
ACM Multimedia 2000

Intuitive and Effective Design of Periodic Symmetric Tiles

ERGUN AKLEMAN ∗

Visualization Laboratory
College of Architecture
Texas A&M University

JIANER CHEN †

Department of Computer Science
College of Engineering
Texas A&M University

BURAK MERIC

Knowledge Based
Information Systems, Inc.

Abstract

This paper presents a new approach for intuitive and effective design of periodic symmetric
tiles. We observe that planar graphs can effectively represent symmetric tiles and graph
drawing provides an intuitive paradigm for designing symmetric tiles. Moreover, based
on our theoretical work to represent hexagonal symmetry by rectangular symmetry, we are
able to present all symmetric tiles as graphs embedded on a torus and based on simple
modulo operations. This approach enables us to develop a simple and efficient algorithm,
which has been implemented in Java. By using this software, designers, architects and
artists can create interesting symmetric tiles directly on the web. We also have designed a
few examples of symmetric tiles to show the effectiveness of the approach.

1 Introduction

The symmetric patterns in Alhambra, Granada are probably the most well-known archi-
tectural usage of symmetric patterns. In fact, symmetric patterns have been a part of the
architectural world throughout the history and frequently used by almost every civilization
in wallpapers and wall decorations, ceilings, floor tiles, street pavements and even facades
of the buildings [4] as shown in Figure 1, 2 and 3.

Although, there has been a great interest in art and architecture, the theoretical classifica-
tion of periodic symmetric patterns did not began until the early twentieth century when
Russian crystallographer E. S. Fedorov enumerated the seventeen two-dimensional peri-
odic symmetry groups. These groups today are also known aswallpaper groups, periodic

∗Address: 216 Langford Center, College Station, Texas 77843-3137. email: ergun@viz.tamu.edu. Sup-
ported in part by the Texas A&M, Scholarly & Creative Activities Program.

†Address: Department of Computer Science, College Station, TX 77843-3112. email:
chen@cs.tamu.edu. Supported in part by the National Science Foundation under Grant CCR-9613805.



ACM Multimedia 2000

Figure 1: Street Pavements in Japan [2].

groupsor (plane) crystallographics groups[3]. Fedorov’s result shows that, mathemati-
cally, there are only seventeen distinct types of patterns which have different symmetries.
Since the paper of Fedorov was written in Russian the classification of the 17 symmetry
groups were not known until the work of Niggli and Polya in 1924.

Figure 2: Paving patterns in Annapolis, Maryland [2].

From the designer’s perspective, the most important implication of Fedorov, Niggli and
Polya’s work is the identification of the symmetry groups as a set of distinct symmetry
operations. This identification of symmetry operations encouraged artists such as M. C.
Escher, F. Briss and K. Mehmedov to discover new and interesting patterns. The most
famous drawings of symmetric patterns were created by M. C. Escher [1] and his works
are still extremely popular.

Although, the knowledge of 17 symmetry groups helps the design of symmetric patterns,
it is still difficult to find interesting tileswith paper and pen. In other words, even with
the knowledge of 17 symmetry groups when using only paper and pen to design symmetric
patterns the artistic talent is still important. The idea of using interesting symmetric tiles
has a great use in architecture, art, science and education. Therefore, it is important to find
interactive computational approaches to simplify the design of interesting tiles.

With the development of computer graphics, many interactive systems to design symmetric
patterns have been developed. Most of existing symmetric pattern design systems are based

2



ACM Multimedia 2000

Figure 3: Uniform facades in Centre Point building in London, U.K. [2].

on painting paradigm. For designing tiles, these systems are not fundamentally different
than paper and pen. In a painting system, even if the users want to make small changes,
they must erase existing images and redraw new ones.

One alternative approach is to use drawing paradigm. Kali developed by N. Amenta at
University of Minnesota Geometry Center is an example of a system that uses drawing
paradigm [4]. Since drawing is based on objects such as points, lines and polygons that
can be translated, scaled or rotated interactively, it is easy to change the shapes of the
times. At the first look, this approach seems to be the appropriate choice. Unfortunately,
we observe that even drawing paradigm is not appropriate for symmetric tile design. Tiles
are polygons that come together without gaps and overlaps, on the other hand, drawing
paradigm supports gaps and overlaps. The user has to be extremely careful not to include
any gap or overlap when designing symmetric tiles.

