Implicit painting of CSG solids
E. Akleman

Abstract

Implicit painting is a non-photorealistic rendering method
for painting implicitly represented CSG solids. The method
is based on the fact that when a difference equation is ap-
plied to a set of particles these particles will move in 3D
space. We view the motion of the particles as the motion of
the hands of several painters and the trajectories of the par-
ticles as long unbroken brush strokes, over the boundaries of
solids obtained by set-operations. These boundary surfaces
are used as if they are the canvases of painters. The differ-
ence equations provide the trajectories of the brushes, brush
and paint types. We consider this painting as a creative or
‘artistic’ process in which the resulting artwork can be an
image, a stereo image or even an animation that shows the
painting process.

Introduction

There is much recent interest in both computer graphics research
community and the animation industry in the development of new
techniques for creating artistic [4] or natural looking images [3].
We believe the process of oil painting gives us a good paradigm to
obtain both artistic or natural worn and torn images. The richness
of painted images comes from the application of many layers of
different paints over the canvas by the painter. Our goal is to obtain
the same kind of richness that comes from the hard work of the
artist by creating continuous motion of brushes over the boundaries
of solids obtained by set-operations.

Meier obtained a painting effect by attaching brush images to
static particles [4]. In this work, we attach objects, instead of im-
ages, to brushes (particles) relying on the continuous motion of

brushes to produce the desired look. Although, this painting idea is
based on oil painting, implicit paintings are different from oil paints
in two ways.

e When painters do not paint a portion of canvas we can still
see the canvas. However, in implicit surface paint, if a painter
does not paint a certain portion of the surface, it leaves a hole
which gives an interesting effect.

e Implicit paints can be considered as sculptures in addition to
paintings. Therefore, these sculptures can be visualized in 3D
by using stereo views. Such stereo views reveals the potential
of implicit painting as a new painting paradigm. These paint-
ings can also be transformed into stereo photographic prints.

In this paper, we focus on painting CSG solids since they provide
simple algorithms for painting. The paper is organized as follows:
In the next section, we will derive the set of difference equations
which we use for implicit painting starting from Witkin and Heck-
bert equations. In the same section, we also explain speed, trajec-
tory and paint controls. The following section introduces a simple
algorithm for CSG solids and scenes. We give examples of of implicit
painting of CSG solids in the last section.

Implicit painting

In oil painting, there is no objective goal. Painters do not stop
painting untill they are satisfied; they use different brushes, different
paints. These decisions of painters are completely subjective. Some
painters even leave most of the canvas unpainted by stopping after
a few brush strokes. On the other hand, some painters continuously
applies new layers by covering canvas with several layers of paints.

Our goal is to paint the boundaries of set-theoretic solids ex-
actly like oil painters paint their canvases. Painter will control a
set of virtual brushes that continuously move in 3D space unless
painters want them to stop. Characteristics of implicit representa-
tions are extremely suitable for development of difference equations
for painting. We must first introduce the implicit solids V(f), and
boundaries of these solids (implicit surfaces) S(f), by relating them

to their implicit equations as

V(f)={rpr | flp)<0 },

and
S(fy={p| flp)=0 }

In other words, the surface S(f) consists of all points p = (z,y, 2)
that are zeros of the function F' from R to .

In order to move the brushes on the surface of S(f), we need
a set of difference equations. These implicit painting equations will
be in the form of

p(n+1) =p(n) + w(f, X),

where p(n 4+ 1) and p(n) are the 3D positions of the brush at the
times n+ 1 and n respectively. The velocity of the brush is given by
the vector v (f, X), where X denotes all the variables that effects
the direction and length of the velocity vector. The painter will
control the trajectory of the brush by changing X.

Like an actual brush, these wirtual brushes, when they move,
have to leave some paint behind them. This paint will be created
by attaching paint objects, such as cylinders or quadrilaterals, to
each moving brush. The attributes of the paint objects, such as
sizes and material properties, will be functions of position and time.
Painters will also be able to control these attributes. By changing
these attributes, it is possible to obtain several paint effects. For
instance, depending on the radius and connectivity, cylinders create
effects such as wire, toothpaste, rusted wire or tree branches; on the
other hand, quadrilaterals can create the appearance of ribbon or
paper; and several cylinders together create classical oil paint effect.

