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Abstract

In this paper, we introduce the theory of ray-quadrics.
Ray-quadrics are capable of providing intuitive shape de-
sign, fast rendering, and a wide variety of shapes from hu-
man heads to solids with any �nite number of holes.

Ray-quadrics are non-polynomials; however, their intersec-
tions with the parametric equations of rays starting from
the origin simplify to quadrics. This simpli�cation makes
real-time rendering and interactive shape design possible.

In order to construct ray-quadrics formulas which are
meaningful for solid modeling, we introduce a new set of
functional operators:

� Set-di�erence. This operation gives exact and approx-
imate set-di�erence of star solids. Approximate set-
di�erence smooths out the sharp edges and corners
that result from exact set-di�erence operations.

� Border-intersection and esh. The
border-intersection operation gives the intersection of
the outer surfaces of two ray-linearly represented star
solids. The result is space curves. The esh operator
creates a esh around these space curves, so that the
space curves serve as a skeleton.

By using these operators over the the formulas that rep-
resent star solids with the same center, we are able to
construct ray-quadric representations of toroids and solids
with many holes.

Since they provide a large variety of shapes, intuitive shape
construction, real-time rendering and interactive shape de-
sign, ray-quadrics are suitable for use as building blocks in
implicit-equation-based modeling tools such as Construc-
tive Solid Geometry and soft objects.

CR Categories and Subject Descriptors: I.3.7 [Com-
puter Graphics]: Three Dimensional Graphics and Real-
ism, I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling.

Additional Keywords and Phrases: Interactive
Sculpting, Implicit and Parametric Representations, Solid
Modeling.

1 Introduction

In our experience, to be e�ective and useful in a wide vari-
ety of applications, a mathematical tool for shape (curve,
surface or solid) modeling should possess the following
properties:

1. Design: The user should be able to design a shape by
using simple and intuitive operations.

2. Control: The user should be able to change the shape
by using a control shape.

3. Computation: The computation of the designed shape
should be simple and fast.

4. Organic Appearance: The user should be able to gen-
erate an organic appearance.

In computer graphics, most widely used mathematical
tools for modeling are based on either parametric or im-
plicit representations. These two representations possess
distinctly di�erent modeling properties:

1. Design: Implicit representations inherently provide a
simple implementation of geometric operations such
as union and intersection by construction of formulas.
This property of implicit forms allows simple and in-
tuitive design by exact or approximate set operations
over volumetric shapes.

2. Control: All parametric representation based meth-
ods, such as Bezier, B-Spline or NURBs, use control
points to describe and manipulate a shape. Although
control points are essential to describe �ne details,
so far no implicit representation based method exists
that provides interactive construction and manipula-
tion with control shapes. Witkin and Heckbert sug-
gested an alternative control paradigm based on par-
ticles [WH94].

3. Computation: Parametric representations inherently
provide easy surface sampling for rendering by just
substituting parameter values, whereas, sampling an
implicit surface is a root-�nding process and, in gen-
eral, can be quite di�cult.

4. Organic Appearance: Implicit representations easily
provide blobby appearances and bulges [Blo91]. Since
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blobby appearances and bulges depends on underly-
ing �ne details similar to esh of biological objects
which depends on underlying �ne details such as bone
structure, the blobby appearances and bulges can give
the look of biological objects. In fact, the implicitly
based modeling tools that give control of blobbyness
such as Wyvill's soft objects [WT90] or Blinn's ex-
ponential functions [Bli82] have long been successful
in modeling organic looking shapes. In general, para-
metric representations are not well suited to creating
an organic appearance.

However, by viewing esh as a low frequency detail
component that can be shaped independently, hierar-
chical approaches can be successful in facial modeling.
Forsey and Bartels introduced a hierachical method,
hierachical B-splines, that provides control of di�erent
levels of details [FB88] and Forsey used hierarchical
B-splines to model faces.

1.1 Ray-Quadrics as a Dual-Represen-

tation

A modeling tool that capitalized on the di�erent strenghts
of both implicit and parametric techniques would greatly
extend the power of geometric modeling tools. Such a tool
could be used as a building block for implicit represen-
tations because of its implicit properties, while also pro-
viding fast and simple rendering because of its paramet-
ric properties. In fact, quadrics [Bli82] and superquadrics
[Bar81], both of which are popular mathematical tools
in computer graphics, provide both representations. In
this paper, we introduce another mathematical tool that
has such a dual nature: ray-quadrics. Ray-quadrics, like
hyperquadrics [Han88], are a superset of superquadrics.
Whereas hyperquadrics generalize superquadrics by go-
ing to higher-dimensions, ray-quadrics arise by introducing
non-homogenous functions. But, as we shall see, they be-
have like homogenous functions in a sense that will become
clear.

