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Abstract
We introduce a computationally efficient method

for interactive construction of implicitly represented
star solids. These solids smoothly approximate con-
trol shapes that are defined by exact union and inter-
sections over half-spaces containing the origin. Based
on our algorithm, computation of a new solid shape
when a new half-space is added or when the position
of an existing half-space is changed can be performed
in constant time and in space linear in the number
of half-spaces.

Our implicit shape construction is based on a
family of non-polynomials called ray-linears [Akl93].
Computation of an implicitly represented shape is a
root finding process and in general can be extremely
difficult. However since ray-linear implicit represen-
tations can easily be parameterized, the computa-
tion of any ray-linearly represented shape simplifies
to evaluation of a parametric equation instead of
root finding. But the related parametric equations
are non-polynomials and their complexity increases
as the number of building blocks (in this case half-
spaces) increases. Our algorithm makes the com-
putation of this parametric equation independent of
the number of half-spaces. We develop an interac-
tive platform based on our algorithm with which we
are able to construct star solids that resemble human
faces.

CR Categories and Subject Descriptors:
I.3.7 [Computer Graphics]: Three Dimensional
Graphics and Realism, I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling.

Additional Keywords and Phrases: Interac-
tive Sculpting, Implicit and Parametric Representa-
tions, Solid Modeling.

1 Introduction
Implicit and parametric representations possess dis-
tinct modeling qualities.1 Generally speaking, im-
plicit representations provide control of blobby ap-

1In this paper, the word representation is used to include
both equalities and inequalities.

pearance and set operations; while, parametric rep-
resentations provide control of detail and fast com-
putation.

Implicit representations inherently provide a sim-
ple implementation of geometric operations, such
as union and intersections by composition of func-
tions [BI92]. This property of implicit representa-
tions makes them suitable for construction of solid
shapes. Implicit representations also provide blobby
appearances and create bulges. Since flesh depends
on underlying fine details such as bone structure, the
blobby appearances and bulges can represent flesh
better than low frequency details which are indepen-
dent of finer details. In fact, the implicitly based
modeling tools that give control of blobbyness such
as Wyvill’s soft objects [Wyv90] or Blinn’s expo-
nential functions [Bli82] have long been successful
in modeling organic looking shapes. There are two
problems with implicit representations. The first
problem is that so far no implicit representation
based method exists that provides interactive con-
struction and manipulation with control shapes2. In
fact, control shapes are essential to describe fine de-
tails. The other problem is the computation of the
shape of an implicitly represented solid. This compu-
tation is a root finding process in three-dimensions.
Unless the functions have special properties, finding
roots in three-dimensions can be extremely hard.

An extensive literature is available for paramet-
ric representations [BBB87]. Parametric representa-
tions have two properties that are useful for mod-
eling. First, they use control shapes that allow
control of detail. Second, computation of a peri-
metrically defined shape is fast since it is simply
an evaluation of either a polynomial or a rational
polynomial. However, non-hierarchical parametric
representations can not provide blobby appearances.
Forsey and Bartels introduced a hierarchical method,
hierarchical B-splines, that provides control of differ-
ent levels of details [FB88]. By viewing flesh as a low

2In order to provide an alternative control, Witkin and
Heckbert used particles [WH94]
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frequency detail component that can be shaped inde-
pendently, such hierarchical approaches can be suc-
cessful in facial modeling and, in fact, Forsey used
hierarchical B-splines to model faces.

1.1 A Dual Representation: Ray-Linears
Earlier we introduced a dual (both implicit and
parametric) representation, ray-linear function fam-
ily [Akl93]. Ray-linear representations, because of
their dual nature, provide control of detail, con-
trol of blobby appearance, fast computation and
union and intersection operations. Ray-linearly rep-
resented shapes are smoothly blended stars which are
explained in section 2.

We have developed a modeling tool based on ray-
linears. This modeling tool provides interactive
construction and manipulation of smoothly blended
solids described by star shaped control polyhedra.