In order to compute the orientations of the paints, it is necessary
to have a coordinate system that is attached to each brush. The
direction of velocity vector

_ plnt 1)~ p(n)
p(n+ 1)~ p(n)]

gives us the direction of one of the axes of this coordinate system.
The gradient vector, V f, is enough to get the other axis directions:

- Vf X Ny
‘fo TLO’

n

3

No = N1 X Ny.

Examples of attachment of different paint objects to the brushes are
shown in Figure 1.

Figure 1. Examples of attachment of paint objects to the brushes.

Implicit surface painting equations

There are two characteristics of implicit representations that make
them extremely suitable for development of difference equations for
painting.

e Vf is a vector that gives a normal vector to the surfaces S(f).
We can use this normal vector to move in 3D space to reach
S(f). This idea is used by Bloomenthal [2] in order to sample
implicit surface, S(f).

e Any vector perpendicular to V f will be on the surface of S(f).
By using this vector, it is possible to make the particles float
over surfaces. Witkin and Heckbert [7] used this fact in order
to achieve a good sampling of the surface. By including local
repulsion between the floating particles; and by letting parti-
cles be born and die, they were able to spread the particles
evenly over the surface.

In order to develop an implicit painting equations which will
give control to the painter, we revised Witkin and Heckbert’s dif-
ferential equations. Since the motion of one brush does not have
to be dependent on the positions and motions of other brushes, the
new equations do not have to have all the terms of Witkin and

4

Heckbert’s general equations. We exclude the local repulsion term
from these equations. This exclusion provides two advantages for
painting. First, computation of brush positions greatly simplifies.
Second, with local repulsion the particles will stop moving when a
good sampling of the surface has been achieved; that is not desirable
for painting, in which the brushes have to continue to move unless
painters want them to stop.

Let p denote the position of a particle, let V f be the derivative of
F with respect to a vector and let r denote the desired value of p, By
using Witkin and Heckbert’s approach we obtain following equation
which is simpler than Witkin and Heckbert’s differential equations
since we do not have to change shape parameters, derivative of the
shape parameters according to time.

p=—arvi(f,b) + axva(f, 1),

where v
U1(f) = W,
vo(f,r)=1r— vvff..vaVf

The two terms of this equation are fundamentally different. The
first term, —ajvi(f), is the feedback term to make the particle at-
tract and stay on the surface S(f). The second term, asw(f,),
makes the particle move on the surface since it is the projection of
desired vector 7 on to the surface S(f).

By using an Euler approximation, the desired difference equa-
tion p(n+ 1) = p(n) + w(f, X) can be obtained with vy(f,b,7) =
d(—arv (f)+agna(f, 7)), where § is the speed constant. Since aq, as
also control the speed, we can eliminate ¢ and choose

vo(f,b,7) = —arui(f) + aana(f, 7).

In this equation vy is the function of f,a;,as and r only . Thus,
X = {ay,as,r}, where a; and ay control the speed, and r controls
trajectory.

Speed control

The value of a; determines the speed at which particles approach
the surface. The value of ay itself is not critical. However, the

relationship between a; and as is important. For a better sampling
of the surface the value of a; should be greater than the value of as.
If not, the particles move in a distant orbit around the surface, as
illustrated in Figure 2. In implicit painting, better sampling is not
essential. Sometimes we can choose a, >> a; to make the particles
move in a distant orbit around the surface for more volumetric-
looking results.

b smal | b large
s large s smal |

nw o
L Qo

rge
rge

Figure 2. The effect of the relationship between a; and as.

Trajectory control

If the control vector r is constant, the trajectory equation will even-
tually move the particle to the points where |V f x r| = 0. We call
these points attraction points. When a particle reaches any attrac-
tion point, it will stop moving, as shown in Figure 3.

Figure 3. The particles moving towards an attraction point.

It is possible to make brushes perpetually move on the surface
by simply replacing r with Vf x r. As a result, the differential

equation becomes:

e = —arv(f) +asw(f, Vf xr).

Under the influence of this differential equation the particles will
perpetually rotate around attraction points. Attraction of the par-
ticles to a sphere, torus and double-torus is shown in Figure 4. In
this case, if r is not changed, the brushes will perpetually draw the
same curve as shown in in Figure 5.

’UQ(f, Vf X T’).

Figure 5. Perpetually rotating particles.

The quality of sampling can easily be improved by using differ-
ent r vectors for each brush. Since brushes rotate around different
attraction points, they cover the surface evenly as shown in Fig-
ure 6. Note that, in this example, a different equation is applied to
each particle. These equations are randomly generated by creating
a random vector r for each brush £k =0,1,..., N — 1.