The modeling properties of ray-quadrics can be summa-
rized as follows:

1. Design: A subset of ray-quadrics can be constructed
by using geometric operators over ray-linears [Akl93],
[Akl96]. This new set of operators provides exact and
approximate set di�erence, border-intersection and
esh operation. By using these operators over the
ray-linear formulas of star shapes with the same cen-
ter, ray-quadric representations of toroids and shapes
with many holes can be constructed.

Ray-linear representations of half-spaces that include
the origin provide the simplest construction primitives
(building blocks). By using the approximate intersec-
tion and union operators of Ricci [Ric73] ray-linear
representations of convex and star shapes with the
same center can be constructed from ray-linear for-
mulas of half-spaces. The approximate union and in-
tersection operations can be considered global blend-
ing operations. These operations over non-negative

ray-linear representations of half-spaces are closely re-
lated to the super-elliptic local blending of Rockwood
[RO87].

As a result, ray-quadric representations provide sim-
ple and intuitive operations.

2. Control: Exact set operations over half-spaces result
in control shapes for ray-quadrics. Since the con-
trol shapes we use for ray-linears are star polyhedra,
the control shapes for ray-quadrics would be two star
polyhedra with the same center.

3. Computation: Ray-quadrics are similar to ray-linears:
their intersections with a parametric equation of a
ray that starts from the origin simplify to quadrics.
In fact, this simpli�cation phenomenon suggests the
name ray-quadric. Because of this simpli�cation, ray-
quadric implicit forms can easily be parameterized like
ray-linears. Therefore, once the related parametric
equations are obtained, computing the shapes is sim-
ply the evaluation of the related parametric equations.

4. Organic Appearance: Control of organic appearance
is accomplished by changing blending parameters.
These blending parameters smooth out the sharp
edges and corners resulting from exact set opera-
tions. There are four types of blending parameters:
global (union), local (intersection), set-di�erence and
esh. The global blending parameter smooths out
sharp edges resulting from the exact union of con-
vex polyhedra. Blobby e�ects come mostly from this
global blending parameter. Local blending parame-
ters smooth out sharp edges and corners of convex
polyhedra that result from the intersection of half-
spaces. Di�erent combinations of global and local
blending parameters create di�erent looks. Gener-
ally speaking, we can say that more blended shapes
look eshier, whereas less blended shapes look more
robotic and less organic. The set di�erence operator
smooths out sharp edges resulting from the exact set-
di�erence of two star polyhedra. The esh operator
creates a esh around the space curves generated by
the border-intersection operator.

A shape that is describable using a ray-quadric formula (a
ray-quadric shape) is restricted in the following sense: it
must have a center such that each ray originating from this
point intersects the shape at at most two points as shown in
Figure 1. To construct other types of shapes, ray-quadrics

Figure 1: Examples of ray-quadric shapes.

can be used as building blocks in implicit representation
based modeling tools such as constructive solid geometry
[RV82], Ricci's constructive geometry [Ric73], soft objects
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[WT90] or Blinn's exponential functions [Bli90]. Since ray-
quadrics are not polynomials, they are not compatible with
polynomial based implicit methods [Sed85], [SN86], [BI92].

The remainder of this paper is organized as follows. In
the next section, we provide the de�nition of ray-quadrics.
Based on the de�nition of ray-quadrics we describe, in Sec-
tion 3, the parameterization of ray-quadric implicit forms
and develop the concept of a guide shape. Section 4 ex-
plains how to construct convex and star shapes by using
non-negative ray-linears. In Section 5, we introduce sym-
metric set di�erence, set di�erence and border-intersection
and esh operations and show how to construct ray-quadric
shapes by using these operations. In Section 6, the prop-
erties of the ray-constant part are discussed. Finally, a
conclusion is given in Section 7.

2 De�nition of Ray Quadrics

Let V be a vector space. We use the letter v to stand
for an element of V and 0 for the zero vector. In two-
dimensional space v = [x; y], in three-dimensional space
v = [x; y; z]. Further, let <+ denote the set of non-negative
real numbers. We use the variable t to stand for an element
of <+. For the ease of formulation, we call in the following
these elements the positive reals, which, however, should
be understood to include zero. A value of �, however, will
denote a truly positive real, i.e., � > 0:

De�nition 1 A function F : V �! < is a ray-quadric i�
it has the form F (v) = A(v) +B(v) +C(v)
8v 2 V in which A;B;C : V �! < satisfy
A(vt) = A(v) t2, B(vt) = B(v) t and C(vt) = C(v)
8v 2 V and 8t 2 <+, The class of ray-a�nes are obtained
by taking A(v) = 0 for all v. B(v) is called a ray-linear
and C(v) is a ray-constant. A, B and C, in general, will
be called ray-polynomials.