We observed that symmetric tiles are inherently graphs embedded on surfaces without edge
crossings, where lines are edges and line junctions are vertices, as shown in Figure 4. In
other words, for symmetric tiles the internal representation must support not only points,
lines and polygons but also graphs.

We, therefore, propose that graph drawing paradigm is the most appropriate approach to
develop a graph based algorithmic approach to design symmetric tiles.

In this work we have developed a graph based approach for designing symmetric tiles. In

3



ACM Multimedia 2000

Figure 4: Symmetric tiles are inherently planar graphs.

our approach, the graphs that represent symmetric tiles are constructed by users by drawing
line segments. Each line segment corresponds to an edge of the underlying graph and
endpoints of the lines give the vertices of the graph. The graph representation is constructed
by attaching endpoints. In other words, when two vertices come close, they will snap
together and become one vertex. We also provide intersection prevention to ensure the
graph edges never intersect. We also provide an option that removes this constraint to
enhance flexibility and improve useability.

Based on this approach, we have developed a system. By using our system one can produce
drawings composed of graphs. These graphs can be modified interactively by moving the
vertices, by adding new edges, and by dividing edges. In order to create better drawings
collisions need to be avoided. For implementation we have chosen the Java programming
language. That allows us to make use of the object oriented aspects and to make our work
available on the internet.

2 Seventeen Planar Symmetries

As we have mentioned in introduction, there exist seventeen distinct symmetries. In lit-
erature [3], the periodic symmetry groups are called asp1, p2, p4, pm, pmm, p4m, p4m,
cm, cmm, pg, pmg, pgg, p4g, p3, p6, p3m1, p31mand p6m. Each one of these symmetry
groups is a collection of symmetry operations: translation, rotation, reflection and glide
reflection. The rotations can be either period 2, 3, 4 or 6. These operations are known
as isometries which preserve the distance of any two points and they can uniformly be
represented by a3× 3 matrix.

The complete list of the 17 symmetry groups [2] in plane can be classified in two categories:
rectangular and hexagonal symmetries (12 of these 17 groups have rectangular symmetries
and 5 of them have hexagonal symmetries.). The rectangular and hexagonal symmetries
are shown in Figures 5 and 6.

4



ACM Multimedia 2000

p4m

pgcmmcm

p1 p2 p4

pmmpm

pggpmg p4g

Figure 5: Rectangular symmetries.

5



ACM Multimedia 2000

p6mp31m

p3m1p3 p6

Figure 6: Hexagonal symmetries.

3 Methodology

For some symmetry groups, the drawing operations require checking all the vertices and
edges. Checking all vertices and edges is not possible since the graphs that represent sym-
metric tiles have infinitely many vertices and edges. Fortunately, for symmetric tiles, it is
not necessary to check all vertices and edges. We observe that since symmetric tiles can be
generated by repeating a unit block, the whole graph can be represented by a simple unit
graph and all the operations can be done on this simple graph.

1. Based on this observation, we have developed a simple algorithm (and supporting
data structure) for drawing rectangular symmetries.

2. We show that the drawing algorithm for rectangular symmetries can also be applied
to hexagonal symmetries with a minor modification.

3. We also show that, based on this drawing algorithm, collisions can easily be detected.

6



ACM Multimedia 2000

3.1 Drawing Algorithm for Rectangular Symmetries

As the names suggest, unit blocks for rectangular symmetries are rectangles and unit blocks
for hexagonal symmetries are hexagons.

