside a bounding box. On the other hand, the advantage
of images is that they can allow discontinuities in camera parameters which is important in the creation of
fragmented (or faceted) images.

Our technique is an interactive and discrete version of Glassner’s method. We allow the artists to con-
trol camera parameters using free-form surfaces, but instead of a continuous camera space we use a discrete
space, i.e., we allow only a finite number of cameras which can be hardware-rendered using OpenGL. More-
over, with finite number of cameras we can obtain fragmented images as in Meadows-Akleman method. Un-
like Glassner and Meadows-Akleman, our method employs another cubism-based concept: collage. Using
our system, artists can manipulate how the images obtained from each camera are composed in the image
space as if they are collages.

3 Related Work

This paper draws influence from many areas of traditional and computer artwork. The non-representational
nature of the work is based on ideas and methods first explored by late-nineteenth and early-twentieth cen-
tury artists, as well as in early computer art. The work presented here is also related in its non-photorealistic



and non-objective nature to many studies in various computer graphics and digital image rendering methods.

In the nineteenth century, many renaissance conventions of picture making began to break down in art [16].
Cezanne is one of the first modern painters to break from the use of traditional perspective. A significant
departure from traditional realistic methods of painting came with the Cubist painters [3]. Their paintings
were characterized mainly by a new way of handling space: a volumetric structure in which depth was
flattened and objects and their surrounding environment were often simplified into many facets. Objects
were often depicted from many sides at once using multiple views. Cubists also introduced collage to
painting by adding non-painted objects (collage elements) to the surface of the canvas. Futurists developed
a style to incorporate the movement through time and space into multiple-view compositions [16]. One of
the best known futurist painting is Duchamp’s”Nude Descending a Staircase”,in which the movement is
represented by multiple views, each representing a successive motion of a figure walking down a staircase
[3]. In recent years, Hockney produced multiple view photographic collages that are composed of Polaroid
and 35mm photographic prints [11]. The fragmented composition and multiple perspectives of Hockney’s
collages are reminiscent of a Cubist style, and produced a painterly feel in the work, instead of photographic
realism.

In computer graphics, many early attempts at creating artwork with a computer were abstract, due to the
limited capability of early graphical displays [9]. However, with the advent of more sophisticated soft-
ware programs and graphical displays, the efforts of computer scientists turned more toward the creation
of photorealistic images. During the last decade, non-photorealism again become popular [8]. Haeberli in
1990 developed the first painterly rendering system [10]. Since then a large variety of painterly rendering
approaches such as [5, 12] are developed. Although there has been an increasing interest in more artistic
and non-photorealistic approaches, only a few truly abstract rendering approaches, have been developed to
create abstract paintings. In 1991, Sims created a system of artificial evolution to produce wildly abstract
digital images [18]. Snibbe and Levin, using a system of two-dimensional interactive dynamic abstraction,
performed additional experiments in abstract computer graphics [20].

Only a few number of applications have been developed that use cubist ideas, multiple perspectives and
simultaneous views. The digital artist Utterback in 2000 devised an interactive installation that explored the
idea of cubism as it applied to video sequences [21]. Glassner devised a free-form ”Cubist” camera system
[6] using a commercial 3D modeling and rendering package. The system uses raytracing to render images,
taking one unique viewpoint for each pixel in the final image. Viewing vectors are produced by sampling
points from the surfaces of two NURBS planes, one designated as the ”eye” plane and another as the ”lens”
plane. Meadows-Akleman developed an abstract rendering approach, known as camera painting [13, 1], that
used the color information from digital images to distort 3D scenes rendered with raytracing. The system
uses the r,g,b color components of digital images to replace the x,y,z coordinate information of the camera
position and orientation for each pixel in a raytraced image. The output produced is an abstraction of a
normal raytraced scene, controlled by an input image of the user’s choice. In this way, control over the
final image is based on the user’s production of the input image by means of painting or photography, or
selection of other imagery. Although interesting looking images can easily be created using Glassner and
Meadows-Akleman techniques, these methods do not allow interactivity.

4 Methodology and Implementation

Our interactive technique for creating abstract images is based on simple and widely available 3D modeling
and rendering methods and tools. The system is developed using C++ and OpenGL [15]. Its user interface
is built using the Fast Light Toolkit (FLTK). The current MultiCam system is running on IRIX and LINUX



operating systems, but, because of the flexibility of FLTK and OpenGL, the system is portable to other
operating systems.

The main application window of MultiCam consists of a drawing area, in which the image composition can
be viewed and updated, and a side option panel, which contains menu bars that display the many options for
creating what appears in the drawing area. The interface provides an organized set of controls that the artist
may use to execute procedures that create abstract images from any given 3D scene.