A(v), B(v) and C(v) are like homogenous functions. How-
ever, unlike the homogenous case, t is restricted to posi-
tive reals for ray-polynomials. Note that because of this
restriction any homogenous function is a ray-polynomial,
but the opposite is not true. Ray-polynomials accept ab-
solute value; for instance, jv0 � vj is a ray-linear and
v0 � vjv0 � vj is a second-degree ray-polynomial where v0
is any constant vector such as v0 = [1; 0; 0]. The inclusion
of absolute value is a crucial step for the construction of
formulas. The approximate set operations of Constructive
Geometry of Ricci [Ric73] need non-negative functions, and
the absolute value lets us construct non-negative functions.

2.1 Ray-Quadric Shapes

De�nition 2 A ray-quadricly represented shape is one
that is described by the ray-quadric implicit representation

S = fv j F (v) = A(v) +B(v) + C(v) � 0g; (1)

where F (v) is ray-quadric.

Since v = v1t is an equation of a ray originating from the
zero vector, 0, in the direction of v1,

S(v1) = fv = v1t j A(v1t) +B(v1t) +C(v1t) � 0g
gives the intersection of the ray and the shape S. Because
of the ray-quadric property of F (v), this inequality simpli-
�es to a univariate quadric inequality

S(v1) = fv = v1t j A(v1)t2 +B(v1)t+ C(v1) � 0g:
Thus, the equation

A(v1)t
2 +B(v1)t+ C(v1) = 0

gives the border of S(v1) whose solution for t is

t1;2 =
�B(v1)�

p
B(v1)B(v1)� 4A(v1)C(v1)

2A(v1)

if A(v) 6= 0; otherwise we have

t =
�C(v1)
B(v1)

provided that B(v1) 6= 0. Note that, for some t to be an
acceptable solution, it has to be a positive real. If there
are no acceptable solutions, S(v1) is empty. If there is one
acceptable solution t we put t1 = 0 and t2 = t. Otherwise,
there are two solutions. Let t2 denote the larger one. Al-
though t1 and t2 are functions of v, only when a further
clari�cation is needed, will they be written as t1(v) and
t2(v).

For an acceptable shape, S (acceptable for shape design),
S(v1) should be bounded, and not include v1 t for arbi-
trarily large t. More precisely, it should be the case that

S(v1) = fv = v1t jt 2 [t1; t2g:
This corresponds to the case shown in Figure 2.a. The
complement shape in Figure 2.b is not bounded and there-
fore not acceptable. In both cases, S is shown with black
color. To exclude these, it should be the case that for all
v,

A(v) � 0 and

A(v) = 0) B(v) > 0:

In the following we assume that this condition is satis�ed.

a
b

Figure 2: Bounded and unbounded shapes.

3 Parameterization of Ray-Qu-

adrics

Let the directions of the vectors v1 and v2 be the same.
Then v2 = �v1 where � is a truly positive real. The equa-
tions of the rays that are in the directions of v1 and v2
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are v = v1t and v = v2u = �v1u, where both t and u
are positive reals. The intersection equations will be in the
form of

A(v1)t
2 +B(v1)t+ C(v1) = 0 and (2)

A(v2)u
2 +B(v2)u+C(v2) = 0: (3)

By replacing v2 = �v1 in equation 3, we �nd

A(v1)�
2u2 +B(v1)�u+ C(v1) = 0

This equation means that if t� is a solution of the equation
2, then one of the solutions of the equation 3, u�, is equal
to t�=�. Thus, we �nd that the intersection points are the
same for both rays:

v� = v1t� =
�v1t�
�

= v2u�

Since the position of the intersection points depends only
on the directions of the vectors, in order to �nd intersec-
tion points in a given direction only one vector is enough.
As a result, in order to give a parametric description of a
ray-quadric shape, it is su�cient to provide a parametric
equation of for some vector family that give only one vector
in each direction.

3.1 Guide Shapes and Parameteri-

zation

Let the shape S be represented by the parametric equation

S = fv = f(s) j 8s 2 Pg;
where P is a parameter space. This shape provides us a
vector family that can be used for parameterization and
computation of ray-quadrics if every ray originating from
0 intersects the shape at at most one point. So, for s1 6= s2,
the vectors f(s1) and f(s2) have di�erent directions. Such
a shape is a star with center 0. When such a star shape is
used for parameterization of ray-quadrics, we call it a guide
shape. Note that for parameterization of solid shapes, the
guide shapes will be surfaces.

A natural example of a guide surface is a sphere. A
parametric equation of a sphere is x = sin � sin ; y =
cos � sin ; and z = cos : Using this parametric equa-
tion of a sphere in a ray-a�ne implicit representation:
B(v) + C(v) � 0; we �nd the parametric equations for
any ray-a�nely represented shape

x = � sin � sin C(sin � sin ; cos � sin ; cos )

B(sin � sin ; cos � sin ; cos )
;

y = �cos � sin C(sin � sin ; cos � sin ; cos )

B(sin � sin ; cos � sin ; cos )
;

z = �cos C(sin � sin ; cos � sin ; cos )

B(sin � sin ; cos � sin ; cos )
:

This parametric equation of a sphere is not a good choice
since it generates congestions at both poles.