In our modeling tool, each detail of the shape is
represented by one convex polyhedron and control
of details is accomplished by interactively chang-
ing these convex polyhedra. Modifying each convex
polyhedron results in a different solid shape.

Control of blobby appearance is accomplished by
changing blending parameters. These blending pa-
rameters smooth out the sharp edges and corners of
the star shaped control polyhedron. There are two
types of blending parameters: global and local. The
global blending parameter smooths out sharp edges
resulting from the exact union of convex polyhedra.
Blobby effects come mostly from this global blending
parameter. Local blending parameters smooth out
sharp edges and corners of convex polyhedra that
result from the intersection of half-spaces. Different
combinations of global and local blending parameters
create different looks. Generally speaking, we can
say that more blended shapes look fleshier, whereas
less blended shapes look more robotic and less or-
ganic.

1.2 Interactive Computation of Ray-Linear-
ly Represented Solids

Ray-linear implicit representations are easily param-
eterizable. Therefore, once the related parametric
equations are obtained, computing the shapes is sim-
ply the evaluation of the related parametric equa-
tions. However, these parametric equations are non-
polynomials and their complexity increases as the
number of building blocks (in this case half-spaces)
increases.

In this paper, we present a computationally effi-
cient method which we develop in order to guaran-
tee the interactive construction of ray-linearly repre-

sented solids. Based on our method, computation of
a new solid shape when a new half-space is added or
when the position of an existing half-space is changed
can be performed in constant time and in space lin-
ear in the number of half-spaces.

The method we present here, by reusing the pre-
vious computation, makes the computation of these
parametric equations independent of the number of
half-spaces. As a result of this independency, when
a user adds a new convex polyhedron or changes the
position of a vertex of a convex polygon, a new solid
shape can always be computed in constant time.

1.3 Organization of the Paper
In section 2, we introduce ray-linear implicit repre-
sentations and explain how to parameterize them.
In section 3, we show how to construct general ray-
linear formulas from ray-linear formulas that result
in symmetric stripes and half-spaces by using ap-
proximate and exact union and intersection oper-
ators. In section 4, we describe this interactive
construction algorithm and implementation thereof.
Section 5 concludes the paper.

In the appendices, we give the formal definitions
of ray-linear functions, ray-linear implicit represen-
tations and ray-linearly represented shapes. We also
formally explain parametrization of ray-linear im-
plicit representations.

2 Ray-Linears
Ricci [Ric73] and later Requicha [RV82] indepen-
dently showed that maximum and minimum oper-
ators over functions correspond with exact set op-
erations over implicitly represented shapes. Maxi-
mum and minimum operators are easy to compute
and they are widely used in solid modeling. In his
paper Ricci also introduced approximate set opera-
tors that smooth out the sharp edges and corners
resulting from exact set operations. In other words,
solid shapes that are constructed by Ricci’s approx-
imate set operations can be viewed as smooth ap-
proximations of control shapes that are constructed
by exact set operations. Ricci’s approximate set op-
erators therefore had the potential to be extremely
useful for solid modeling. However, the formulas
of Ricci’s approximate operators include powers and
roots. Successive application of these operators re-
sults in nested expressions with powers and roots.
Since finding the roots of non-polynomials is espe-
cially hard, it is not feasible to implement Ricci’s
operators in an interactive modeler.

A subset of ray-linears, the non-negative ray-
linears are closed under Ricci’s exact and approxi-



mate union and intersection operators. Since ray-
linear implicit representations can be easily parame-
terized [Akl93], the computation of ray-linearly rep-
resented shapes reduces to the evaluation of a para-
metric equation. This property of ray-linears yields
fast computation. Therefore, a modeling tool based
on non-negative ray-linears can provide interactive
modeling with control shapes. We provide formal de-
scriptions of ray-linear functions, ray-linear implicit
representations and ray-linearly represented shapes
in the appendix. Here, we give an informal descrip-
tion of ray-linears.