A 3D scene in the MultiCam system is a 3D space that contains a number of 3D polygonal objects, a
number of cameras from which the models can be viewed, and lights (Figure 4.A). The system does not
support shape modeling, i.e. the polygonal objects in the scene are created in a separate modeling software.
Except the shapes of polygonal objects, all other properties of the scene including the number of cameras,
their positions and orientations, the light colors, the material properties can be controlled by the users. The
polygonal objects are imported into the MultiCam system using Wavefront OBJ file format. Their shapes
cannot be changed, but, the objects can be rotated, translated and scaled through mouse controls using code
derived from the ”Arcball” interface developed by Paul Rademacher.

4.1 Camera Controls

The camera system of MultiCam is based on the Glassner model [6], which is composed of two camera
surfaces, known as an ”eye” surface and an ”aim” surface. The eye surface contains the points at which the
cameras are placed, while the aim surface contains the points at which the cameras are aimed.

(A) (B) (C)

Figure 4: (A) MultiCam scene description and examples of multiple-camera ”eye” and ”aim” surface shapes:
(B) planar-planar and (C) cylindrical-cylindrical.

The camera eye and aim shapes are two free-form surfaces that is defined by a set of control cameras that
are given by two (eye and aim) points. Currently, we use sixteen control cameras and uniform bi-cubic
splines[2] and Bezier surfaces[17] are available options for free-form surface creation. These free-form
surfaces can either be planar or cylindrical (see Figure 4 (B) and C). We allow the camera system to contain
differently-shaped eye and aim surfaces.(i.e. an eye sphere and an aim plane). The users can freely move
control cameras in the 3D object space, through mouse and keyboard interaction. Options are available
allowing the users to specify in which direction to translate and about which axis to rotate.

The positions and orientations actual cameras are determined by uniformly samplingu andv parameters of
free-form surfaces. The sampling frequency is determined by the number of cameras inu andv directions.
The number of cameras can be changed by the users anytime through sliders. The users can also modify



these individual camera positions and orientations by ”jittering”. The camera jitter option disrupts the reg-
ular placement of the cameras by adding two random vectors to be added to the placement of eye and aim
positions of each camera.

4.2 Collage Control

The system uses the GL scissor test to create a collage of images that are rendered by each camera. GL
scissor test is an OpenGL technique that allows the display window to be divided into many viewports [15].
By default, this 2D collage gives a simple grid in which each grid square contains a unique view of the scene
seen by one of the cameras. Each window shows updated views of the object as it is rotated or translated
interactively. The users can change the sizes of images, jitter the positions and addz information to add the
senses of movement and rhythm the the resulting collage image.

MultiCam allows the users to implicitly control the placement of the images in the collage. In MultiCam,
even these collage images are considered to form a free-form surface that can be folded over itself in two-
dimensions. 2D placement of collage images can be controlled by the users by moving the 2D positions of
sixteen control points. Uniform bi-cubic splines[2] and Bezier surfaces[17] are again available options for
free-form surface creation.

4.3 Lighting and Rendering Controls

An artist’s control over the composition of an image depends largely on the choice of a color scheme and
lighting parameters. To light the objects in the scene and enhance the artist’s choice of color, a warm-cool
lighting system is included, based on the system developed for technical illustration and adapted to use
OpenGL functions by Gooch, Gooch, Shirley, and Cohen [8]. The users have the choice of using one or two
lights, one designated as warm and the other as cool, and are also able to interactively choose their color.
To enable a modulation effect similar to the technique used by Cezanne and other cubist painters, warm and
cool light colors and intensities are allowed to mix across the surface of the object, adding a rich color effect
to the object through a smooth color transition. This effect along with the fragmented multiple-camera view
creates a modulation effect, in which colors pass from one hue to another through mixing in gradual steps.

To incorporate the use of line into the MultiCam drawing system, a ”silhouette” edge drawing option is
included, which provides an outline. The use of silhouette outline are meant to emulate the use of line by
Cezanne and the cubist painters. The silhouette edge utility allows the user to experiment with line weight
by specifying the color and thickness of the object’s outline. To create silhouette edge the models are drawn
twice in OpenGL, once in wire-frame mode without lighting calculations to create an outline, and another
time with normal lighting calculations, drawn over the wire-frame image.

Surface properties, such as surface color, shininess, and texture, as well as the color of the background are
also important to an object’s appearance. In MultiCam, the users can select a static background color. The
surface properties can either be imported with obj file or can be manipulated by the users in MultiCam
interface. The system also allows texture mapping, resulting in an increased level of detail. A texture
mapped example is shown in Figure 5.A.

4.4 Saving Still Images and Creating Animations

Saving single images, a function to write TIFF (Tagged Image File Format, copyright Adobe Systems,
Inc.) files has been included. The images in Figure 5 shows two cubist caricatures of Humprey Bogart



that is created and saved using MultiCam. In addition to saving individual still images, abstract animations
can also be created and saved as a set of image frames. Abstract animations are created by interpolating
key-framed the scene parameters such as shape transformations, eye and aim positions of control cameras,
material and light properties along with key framed collage controls.