In general, a guide shape does not have to be represented by
only one parametric equation. In fact, most of the shapes

in computer graphics are represented by more than one
parametric equation. For instance, a shape that consists
of polygons can be considered a shape represented by a
set of linear parametric equations, or a shape represented
by patches can be considered a shape de�ned by a set of
bilinear parametric equations.

3.2 General Guide Shapes

De�nition 3 A parametrically represented shape S =
[ni=1Si is the one that is represented by by a set of para-
metric equations, fi : P �! V, where

Si = fv = fi(s) j 8s 2 Pg; (4)

and P is a given parameter space. This parametrically rep-
resented shape S is a bounded star shape if any ray origi-
nating from 0 intersects the shape S exactly at one point.

Since any ray originating from 0 intersects a bounded star
shape S exactly at one point, the di�erence of intersec-
tion points and 0 give us the equation of a vector fam-
ily. In other words, we can use the parametric equation of
a bounded star shape as a parametric equation of vector
family for parameterization of ray-linear implicit represen-
tations.

De�nition 4 A parametrically represented bounded star
shape S is called a guide shape if it is used for parameteri-
zation of ray-linearly represented shapes.

The related parametric equation for a ray-quadric shape is
in the following form: S = [ni=1Si; where

Si =

�
ffi(s)t j t1 � t � t2g if t1; t2 � 0,
; otherwise,

where t1 = t1(fi(s)) and t2 = t2(fi(s)).
1 For the rendering

quality of the shape, the points where t1 = t2 must be de-
termined as precise as possible. Otherwise large errors can
occur as shown in Figure 3. For the shapes rendered in this
paper, we used bisection method [PFTT86] on the equa-
tion B(fi(s))

2�4A(fi(s))C(fi(s)) = 0 in order to determine
the points where t1 = t2.

Figure 3: Improving the rendering quality of the shape.

For the �gures in this paper, we use icosahedra or cubes as
guide surfaces since they give better distributions. When
polyhedra with planar faces are used as guide shapes, the
parametric equations becomes simpler. For instance, let

1Note that if there is one acceptable solution, t, we put t1 = 0
and t2 = t and if there are two solutions. we chose larger one as
t2.
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the ith square face of a cube be given by four vectors:
vi;0;0, vi;0;1, vi;1;1, vi;1;0 for i = 1; 2; : : : ; 6. The para-
metric equation for the ith face is fi(u; v) = vi;0;0(1� u�
w) + vi;0;1w + vi;1;0u; where u; w 2 [0; 1]. Using these
parametric equations of the faces of a cube in a ray-linear
equation we �nd the parametric equation of the boundary
of a given ray-quadric shape.

4 Ray-A�nes and Star Shapes

If ray-a�ne formulas are used as in the following implicit
form,

S = fv j B(v) +C(v) � 0g;
only star shapes can be generated [Akl96]. However, for
a ray-a�ne implicit form, to �nd a parametric equation
of the shape is easier. The parametric equation of shape
represented by a ray-a�ne inequality is the following:

v(s) =
�C(f(s))
B(f(s))

f(s)

Ray-a�ne implicit forms also provide a powerful shape de-
sign methodology based on the constructive geometry of
Ricci.2

4.1 Always-Positive Ray-Linears

Let B+(v) be an non-negative ray-linear and C(v) = �1,
then the following ray-a�ne implicit form

S = fv j B+(v)� 1 � 0g: (5)

is exactly like the implicit form used in the constructive
geometry of Ricci. Moreover, non-negative ray-linears are
closed under the approximate union and intersection op-
erations of Ricci. Let B+

1 (v) and B
+
2 (v) be non-negative

ray-linears. If we apply generalized form of Ricci's union
and intersection operations, we get

B+(v) =
p
p
B+
1 (v)

p +B+
2 (v)

p:

This formula is also an non-negative ray-linear [Akl93] for
all real p values since

B+(vt) =
p
p
B+
1 (v)

p +B+
2 (v)

p t:

Note that this generalized operation includes both approx-
imate union and approximate intersection operations de-
pending on the sign of p. The operation is an approximate
union operation for the values of p < �2 and it is intersec-
tion operation for the values of p > 2.3

2Although Ricci's operations provide a very powerful tool
for shape modeling, because of the di�culty of rendering of the
shapes described by using these operations, the method has not
been used in its full power.

3Note that it is not possible include Ricci's approximate set
di�erence since 1

B+(v)
is not ray-linear. In the next section, we

introduce another set-di�erence operator.