Ray-linears are functions that become linears when
projected onto any ray starting from the origin.
For instance, the implicit equation of Steiner’s Ro-
man surface which was formulated by Weierstrass
is x2y2+y2z2+z2x2+xyz=0. This formula can be eas-
ily converted to a ray-linear formula plus a constant:
(x2y2+y2z2+z2x2)/(xyz)+1=0. In this equation, F (x,y,z)=

(x2y2+y2z2+z2x2)/(xyz) is a ray-linear function. If we
replace x with xt, y with yt and z with zt in the for-
mula for F (x,y,z), the result will be F (x,y,z) times t.
In other words, this formula is linear in t. Note that
(xt,yt,zt) is actually the equation of the ray starting
from the origin in the direction of the vector (x,y,z),
therefore F (x,y,z) is, in fact, a ray-linear function. If
a function F (x,y,z) is ray-linear, then it is straightfor-
ward to solve F (x,y,z)+1=0. As explained in the ap-
pendix, the solutions are actually parametric equa-
tions. For instance, if the vector (x,y,z) is given by
a parametric equation, such as the parametric equa-
tion of a sphere, x=sin θ sin ψ, y=cos θ sin ψ, and z=cos ψ,

then a parametric equation of the Steiner surface is
obtained:

x=− sin2 θ cos θ sin ψ cos ψ/G(θ,ψ),

y=− sin θ cos2 θ sin ψ cos ψ/G(θ,ψ),

z=− sin θ cos θ cos2 ψ/G(θ,ψ),

where
G(θ,ψ)=sin2 θ cos2 θ sin2 ψ+sin2 θ cos2 ψ+cos2 θ cos2 ψ. More-
over, as explained in the appendix, it is possible
to write simpler parametric equations that give the
same surface.

Steiner’s function belongs to a family of functions
called monoids which are known to be easily pa-
rameterizable, therefore this parametrization is ac-
tually expected. In fact, the formulas of monoids
can be converted to formulas in the form of a ray-
linear plus a constant. The same goes for quadrics
and we strongly believe that it may even be cor-
rect for cubics. In this paper, we do not deal with
ray-linear rational polynomials since they are not
closed under approximate set operations. In addi-

tion to polynomial ones above, there are many dif-
ferent classes of non-polynomial ray-linears. In fact,
the non-negative ray-linears that we use in this paper
are non-polynomials.

The ray-linear property gives a constraint over the
ray-linearly represented shapes: each ray starting
from the origin can intersect a ray-linearly repre-
sented shape at at most one point. Some exam-
ples of ray-linearly represented curves are shown in
Figure 1. These shapes are known as star shapes.
This restriction is not acceptable for modeling gen-
eral curves. However, this is not such a serious re-
striction for interactive solid modeling since, unlike
the two-dimensional case, in three-dimensions many
interesting solid shapes are stars. For example, we
have noticed that when ears are excluded, most hu-
man faces are star solids.

Figure 1: Examples of curves that can be generated
by ray-linears.

3 Construction of Ray-Linear Implicit Rep-
resentations

We use non-negative ray-linears in order to develop
the modeling tool. As mentioned before and ex-
plained in appendix, non-negative ray-linears are
closed under Ricci’s exact and approximate union
and intersection operators. For ease of reading,
we always refer to non-negative ray-linears as ray-
linears. Therefore, in order to define a control shape
we can apply exact set operations iteratively to gen-
erate a structure that can be expressed as nested
exact unions or exact intersections over a starting
set of ray-linears. By replacing each exact union op-
erator (min(.,.)) by an approximate union operator (
−p
√

(.)−p+(.)−p ) and each exact intersection operator
(max(.,.) ) by an approximate intersection operator (
p
√

(.)p+(.)p ), we obtain ray-linear implicit representa-
tions of smooth approximations of the ray-linearly
represented control shape constructed by exact set
operations. The starting set of ray-linear building
blocks can be any ray-linear function. In the next
section, we introduce some building blocks. An ex-
ample of exact and approximate unions of convex



shapes is shown in Figure 2.