(A) (B) (C)

Figure 5: (A) A textured example of interactively created MultiCam rendering created by Jeffrey Smith. The
textured 3D model is created by Ergun Akleman using a topological modeler. (B) and (C) are two cubist
caricatures of Humprey Bogart. MultiCam renderings are created by Ergun Akleman. The original model
is created by Han Lei, a student in Visualization program, as a class project.

5 Conclusion and Future Work

In this research, a tool has been developed that allows artists to experiment with multi-perspective viewing
parameters in real-time through mouse-driven control of the size and shape of camera surfaces. Through
an efficient and user-friendly interface, artists can adjust color and lighting information, material properties,
and drawing techniques in addition to being able to control the multi-perspective camera properties of a
3D scene. Additionally, the real-time nature of the MultiCam viewing mechanism allows artistic computer
image manipulation to take on an interesting mixture of two- and 3D forms in the same interface, providing
a unique system of creating computer-generated art.

Future research endeavors in the area of MultiCam rendering for artistic purposes can include a number
of options for improving the functionality and increasing the flexibility of the MultiCam software. Al-
ternatively, the camera surface information can be exported to separate, more sophisticated photo-realistic
rendering software.

6 Acknowledments

We are thankful Stephen Parker and Han Lei for allowing us to use their 3D facial models. The silhouette
edge utility is based on code developed by Vinod Srinivasan. The function to write TIFF files are adapted
from the TIFF library specification in code written by Michael Mistrot.



References

[1] E. Akleman and S. Meadows, ”Camera Painting”,
www-viz.tamu.edu/faculty/ergun/research/artisticdepiction/

[2] R.H. Bartels, J.C. Beatty, and B.A. Barsky,An Introduction To Splines for Use in Computer Graphics & Geo-
metric Modeling.Los Altos, Calif.: Morgan Kaufmann Publishers, Inc., 1987.

[3] D. Cooper,The Cubist Epoch.New York: Phaidon Publishers, Inc., 1971.

[4] P. Cooper,Interpreting Cezanne.London: Tate Publishing, 1996.

[5] C. Curtis, S. Anderson, K. Fleischer, and D. Salesin. ”Computer-Generated Watercolor”,Proc. SIGGRAPH ’97,
pp. 421-430, Aug., 1997.

[6] A. Glassner, ”Cubism and Cameras: Free-form Optics for Computer Graphics”,Microsoft Technical Report,
MSR-TR-2000-05, http://www.glassner.com/andrew/cg/research/cubism/cubism.htm

[7] A. Gooch, B. Gooch, P. Shirley, and E. Cohen, ”A Non-Photorealistic Lighting Model for Automatic Technical
Illustration”, Proc. SIGGRAPH ’98, pp. 447-452, Aug., 1998.

[8] B. Gooch and A. Gooch,Non-Photorealistic Rendering.Natick, Mass.: A.K. Peters, Ltd., 2001.

[9] C. Goodman,Digital Visions Computers and Art.New York: Harry N. Abrams, Inc., 1988.

[10] P. Haeberli, ”Paint by Numbers: Abstract Image Representations”,Proc. SIGGRAPH ’90, pp. 207-214, Aug.,
1990.

[11] C. Knight, ”Composite Views: Themes and Motifs in Hockney’s Art.”David Hockney: A Retrospective.Orga-
nizers, M. Tuchman and S. Barron. New York: Harry N. Abrams, Inc., 1988.

[12] B. Meier, ”Painterly Rendering for Animation”,Proc. SIGGRAPH ’96, pp. 477-484, Aug., 1996.

[13] S. Meadows and E. Akleman, ”Abstract Digital Paintings Created with Painting Camera Technique”,Proc.
D’ART 2000/Information Visualization 2000, London, United Kingdom, July, 2000.

[14] M. Mohr, Personal website, www.emohr.com/index.shtml.

[15] OpenGL Architecture Review Board, M. Woo, J. Neider, T. Davis, D. Shreiner,OpenGL Programming Guide:
The Official Guide to Learning OpenGL, Version 1.2.Reading, Mass.: Addison-Wesley, 1999.

[16] H. Read,A Concise History of Modern Painting.London: Thames and Hudson, 1974.

[17] D. Rogers and J.A. Adams,Mathematical Elements for Computer Graphics.New York: McGraw-Hill, Inc.,
1976.

[18] K. Sims, ”Artificial Evolution for Computer Graphics”,Proc. SIGGRAPH ’91, pp. 319-328, July, 1991.

[19] S. Snibbe, Personal website, www.snibbe.com/scott/index.html.

[20] S. Snibbe and G. Levin, ”Interactive Dynamic Abstraction”,Proc. NPAR 2000, pp. 21-29, June, 2000.

[21] C. Utterback. ”Liquid Time: An Exploration of Video Cubism”,SIGGRAPH 2000 Conference Abstracts and
Applications, p. 223, July, 2000.