We use non-negative ray-linears in order to develop the
modeling tool. As explained above, non-negative ray-
linears are closed under Ricci's exact and approximate
union and intersection operators. For ease of reading,
we always refer to non-negative ray-linears as ray-linears.
Therefore, in order to de�ne a control shape we can ap-
ply exact set operations iteratively to generate a structure
that can be expressed as nested exact unions or exact in-
tersections over a starting set of ray-linears. By replacing
each exact union operator (min(:; :)) by an approximate
union operator ( �p

p
(:)�p+(:)�p ) and each exact intersec-

tion operator (max(:; :) ) by an approximate intersection

operator ( p
p
(:)p + (:)p ), we obtain ray-linear implicit rep-

resentations of smooth approximations of the ray-linearly
represented control shape constructed by exact set opera-
tions. The starting set of ray-linear building blocks can be
any ray-linear function. In the next section, we explain the
building blocks we use.

4.2 Building Blocks for Ray-Linears

As is widely known, the distance function B+(x; y) =
p
p
jxjp + jyjp leads to the following implicit inequality which

provides a large number of shapes depending on the blend-
ing parameter p:
S = f[x; y] j p

p
jxjp + jyjp � 1g: Note that the distance

function is a ray-linear function. When p goes to 1, S
becomes square: = f[x; y]jmax(jxj; jyj) � 1g:
Since the maximum operator is an intersection operator
over the implicitly represented shapes this square shape
can be viewed as a control shape that is constructed
by the intersection of two in�nite symmetric stripes that
are given by following implicit inequalities: =

f[x; y] jjxj � 1g and = f[x; y] jjyj � 1g: Note that

both x and y are linears but are not always non-negative.
On the other hand, absolute values of these linear func-
tions, jxj and jyj, are ray-linears.

4.2.1 Symmetric Stripes

In general, linear functions de�ne half-spaces

S = fv j L(v)� 1 � 0g

that include 0. A linear function is a ray-linear-
homogenous polynomial. In three dimension, it is in the
form of L(v) = L([x; y; z]) = v0 � v = ax+ by + cz where
v0 = [a; b; c]. However, since linear functions L(v) are not
non-negative, another form should be used. Remembering
that absolute value functions are included by ray-linear,
let us examine jL(v)j. This function is an non-negative
ray-linear, and, it provides symmetric strips

S = fv j jL(v)j � 1 � 0g:

As a result, in order to describe a family of sim-
ple ray-linear building blocks we simply take the
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absolute values of linears. Let Li(v) be a lin-
ear function, then jLi(v)j is ray-linear. Note that
the implicit inequality jLi(v)j � 1 describes an n-
dimensional in�nite symmetric stripe. Therefore, S =
fvjmax(jL1(v)j; : : : ; jLn(v)j) � 1g is an n-dimensional
control shape generated by the intersection of such n-
dimensional in�nite symmetric stripes. For instance, in
two dimension the following equation gives an hexago-
nal control shape: S = f[x; y] jmax(jp2xj; jp2yj; jx +
yj) � 1g: As explained in the previous section, the in-

equality p
p
jp2xjp + jp2yjp + jx+ yjp � 1 gives a smooth

approximation of a hexagonal control shape. An ex-
ample of the minimum operator in two dimension is a
star octagon shape given as the union of two squares:
S = f[x; y] jmin(max(jxj; jyj);max(jx + yj=p2; jx �
yj=p2) � 1g and the shape that can smoothly ap-
proximate this star octagon is given by the inequality:
�p3

p
( p1
p
jxjp1+jyjp1)�p3+( p2

p
jx+yjp2+jx�yjp2)�p3� 1; where

p1, p2 and �p3 are blending parameters.

Since in�nite stripes are symmetric around the origin, their
intersection can only generate symmetric shapes: sym-
metric polygons in two-dimensions or symmetric polyhe-
dra in three-dimensions. Even-sided star or regular poly-
gons with parallel edges are symmetric polygons in two-
dimensions. Some examples of symmetric polyhedra in
three-dimensions are the cube, octahedron, icosahedron,
dodecahedron, cuboctahedron and great dodecahedron.
Another example of the use of symmetric stripes are non-
toroidal super-quadrics [SP91] which are given by the in-

equality: p2

q
( p1
p
jxjp1 + jyjp1)p2 + jzjp2 � 1: The cube is

the control shape for non-toroidal super-quadrics.

Symmetry is not always a desired feature for solid mod-
eling. For instance, in two-dimensions not only irregular
polygons but even regular polygons with an odd number of
edges such as regular triangles or regular pentagons cannot
be used as a control shape. In three-dimensions the reg-
ular tetrahedron cannot be used as control shape. Since
any convex or star polyhedron can be described as a com-
bination of exact intersections and unions of half-spaces,
we investigate the possibility of ray-linear representation
of half-spaces.