Figure 2: Two convex shapes, their union and two
smooth approximations of the union.

4 Building Blocks
As is widely known, the distance function F (x,y)=

p
√
|x|p+|y|p leads to the following implicit inequality

which provides a large number of shapes depending
on the blending parameter p:
S={[x,y] | p

√
|x|p+|y|p≤1}. Note that the distance func-

tion is a ray-linear function. When p goes to ∞, S

becomes square: ={[x,y]|max(|x|,|y|)≤1}. The related
shapes are shown in Figure 3.

4.1 Symmetric Stripes
Since the maximum operator is an intersection op-
erator over the implicitly represented shapes this
square shape can be viewed as a control shape
that is constructed by the intersection of two in-
finite symmetric stripes that are given by follow-
ing implicit inequalities: ={[x,y] ||x|≤1}

and ={[x,y] ||y|≤1}. Note that both x and y

are linears but are not always non-negative. On
the other hand, absolute values of these linear func-
tions, |x| and |y|, are ray-linears. As a result,
in order to describe a family of simple ray-linear
building blocks we simply take the absolute val-
ues of linears. Let Li(v) be a linear function, then
|Li(v)| is ray-linear. Note that the implicit inequality
|Li(v)|≤1 describes an n-dimensional infinite symmet-
ric stripe. Therefore, S={v|max(|L1(v)|,...,|Ln(v)|)≤1} is
an n-dimensional control shape generated by the in-
tersection of such n-dimensional infinite symmetric
stripes. For instance, the following equation gives an
hexagonal control shape: S={[x,y] |max(|√2x|,|√2y|,|x+

y|)≤1}. As explained in the previous section, the
inequality p

√
|√2x|p+|√2y|p+|x+y|p≤1 gives a smooth

approximation of a hexagonal control shape.
An example of the minimum operator is a
star octagon shape given as the union of two
squares: S={[x,y] |min(max(|x|,|y|),max(|x+y|/√2,|x−
y|/√2)≤ 1} and the shape that can smoothly ap-
proximate this star octagon is given by the inequal-

ity: −p3
√

( p1
√
|x|p1+|y|p1 )−p3+( p2

√
|x+y|p2+|x−y|p2 )−p3≤ 1,

where p1, p2 and −p3 are blending parameters.
Since infinite stripes are symmetric around the

origin, their intersection can only generate symmet-
ric shapes: symmetric polygons in two-dimensions
or symmetric polyhedra in three-dimensions. Even-
sided star or regular polygons with parallel edges are
symmetric polygons in two-dimensions. Some exam-
ples of symmetric polyhedra in three-dimensions are
the cube, octahedron, icosahedron, dodecahedron,
cuboctahedron and great dodecahedron.

Another example of the use of symmetric stripes
are non-toroidal super-quadrics [SP91] which are
given by the inequality: p2

√
( p1
√
|x|p1+|y|p1)p2+|z|p2≤1.

The cube is the control shape for non-toroidal super-
quadrics.

Symmetry is not always a desired feature for solid
modeling. For instance, in two-dimensions not only
irregular polygons but even regular polygons with
an odd number of edges such as regular triangles or
regular pentagons cannot be used as a control shape.
In three-dimensions the regular tetrahedron cannot
be used as control shape. In the next section we
introduce ray-linear implicit representations of half-
spaces to be able to describe more general control
shapes.

Figure 3: The shapes generated by distance functions
for p values of 1,2,4,8,∞.