7

Figure 6. Effect of the use of a different 7, vector for each particle:
trajectories of 200 particles for a short period of time. Note the
uniformity of the distribution of the trajectories.

The quality of sampling can also be improved by changing the
control vector r, with time. The simplest change is the random
walk by using the function

r(n+1) = (1) + € Mrna
k |7e(n) + ¢ Nepal’

where n,,,4 is any randomly generated unit vector and c is a positive
real-numbered coefficient. The value of ¢ determines how quickly a
particle changes direction in its random walk. Examples of trajec-
tories of implicit painting equations for different ¢ values are shown
in Figure 7. The lower values of ¢ do not change the positions of
attraction points, therefore the brushes will rotate almost in a cycle.
While ¢ is increasing the particles will start to cover the surface more
uniformly. However, an interesting phenomenon occurs for higher
values of ¢. In this case, the motion becomes completely random.
Because of this highly random motion, brushes stay in an area for
longer time and leave most parts of the surface uncovered. We con-
sider each of these as a different painting effect. Low ¢ values create
a look of careful painting. On the other hand, higher ¢ value gives
an impression of corroded material. Figure 7 shows how c affects the
uniformity of trajectory distribution and related painting effects.

Increasing ¢ valuess ——————————

Figure 7. Trajectory of only one particle over a torus for changing
c values.

Paint control

Additional paint effects can be achieved by changing the sizes, the
material properties and the types of the primitive objects with time.
The sizes of the primitive objects can be changed simply by an ad-
ditional equation. Material properties require more involved equa-
tions. There is a need for four types of material property. These are
vectors that include a diffuse colour and the shader coefficients such
as those for specular reflection kg, diffuse reflection k4, ambient k,
and transmission k;. The four properties are:

1. Material property of simple solids. The scenes are constructed
with set-operations over simple solids. Each one of these sim-
ple solids will have its own material property. Let S(f;) denote
a simple solid j in a scene with J solids where j =0,...,J—1.
Then mg(y;) will denote the material property of the solid j,
defined by S(f;). These material properties should be defined
by the user and must be included in the scene description.

2. Original material property of paints. Each paint object [at-
tached to brush £ will have a material property denoted by
my ;. These properties are arbitrarily chosen when the brushes
are first created. They will be updated according to the posi-
tion of the brush in space. In order to make this update, we
describe material property for every point in space.

3. Material property of a given point. Since a brush can be any-
where in the space, for every point p in the space we need
to provide a material property. Material property of a point,
m,, will be computed as a function of material properties of
simple solids.

4. Material property of the paint in a given point. This is the
material property of paint [when its brush k£ is in the position
p. It will be denoted by my;,. A linear interpolation will be
used to compute its value

My lp = (1= Ky o)y + ¢ kamy,

where k;j; is the transmission coefficient of the paint object
[of particle k. The colour of the paints is computed by using
my1p. The gradient vector at the point py is used as a normal
vector in the computation of colour.

Although the original material properties of the paints are different,
when they pass thorough the neighbourhood of one point, they all
share some amount of the material property of that point. The
layers of paints which share the some amount of the same material
property create a mixture that gives approximately the right colour
around that given point.

Painting algorithm for CSG solids

It is possible to use extremely simple difference equations and algo-
rithms if the scenes to be painted are constructed by set-operations.
One of the important properties of implicit solids is that they can
easily be constructed by functional operations, as shown by Rvachev
and Ricci [6, 5]. Let two solid shapes be given by the inequalities

V(fi) =A{plfr <0},
V(f2) =A{plf2 < 0}.

Then, by using maximum and minimum operators, we can obtain
set-operations:

V(fi) N V(fa) = V(max(fi, f2)),
V(i) UV(fe) = V(min(fi, f2)),
V(fi) =V(f2) = V(min(fi,—f))

10

These maximum and minimum operators directly provide algorithms
for painting solids that are obtained by set-operations. For ex-
ample, suppose a solid is constructed by an intersection operation
V(maz(fi, f2)). Then the algorithm for painting will be as follows:

e If fi > f5 then apply the implicit painting equations for S(f)
and choose ms(y,) as the material property of point p,

e Otherwise, apply the implicit painting equations for S(f5) and
choose ms(y,) as the material property of point p.