4.2.2 Half-Spaces

As mentioned earlier, half-spaces can be described by linear
inequalities of the form L(v) � 1; however, this represen-
tation is not useful for our purposes since L is not always
non-negative. Recall that since Ricci's approximate op-
erators include roots, functions that are not always non-
negative cannot be used. In order to �nd an alternative
representation, we assume that there exists an operation
H(L(v)) such that H(L(v)) is a ray-linear and describes
the same half-space as linear function L, giving

fvjL(v) � 1g = fvjH(L(v)) � 1g: (6)

We can show that such an operation H(L(v)) indeed
exists.4

First note that jL(v)j � 1 will create two inequalities: 1:
L(v) � 1 if L(v) � 0 and 2: �L(v) � 1 if L(v) < 0. The
second inequality is an unwanted one that creates symmet-
ric stripes. This unwanted inequality can be eliminated by
simply equating the negative part to zero. This operation
does not a�ect the shape since L(v)� 1 will still be nega-
tive. In other words, if we can ensure H(L(v)) = 0 when
L(v) < 0 and H(L(v)) = L(v) when L(v) � 0, H(L(v))
will be a ray-linear that satis�es the condition given in
equation 6. One function that quali�es is

H(L(v)) = 0:5L(v) + 0:5jL(v)j: (7)

By using half-spaces as building blocks, we obtain ray-
linear implicit representations which are easily parameteri-
zable. Therefore, once the related parametric equations are
obtained, computing the shapes is simply the evaluation of
the related parametric equations. However, the complexity
parametric equations that represents star solids increases
as the number of building blocks (in this case half-spaces)
increases. Therefore, there has been a need for faster eval-
uation of the parametric equations.

4.3 Interactive Construction of

Smoothly Blended Star Solids

In this section, we briey present a computationally e�-
cient method which we developed earlier in order to guar-
antee the interactive construction of ray-linearly repre-
sented solids. Based on our method, computation of a new
solid shape when a new half-space is added or when the
position of an existing half-space is changed can be per-
formed in constant time and in space linear in the number
of half-spaces. Because of this method, it has been possible
to interactively construct ray-linearly represented solids.

This method , by reusing the previous computation, makes
the computation of these parametric equations indepen-
dent of the number of half-spaces. As a result of this in-
dependency, when a user adds a new convex polyhedron
or changes the position of a vertex of a convex polygon, a
new solid shape can always be computed in constant time.

Based on this fast construction algorithm, we have also
developed a three-dimensional modeling tool in order to
construct smoothly blended star solids. By using this pro-
gram, it is possible to construct with union and intersection

4In order to represent half-spaces Ricci used exponential of
linear functions [Ric73]:

S = fv j a:eL(v) � 1 � 0g;

where a is a positive real number. Note that a:eL(v) is non-
negative but not ray-linear. However, we observe that these ex-
ponential building blocks result in ray-exponentials which seem
to be useful for modeling and need a further investigation. In
addition, note that we cannot use a�ne building blocks since
they do not result in ray-linears.

6



operations over half-spaces that includes origin. These op-
erations can only generate star shapes which may seem a
big restriction; however, star shapes includes many inter-
esting shapes [Akl96]. For instance, all the faces in �gure 7
are star shapes. Each face is given by one non-negative ray-
linear formula. Each formula is designed by approximate
union operations over ray-linear formulas that give smooth
approximation of general convex prisms. The formulas of
each convex prism are constructed from formulas of two
two-dimensional convex shapes. We designed these formu-
las by using two two-dimensional projections that give front
and side views of a face. Designing each face took approxi-
mately �fteen minutes. A formula for a face is represented
by around 70 two- or three-digit decimal numbers. These
numbers are either coe�cients of linear functions that de-
�ne half-spaces or smoothing coe�cients of approximate
unions and intersections (p's). Small changes in coe�cients
do not considerably e�ect the shapes, so for the purpose of
shape design this technique is robust.

5 Ray-Quadrics

In this section we introduce ray-quadric formulas, based
on non-negative ray-linears, that leads to some intuitive
operations over star shapes with the same center.

5.1 Symmetric Set-Di�erence Opera-

tion

The following ray-quadric inequality provides symmetric
set-di�erence operation over two star shapes represented
by non-negative ray-linears

S1 
 S2 = fv j (B+
1 (v)� 1)(B+

2 (v)� 1) � 0g:
The multiplication of B+

1 (v) � 1 and B+
1 (v) � 1 is less

than zero i� one of them is smaller than zero and the other
one larger than zero. The multiplication operation over
formulas provides a symmetric set-di�erence operation over
shapes. Note that the symmetric set-di�erence is like an
exclusive-or operation over boolean formulas.