4.2 Half-Spaces
Since any convex or star polyhedron can be described
as a combination of exact intersections and unions
of half-spaces, we investigate the possibility of ray-
linear representation of half-spaces. Half-spaces can
be described by linear inequalities of the form L(v)≤1,

however, this representation is not useful for our pur-
poses since L is not always non-negative. Recall that
since Ricci’s approximate operators include roots,
functions that are not always non-negative cannot be
used. In order to find an alternative representation,
we assume that there exists an operation H(L(v)) such
that H(L(v)) is a ray-linear and describes the same
half-space as linear function L:

{v|L(v) ≤ 1} = {v|H(L(v)) ≤ 1}. (1)



We can show that such an operation H(L(v)) indeed
exists.3

First note that |L(v)|≤1 will create two inequalities:
1: L(v)≤1 if L(v)≥0 and 2: −L(v)≤1 if L(v)<0. The
second inequality is an unwanted one that creates
symmetric stripes. This unwanted inequality can be
eliminated by simply equating the negative part to
zero. This operation does not affect the shape since
L(v)−1 will still be negative. In other words, if we can
ensure H(L(v))=0 when L(v)<0 and H(L(v))=L(v) when
L(v)≥0, H(L(v)) will be a ray-linear that satisfies the
condition given in equation 1. One function that
qualifies is

H(L(v)) = 0.5L(v) + 0.5|L(v)|. (2)

5 Interactive Construction
Construction of a control shape is not unique. In
other words, the same control shape can be con-
structed many different ways. Each one of them will
provide different control of blending. For instance,
all three of the following implicit representations give
the same control shape, a square:

max(H(x),H(y),H(−x),H(−y))≤1

max(max(H(x),H(y),H(−x)),H(−y))≤1

max(max(H(x),H(y)),max(H(−x),H(−y)))≤1

However, when the maximum operators are
changed by approximate intersection operators, each
one of them provides a different type of blending:

p
√

H(x)p+H(y)p+H(−x)p+H(−y)p≤1

p2
√

( p1
√

H(x)p1+H(y)p1+H(−x)p1)p2+H(−y)p2≤1

p3
√

( p1
√

H(x)p1+H(y)p1)p3+( p2
√

H(−x)p2+H(−y)p2)p3≤1

The first one has only one blending parameter, the
second one has two blending parameters, and the last
one has three blending parameters. The square is one
of the simplest control shapes. For a complicated
control shape the number of representations will be
extremely high.

For interactive construction we need a simple and
unique representation, so we have chosen the fol-
lowing construction methodology. First, we de-
scribe convex polyhedra as intersections of half-
spaces. Then, we construct a control polyhedron as
a union of convex polyhedra. In other words, the for-

3Ricci solved this problem by using exponentials. We can-
not use eL(v)’s, since these exponential building blocks do not
result in ray-linears. However, we observe that these expo-
nential building blocks result in ray-exponentials which seem
to be useful for modeling and need a further investigation. In
addition, note that we cannot use affine building blocks since
they do not result in ray-linears.

Figure 4: The effect of global blending parameter.

mulas of the ray-linears will be strictly of the form

F (v) = −pG

√√√√
n−1∑

i=1

Fi(v)−pG , (3)

where,

Fi(v) = pi

√√√√
mi∑

j=1

H((Li,jv))pi ,

where n−1 is the number of convex polyhedra and mi

is the number of half-spaces in the ith convex polyhe-
dron. Let N denote the total number of half-spaces
then the N=

∑n−1

i=1
mi We call pG the global blend-

ing parameter and pi’s the local blending parame-
ters. The global blending parameter is for smooth-
ing out edges and corners resulting from the union
operator. Some examples of the effect of chang-
ing the global blending parameter are shown in Fig-
ure 4. Ricci’s approximate union operations gener-
ate bulges [Blo91]. Since they give a fleshy appear-
ance, bulges are not a problem in our application.
The local blending parameters are for smoothing out
the sharp edges and corners of the convex polyhe-
dra which are described by the intersection of half-
spaces. Some examples of the effect of changing local
blending parameters pi are shown in Figure 5.