For union and set-difference, similar algorithms are used. Com-
plicated scenes can be created by using very simple solids such as
half-spaces, ellipsoids, cones, cylinders, and toroids. Since all of
these solids can be described low-degree equations, the related dif-
ference equations for painting also become extremely simple. Exam-
ples of some simple painted surfaces generated using the algorithm
described in the paper are shown in Figure 8.

Figure 8. Some simple objects constructed by set-operations and
painted by the implicit surface painter.

Figure 8 also illustrates an additional effect that can be obtained
by implicit painting. When paints move around sharp edges that
result from set-operations, they create double edges as shown in
Figure 9. Since the motion of the brushes random, this double edge
has a random quality. This randomness along with double edge
creates an effect resembling hand-drawn lines.

11

Double edge

Y

Actual shape and color Motion of colored
particles

Figure 9. The double edge resulting from brush motion.

Examples and discussion

By using set-operations over simple objects, it is possible to con-
struct interesting scenes. We constructed the two scenes that are
illustrated in Figure 10, and painted these scenes by using the im-
plicit surface painter. The results are shown in Figures 11 and 12.
In order to obtain different painting styles we played with the values
of as and c. In addition we changed the sizes and types of paints.
We also changed viewing positions. Finishing one painting depend
on the chosen values. As shown earlier, small ay value provide a bet-
ter approximation of the surface but it takes longer time to cover
the whole surface. Likewise, choice of ¢ values effect the time to
cover the surface. In addition, the size of paint objects effects the
coverage time. Bigger objects cover the surface faster. It is always
possible to play with as and ¢ values to make coverage faster.

Another factor that effect the time is the complication of the
scene. For instance, in the house scene there is a huge hollow sphere
that represents the sky. Although only a small portion of this sky
can be seen by the viewer, brushes try to cover all of it. If there are
many objects outside the viewing area, the time spent in rendering
unseen objects can be considerable. However, it is always possible
to force the brushes stay in a certain portion of the space.

In general, by using an SGI O2 workstation, it takes around one
minute to create an image which we find satisfactory.

12

Sky: hollow sphere

ony
Half Spaces
- Cylinder

Figure 10. Descriptions of scenes that are painted.

Recently, we made experiments with different functions of r(t)
that require normalization of vector v,. By using these functions
we were able to provide additional controls over the brush motion.
These new functions of 74(t) give good results on smooth surfaces
such as spheres or toroids. However, the random walk still works
better for CSG solids. We have not yet investigated of space-filling
curves which can be useful in implicit painting of CSG solids.

Acknowledgments

This work is supported by Texas AEM University Program to En-
hance Scholarly and Creative Activities. We are also grateful to Don
House, John Woodwark, John Ferguson and the referees for their
helpful suggestions.

References

[1] J. I. Blinn, “A Generalization of algebraic surface drawing”, ACM
Transactions on Graphics, 1, 3, (235-256), 1982.

[2] J. Bloomenthal, “Techniques for implicit modeling”, ACM SIG-
GRAPH Tutorial 23: Modeling and Animating with Implicit Sur-
faces, eds. B. Wyvill and J. Bloomenthal, (13.1-13.18), 1990.

[3] J. Dorsey and P. Hanrahan, “Modeling and rendering of metallic
patinas”, Computer Graphics, 30, 3, (387-396), 1996.

13

[4] B.J. Meier, “Painterly rendering for animation”, Computer Graph-
ics, 30, 3, (477-486), 1996.

[5] A. Pasko, V. Adzhiev, A. Sourin and V. Savchenko, “Function rep-
resentation in geometric modeling: Concepts, Implementations and
Applications”, Visual Computer, 11, (429-446), 1995.

[6] A. Ricci, “A constructive geometry for computer graphics”, The
Computer Journal, 16, 2, (157-160), May 1973.

[7] A.P. Witkin and P. S. Heckbert, “Using particles to sample and con-
trol implicit surfaces”, Computer Graphics, 27, 3, (269-277), 1994.

[8] G. Wyvill and A. Trotman, “Ray tracing soft objects”, ACM SIG-
GRAPH Tutorial 23: Modeling and Animating with Implicit Sur-
faces, eds. B. Wyvill and J. Bloomenthal, (13.1-13.18), 1990.

14

Figure 11. Different implicit paintings of a house scene.

Figure 11. Implicit paintings of cowboys.

15