Figure 4: Exact and approximate symmetric set di�erence
operations

Symmetric set-di�erence over star shapes with the same
center does not generate interesting shapes. The results
will look like the union of two star shapes with the same
center. Let us rewrite the inequality without parenthesis
to observe this phenomenon, yielding

S1
S2 = fv j (B+
1 (v)B

+
2 (v)�B+

1 (v)�B+
2 (v)+1) � 0g:

Since this inequality is a ray-quadric, the intersection in-
equality with a ray originating from 0 is in the form of

(xy)t2�(x+y)t+1 � 0, where x = B+
1 (v1) and y = B+

2 (v1)
and v1 is the direction of the ray. The intersection with
the ray occurs i� � = (x + y)2 � 4xy � 0. However,
(x + y)2 � 4xy = (x � y)2 and it is always bigger than
or equal to zero. This means that S1 
 S2 is like a crust
completely covering an inside hole. The shape will not be
smooth at the edges where � = 0. In order to create holes
on crust and smooth out the edges, we need a slight modi-
�cation in inequality. It is possible to change �, by adding
a new constant term �2 to the formula. The resulting ap-
proximate symmetric set di�erence is

(S1 
 S2)� = fv j (B+
1 (v)� 1)(B+

2 (v)� 1) + �2 � 0g:
The new � will be in the form of � = (x+ y)2 � 4xy(1 +
�2) = (x � y)2 � �2xy � 0. It is clear that bigger � yields
smaller �. As a result of smaller �, the intersection points
with the ray either come closer or are eliminated completely
(when � becomes negative). As a result of this modi�ed
operation sharp edges are smoothed out by creating holes
as shown in Figure 4. The symmetric set-di�erence oper-
ation is not by itself interesting for shape modeling. We
provided this discussion in order to simplify the explana-
tion of a more complicated approximate set-di�erence op-
eration in the next section.

5.2 Set-Di�erence and Approximate

Set-Difference Operations

Figure 5: Exact and approximate set di�erence operations

A slightly modi�ed version of symmetric set-di�erence
gives the set di�erence of two star shapes represented by
non-negative ray-linears as

S1 � S2 = fv j (B+
1 (v)� C0(v))(B

+
2 (v)� C0(v)) � 0g

where ray-constant C0(v) = sign(B+
2 (v)�B+

1 (v)) and with

sign(z) =

�
+1 if z � 0
�1 otherwise

To show why this operation gives set di�erence, we can
start from the observation that

S1 � S2 = fv j B+
1 (v) � 1 ^ B+

2 (v) � 1g:
So we have to establish the equivalence of the two condi-
tions

B+
1 (v) � 1 ^B+

2 (v) � 1; and

(B+
1 (v)� C0(v))(B

+
2 (v)� C0(v)) � 0;

for all v.

If for a given v, B+
2 (v) < B+

1 (v), the �rst of these con-
ditions is not satis�ed. In this case C0(v) = �1, so the
second condition reduces to

(B+
1 (v) + 1)(B+

2 (v) + 1) � 0;
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which is also clearly not satis�ed, since B+
2 (v) and B

+
1 (v)

are non-negative.

If, on the other hand, B+
2 (v) � B+

1 (v), we have C0(v) =
+1, so the second condition reduces to

(B+
1 (v)� 1)(B+

2 (v)� 1) � 0;

which is the case i� B+
1 (v) � 1 ^ B+

2 (v) � 1 or B+
1 (v) �

1^B+
2 (v) � 1. Combining this with the condition B+

2 (v) �
B+
1 (v), we obtain the �rst condition:

B+
1 (v) � 1 ^B+

2 (v) � 1:

Set di�erence of two star shapes generates sharp edges.
To smooth out these edges, the approximation idea in the
previous section is used. By adding a constant term �2 to
the inequality, the approximate set-di�erence operation

(S1�S2)� = fv j (B+
1 (v)�C0(v))(B

+
2 (v)�C0(v))+�

2 � 0g
is obtained. The result of the approximate operation is
represented in Figure 5. Examples of approximate set dif-
ferences for di�erent � are shown in Figures 8 and 9. In
the next section, we introduce another set of operators:
Border-intersection and esh.

5.3 Border-Intersection and Flesh Op-

erators

Two Star Shapes Intersection of
Their Boundaries Flesh

more and more Flesh

Figure 6: Border-intersection and esh operations

In this section, we are interested in the intersection of bor-
ders of two shapes represented by general ray-a�nes. In
two-dimensional space this operation gives a set of points,
in three-dimension a set of space curves. Let �S denote the
border of S. Then

�S = fv j (B(v) + C(v))2 � 0g
Then, the intersection of borders of two shapes S1 and S2
can be given by a ray-quadric inequality:

�S1\�S2 = fv j (B1(v)+C1(v))
2+(B2(v)+C2(v))

2 � 0g
where Ci(v)'s can be zero. For instance,

(
p
x2 + z2 � 1)2 + y2 � 0

gives a space circle. To generate a esh around the space
curves, it is enough to subtract a constant �2 from the
inequality:

�S1\��S2 = fv j (B1(v)�C2(v))
2+(B2(v)�C2(v))

2��2 � 0g
provides a esh around this intersection. The results of
border intersection and esh operation is represented in

Figure 6. For instance, (
p
x2 + z2� 1)2+ y2� �2 � 0 is an

equation of a torus.