5.1 Description and Manipulation of Con-
trol Shape

In order to simplify the description of convex polyhe-
dra, we restrict the user to those that can be repre-
sented by the union of two infinite prisms. The user



simply draws one convex polygon on each of two per-
pendicular planar surfaces.4 Each polygon defines an
infinite prism whose axis is perpendicular to the pla-
nar surface on which the polygon is drawn. (i.e., the
edges of the polygons describe half-spaces perpen-
dicular to the planar surface on which the polygon is
drawn.) The intersection of the two prisms describes
a convex polyhedron. The control polyhedron is ob-
tained from the union of the polyhedra that have
been described in this manner.

After a control polyhedron has been described, the
user can change the smoothly blended solid by ma-
nipulating the half-spaces that describe the control
polyhedron. In our program this manipulation is
accomplished by simply moving the vertices of the
polygons.

Figure 5: Evolution of human beings from robots:
the effect of local blending parameters.

5.2 Interactive Alterations are Cheap
In order to compute the smoothly blended solid
shape we have to compute equation 7 in the ap-
pendix, vi∗ = vi

F (vi)
, for each vector vi defined by

the guide shape. Note that the computation of this
equation mainly involves computation of F (vi), where
vi is a vector given by the guide shape. Since F (vi)

consists of the ray-linear functions that correspond
to half-spaces (in equation 3), the price of the com-
putation is linearly dependent on the total number of
half-spaces N . This implies that each alteration takes
computation time linear in N . To effectively support
interactivity, alterations must be cheap. This lin-
ear dependency therefore is not acceptable. In this

4These perpendicular planar surfaces are either the x=0
and y=0 planes or the x=0 and z=0 planes.

section, we show that it is possible to make the com-
putation of any F (v1) result from an alteration inde-
pendently from N .

Recall that when we change a control shape, we
actually change only one half-space. The formulas
for the other half-spaces are unchanged. Therefore,
we do not have to compute all these formulas again.
Using this information equation 3 can be simplified.

First let us assume that the user changes the half-
space i,j that is represented by the formula H(Li,j(v)).
Let the old values of functions in equation 3 be de-
noted as Fold(v1), Foldi

(v1) and H(Loldi,j
(v1)). In addi-

tion, let the new values to be computed be denoted
as Fnew(v1), Fnewi

(v1) and H(Lnewi,j
(v1)). Then equa-

tion 3 can be rewritten:

Fnew(v1) =

−pG

√
Fold(v1)−pG − Foldi

(v1)−pG + Fnewi
(v1)−pG ,

(4)
where,

Fnewi
(v1) =

pi

√
Foldi(v1)pi −H(Loldi,j (v1))pi + H(Lnewi,j (v1))pi ,

and H(Lnewi,j
(v1)) is given by equation 2.

Note that equation 4 is independent of N . In
other words, when a control shape is manipulated
the speed of computation is independent of N .

In the process of construction, the user not only
can change half-spaces but can also add new convex
polyhedra. In this case we would again like the com-
putation to be independent of N . Let the ray-linear
representation of the new convex polyhedron be de-
noted as Fn(v). Then equation 3 can be rewritten for
each vector v1 as

Fnew(v1) = −pG

√
Fold(v1)−pG + Fn(v1)−pG , (5)

where,

Fn(v) = pn

√√√√
mn∑

j=1

H((Ln,j(v1))pn .

Computation of equation 5 is still independent of N
but depends on mn. Since the value of mn in general
is between 6 and 10, this dependency does not create
any problem.

Based on equations 4 and 5, we develop a plat-
form for interactively constructing smoothly blended
solids. All smoothly blended solids that are shown
in Figure 6 are constructed in approximately fifteen
minutes. A set of simpler ray-linearly represented
human faces are shown in figure 7 by adding skin
textures, eyes and teeth.