As known from topology [1], rectangular symmetric tiling is a covering space of the rect-
angle with identified opposite sides, which is topologically equivalent to a torus as shown
in Figure7. Because of this property, rectangular symmetries can easily be obtained by
modulo operations. It is, therefore, especially easy to develop an algorithm for rectangular
symmetries since for rectangular symmetries it is possible to simply repeat a rectangle with
modulo operations. This rectangle is called the unit cell. With the unit cell we get all infor-
mation on the drawing and are able to perform operations based on this information. So,
instead of dealing with the whole drawing we only need to consider the objects in a single
cell.

Figure 7: The repeating rectangles can be embedded to a toroidal surface.

Based on this observation, the algorithm becomes extremely simple. We use two graph
data structures. The first one represents the actual drawing and the other one (unit graph
embedded over toroidal surface) represents rectangular unit blocks. We call these internal
representations ”drawing” and ”unit graph” representations. Unit graph representation is
obtained in two stages from drawing representation.

1. For a given rectangular symmetry group, first related symmetry operations, i.e. a
combination of translation, rotation, reflection and glide reflection operations are
applied. As a result of these symmetry operations a set of new lines are computed.

2. By using mod operations inx andy directions, these lines are cut into shorter pieces
that exactly fit inside of unit cell.

Figure 8 shows a collection of lines drawn by the user and Figure 9 shows the corresponding
lines in the unit cell for symmetry group PG [3]. Once the unit graph is obtained, the final
drawing is obtained by simply translating all the lines in unit graph as shown in Figure 10.

Note that both ”drawing” and ”unit graph” representations are internal representations and
they are completely hidden from users. During the design process, users have only to deal
with the symmetric tiles such as the one shown in Figure 10. As a result, they can focus
mainly on the design of interesting tiles without the need to know the internal representa-
tions and the symmetry group they are currently using.

7



ACM Multimedia 2000

Figure 8: Drawing.

Figure 9: Unit graph related to drawing in Figure 8.

Figure 10: The symmetric tiles related to drawing in Figure 8.

8



ACM Multimedia 2000

3.2 Drawing Algorithm for Hexagonal Symmetries

Hexagonal unit blocks do not simply provide convenient operations as given in rectangular
unit blocks. (In fact, It is well known [3] that rectangles with identified opposite sides
give a torus while hexagon does not correspond to any valid topological surface which is a
closed compact 2-manifold.)

One of our contributions in this paper is the development of a unified approach to include
hexagonal symmetries. In order to avoid hexagons, we look for simpler unit cells for
hexagonal symmetries and show that hexagonal symmetries can also be represented by
a repeating rectangular unit block which is shown in Figure 12. In other words, we will
prove that regardless of the symmetry group, all symmetric tiles can be represented by a
simple unit graph which can be embedded over a toroidal surface, thus can be constructed
by also using modulo operations.

Formally, let~v = (x, y) be a vector. We say that a tilingT is closedunder~v if for any
vector ~w, the image at point~w is the same as that at point~w + ~v.

In particular, ahexagonal symmetric tilingHr is a tiling that is closed under three vectors
(wherer is a fixed constant):

~v1 = (0, r), ~v2 = (

√
3

2
r,

1

2
), ~v3 = (

√
3

2
r,−1

2
) (1)

A rectanglar symmetric tilingRa,b is a tiling that is closed under two vectors (wherea and
b are fixed constants):

~va = (a, 0), ~vb = (0, b) (2)

Lemma 3.1 A hexagonal symmetric tilingHr is a rectanglar symmetric tilingR√
3r,r.

PROOF. According to the definition, the hexagonal symmetric tilingHr is closed under
the vector~vr = (0, r). Thus, it suffices to show thatHr is also closed under the vector
~v√3r = (

√
3r, 0).

It is easy to verify that

~v√3r = (
√

3r, 0) = (

√
3

2
r,

1

2
) + (

√
3

2
r,−1

2
) = ~v2 + ~v3

Thus, for any vector~w, we have

~w + ~v√3r = ~w + ~v2 + ~v3 = ~w + ~v3 = ~w

The second equality is becauseHr is closed underv2 while the third equality is becauseHr

is closed underv3.

This proves that the hexagonal symmetric tilingHr is a rectanglar symmetric tilingR√
3r,r.

See Figure 11 for a more intuitive illustration.