Examples of border-intersection and esh operators are
shown in Figures 10 and 11. The shapes in Figure 10
are represented by the inequality

�
�16

q
(x2 + y2)�8 + (y2 + z2)�8 + (z2 + x2)�8 � 1

�2

+

�p
x2 + y2 + z2 � 1

�2
� �2 � 0:

The �rst part of this formula is union of three perpendicu-
lar cylinders and the second part is a sphere. The border-
intersection operation creates six circular space curves and
� changes the tickness of the esh as shown in Figure 10.
The shapes in Figure 11 are described by generating a esh
around the intersection of the surfaces of an icosahedron
and a sphere. Since the intersection points are actually
vertices of a truncated icosahedron [Wil79], the resulting
shapes resemble a soccer ball. Note that changing the
thickness of esh, �, changes the topology of the shape;
however the change is expected and intuitive.

6 Ray-Constants

The ray-constant part of ray-quadrics has not been exam-
ined up to this point. In fact, ray-constants are responsible
for the greater choice of functions. The next theorem states
this fact.

Theorem 1 [Akl93] Let C1(v), C2(v), : : : ; Cn(v) be ray-
constants and let f be any function from <n to <. Then

f(C1(v); C2(v); : : : ; Cn(v))

is also ray-constant.

An example of ray-constant functions is the angle between
two vectors. For instance

xp
x2 + y2 + z2

gives the cosine of the angle between the vectors [1; 0; 0]
and [x; y; z]. It is possible to attach a unique value to
every ray with ray-constants. In other words, each ray-
constant function can be considered a parameter. Using
more than one ray-constant function it is possible to give
a distinct set of parameters to each ray. Then by using a
parametric function over this set of ray-constant functions
another ray-constant function will be obtained. Examples
of ray-constant functions are shown in Figures 12 and 13.
We generated the shapes in Figure 12 by using set di�er-
ence and border-intersection and esh operations over two
planet-like shapes. First, by using a sinusoidal ray-constant
function we described a mountain range which covers plan-
ets like a spiral. We chose the shape of the planets as the
same except for the position of mountain ranges. The high-
est peak of a mountain in one planet corresponds with the
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lowest point of a valley in the other planet. This relation
between valleys and mountains created holes as shown in
Figure 12.

Each teapot in Figure 13 consists of four shapes: body,
lid, handle and spout. All lids and bodies are star shapes
which are described by approximate union and intersection
operations. We designed handles and spouts by border-
intersection and esh operation over a generalized toroidal
�gure. The thickness of the esh is described by a ray-
constant term which is a Bezier curve depending on an-
gles. We designed the overall shapes of toroidal handle
and spout in two dimensions by using approximate union
and intersection operations. The �rst teapot and the last
elephanTpot have the same formulas except for the Bezier
coe�cients of the ray-constant term. For the �rst three
shapes, only the smoothing parameter p of the approxi-
mate unions and intersections is di�erent.

7 Conclusion

We introduced a new building block for implicit represen-
tations: ray-quadrics. Ray-quadrics provide a large variety
of shapes with intuitive shape construction, real-time ren-
dering and interactive shape design.

In order to represent shapes that cannot be represented
by a single ray-quadric formula, ray-quadric formulas
can be used in constructive solid geometry [RV82] or
in Blinn's exponential functions [Bli82] in the form of
nX
i=0

e�Ai(v�vi)�Bi(v�vi); or in the soft object equations

[WT90]. Ray-quadrics can be deformed by using deforma-
tions [Bar84], [SP91] or superposed by using convolution
[Blo91].

Higher-degree ray-polynomials can also be used to repre-
sent shapes that cannot be represented by a single ray-
quadric formula. For instance, it is possible to represent a
teapot with only one ray-cubic inequality. The main prob-
lem is in �nding intuitive geometric operators which give
higher-degree ray-polynomials. In addition, rendering will
not be as easy as for ray-quadrics. It seems that these
two problems may limit the usage of ray-polynomials to
ray-quadrics.
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Figure 7: Each face is a star shape that is given by a
single ray-linear formula. All these faces constructed in
approximately �fteen minutes by changing parts such as
the nose, chin or lips.

Figure 8: Shapes that are are generated by approximate
set di�erence operations.

Figure 9: Shapes that are are generated by approximate
set di�erence operations.

Figure 10: Shapes that are generated by border-
intersection and esh operations.

Figure 11: Soccer balls that are generated by border-
intersection and esh operations.

Figure 12: The e�ect of ray-constant.

Figure 13: Three teapots and one elephanTpot. Elephant
tusks are also ray-quadrics.
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