Figure 6: All these faces constructed in approxi-
mately fifteen minutes by changing parts such as the
nose, chin or lips.

6 Discussion
In order to simplify the user interface we provide only
a certain type of control polyhedra: those that are
given as a union of convex polyhedra that are con-
structed by the union of two perpendicular prisms.
We are planning to remove this restriction by us-
ing virtual reality tools to manipulate the half-spaces
freely in three-dimensions.

Since we use half-spaces as building blocks the
faces of the control shape have to be planar. How-
ever, in general this does not have to be the case.
For instance, a cylinder can be a control solid since
it is the exact intersection of an infinite cylinder and
two half-spaces, and, both infinite cylinders and half-
spaces can be described by ray-linear implicit repre-
sentations.

By using ray-linears we are limited to star shapes.

Due to this restriction over the control solid we can-
not interactively construct all solid shapes. However,
ray-linear implicit representations of the parts of a
solid shape can be obtained by interactive construc-
tion. Once the ray-linear formulas for each part are
obtained, we can combine these formulas by using
Ricci’s set operations.

It is also possible to use these formulas in other
implicit representation based solid modeling tools
such as constructive solid geometry [RV82], soft
objects [Wyv90] or Blinn’s exponential equations
[Bli82]. Since it is also possible to deform them
[Bar84, SP91], ray-linears can even be used as build-
ing blocks for applications that require shapes other
than stars.

The operations over ray-linear representations of
half-spaces are closely related to the super-elliptic
local blending of Rockwood [RO87] and convex su-
perquadrics [Bar81, SP91] are a subset of ray-linears
that are obtained by the approximate union opera-
tions over ray-linear representations of infinite sym-
metric stripes [Akl93]. Ray-linears are different than
hyperquadrics [Han88] which are a superset of su-
perquadrics [Akl94]. Whereas hyperquadrics gener-
alize superquadrics by going to higher-dimensions,
ray-linears arise by introducing non-homogeneous
functions.

Figure 7: Ray-linearly represented human faces by
adding skin textures, eyes and teeth.

Another property of our modeling tool is that
the data requested for representation of one face
are limited. Less than fifteen convex polyhedra are



enough for one face. Each convex polyhedron can
be given by intersection of approximately ten half
spaces. Each half-space can be described by two co-
efficients. These coefficients can be represented with
just one byte since these solid shapes are quite ro-
bust (small changes in coeeficients do not change the
shape).
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A Definition and Parameterization of Ray-
Linears

Let V be a vector space over reals. We use the letter v

to stand for a vector from V and 0 for the origin. In
two-dimensional space v=[x,y], in three-dimensional
space v=[x,y,z]. Further, let <⊕=<+∪{0} denote the set
of non-negative real numbers. We use the variable t

to stand for an element of <⊕.

Definition 1 A function F :V−→<⊕ is a non-negative
ray-linear iff F (vt)=F (v) t , ∀v∈V and ∀t∈<⊕.

For ease of reading, we always refer to non-negative
ray-linears as ray-linears. Recall that a function F

is homogeneous if F (αv)=αmF (v) for every real α. At
first ray-linears may appear to be a special case of
homogeneous functions because it is required that
F (αv)=αF (v). However, for ray-linears the condition



does not need to hold for negative α’s. Thus the
class of homogeneous functions is incomparable with
the class of ray-linears. For instance absolute value
function is ray linear but not homogeneous, 5 Since
Ricci’s approximate operations can only be applied
to non-negative functions, the inclusion of absolute
value is crucial for the construction of formulas using
his approximate set operations [Ric73].

Definition 2 A ray-linearly represented shape is the
one that is described by the following ray-linear im-
plicit representation:

S = {v | F (v) ≤ 1}, (6)

where F (v) is ray-linear.