9



ACM Multimedia 2000

Figure 11: Hexagonal symmetry and rectanglar symmetry

An interesting question is the inverse of Lemma 3.1, i.e., when a rectanglar symmetric
tiling corresponds to a hexagonal symmetric tiling. This, in fact, can also be investigated
as follows.

We say that a rectangle of length
√

3r and widthr is hexagonally symmetricif it is sym-
metric in terms of its centered embedded hexagon (see Figure 12). In particular, in our
construction of the rectanglar symmetric tilingR√

3r,r for the hexagonal symmetric tiling
Hr in Lemma 3.1, the basic rectangle ofR√

3r,r is hexagonally symmetric. In fact, we can
prove the following stronger version.

Theorem 3.2 A rectanglar symmetric tilingT is also hexagonally symmetric if and only if
the basic rectangle ofT is hexagonally symmetric.

In this paper, we have omitted the formal proof of this theorem.

3.3 Collision Prevention

An important issue in creating symmetric planar graphs is the collision avoidance. In our
framework, the collisions can be avoided by checking only the lines in the unit cell, not on
the whole drawing. As a result, by preventing intersections we can come up with planar
graphs. Following is a high level pseudo code of our system:

10



ACM Multimedia 2000

12 34

4213

Figure 12: A hexagonally symmetric rectangle

If any modification on the drawing is made
then if there is no collision in the unit cellthen

translate the real line into the unit cell;
create the converted lines;
calculate symmetries;
update data;
generate the whole drawing by repeating the main unit cell

4 Implementation

We have implemented two versions of the drawing algorithm explained in the previous
section, one with C and OpenGL and another one with Java. The Java version is available
to the public. For anonymous review we have created an anonymous homepage that can
be reached via internet from the address http://www.geocities.com/symmetrictiledesign/.
Figure 13 shows the java interface of symmetric tile designer. As shown in Figure 13
interface supports moving existing lines, adding new lines, breaking lines into two lines.
The system also provides collision avoidance.

The Java applet provides only drawing borders of the tiles. In order to color the tiles, users
need to copy the resulting image and color the tiles by using a painting program such as
Photoshop. Since the boundaries of each tile are clearly defined, it is easy to fill these tiles.
Figures 14 and 15 show two colored examples of symmetric tiles we have designed using
our software.

5 Conclusion

In this paper, we present a new approach for intuitive and effective design of periodic sym-
metric tiles. We observe that planar graphs can effectively represent symmetric tiles and

11



ACM Multimedia 2000

Figure 13: Java interface of Symmetric Tile Designer.

graph drawing provides an intuitive paradigm for designing symmetric tiles. Based on
the observation that rectangular symmetry groups can be represented as graphs embedded
on a torus, we have developed a simple drawing algorithm based on modulo operations.
Moreover, based on our theoretical work to represent hexagonal symmetry by rectangu-
lar symmetry, we are able to present all symmetric tiles as graphs embedded on a torus.
This result enables us to develop a simple and efficient drawing algorithm for all periodic
symmetric groups. We also extended the algorithm to handle collision detection. We have
implemented this algorithm both in Java and C. The java version is available in internet
to all designers, architects and artists. By using this software, they can create interesting
symmetric tiles directly on the web. We also have designed a few examples of symmetric
tiles to show the effectiveness of the approach.

References

[1] Firby, P. A. and Gardiner C. F.,Surface Topology, John Wiley and Sons Inc., New
York, 1982.

[2] Hargittai I. and Hargittai M.,Symmetry, A Unifying Concept, Shelter Publications,
Inc. Bolinas, Ca, 1994.

[3] Grunbaum, B. and Shephard G. C.,Tilings and Patterns, W. H. Freeman & Co., New
York, 1987.

[4] http://www.geom.umn.edu/java/Kali/.

[5] Locher J. L.,M. C. Escher: His Life and Complete Graphic Work, ed. Abrams, New
York, 1982.

12



ACM Multimedia 2000

Figure 14: Snails.

13



ACM Multimedia 2000

Figure 15: Mediterranean night.

14