Let S(v1) be the intersection of a ray-linearly repre-
sented shape with a ray starting from the origin 0 in
the direction of v1. The parametric equation of this
ray is v=v1t and therefore S(v1)={v=v1 t | F (v)≤1}. Be-
cause of the ray-linear property of F (v) the inequality
in the representation of S(v1) simplifies to a univari-
ate linear inequality: S(v1)={v=v1 t | F (v1) t≤1}. Thus,
the following linear equation F (v1) t=1 gives the bor-
der of S(v1). The solution in t of this equation is:
t∗= 1

F (v1) . Note that since t is chosen a non-negative
number if t∗<0 there is no intersection with the ray
and the shape. And if t∗≥0 then the ray intersects
with the shape and the intersection point is

v∗ =
v1

F (v1)
. (7)

Recall that a shape is called a star if there exists a
vector v0 such that every ray originating from this
vector v0 intersects the boundary of the shape at
most at one point. Since each ray starting from the
origin intersects the border of a ray-linearly repre-
sented shape at most at one point, ray-linearly rep-
resented shapes are star shapes with center point ori-
gin, 0.

It is easy to show that the position of the intersec-
tion points depends only on the directions of the vec-
tors. Therefore, in order to find intersection points
in any given direction it is enough to provide only
one vector. If we can describe a parametric equa-
tion of a vector family that gives only one vector for
each direction, we can convert ray-linear implicit rep-
resentations into parametric representations. Then,
computation of any ray-linearly represented shape
simplifies from finding roots in three-dimensions to
evaluation of a parametric equation.

5Let α=−1, then any homogeneous function F with m=1

has to satisfy F (−1×v)=−1×F (v). But absolute value function
does not satisfy this property.

Definition 3 A parametrically represented shape
S=∪n

i=1Si is the one that is represented by by a set
of parametric equations, fi:P−→V, where

Si = {v = fi(s) | ∀s ∈ P}, (8)

and P is a given parameter space. This paramet-
rically represented shape S is a bounded star shape
if any ray originating from 0 intersects the shape S

exactly at one point.

Since any ray originating from 0 intersects a bounded
star shape S exactly at one point, the difference of
intersection points and 0 give us the equation of a
vector family. In other words, we can use the para-
metric equation of a bounded star shape as a para-
metric equation of vector family for parameterization
of ray-linear implicit representations.

Definition 4 A parametrically represented
bounded star shape S is called a guide shape if it is
used for parameterization of ray-linearly represented
shapes.

Note that for parameterization of solid shapes, the
guide shapes will be surfaces.

A natural example of a guide surface is a sphere.
A parametric equation of a sphere is x=sin θ sin ψ,

y=cos θ sin ψ, and z=cos ψ. Using this parametric equa-
tion of a sphere in equation 7 we find the follow-
ing parametric equations for any ray-linearly repre-
sented shape: x=(sin θ sin ψ)/F (sin θ sin ψ,cos θ sin ψ,cos ψ),
y=(cos θ sin ψ)/F (sin θ sin ψ,cos θ sin ψ,cos ψ), and z=

cos ψ/F (sin θ sin ψ,cos θ sin ψ,cos ψ).

This parametric equation of a sphere is not a good
choice since it generates congestions at both poles.
We use icosahedra or cubes as guide surfaces since
they give better distributions. When polyhedra with
planar faces are used as guide shapes, the paramet-
ric equations becomes simpler. For instance, let the
ith square face of a cube be given by four vectors:
vi,0,0, vi,0,1, vi,1,1, vi,1,0 for i=1,2,...,6. The paramet-
ric equation for the ith face is fi(u,v)=vi,0,0(1−u−w)+

vi,0,1w+vi,1,0u, where u,w∈[0,1]. Using these paramet-
ric equations of the faces of a cube in equation 7 we
find the following parametric equation of the bound-
ary of a given ray-linear shape
S = ∪6

i=1Si, where
Si = {v(u, w) = fi(u,w)/F (fi(u,w)) | ∀u,w ∈

[0, 1]}.


