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ABSTRACT

Ray-quadrics appear to be a powerful technology
for shape modeling. This paper shows how some of
the mathematical obstacles to the use of ray-quadrics
can be addressed and presents a prototype shape mod-
eling system based on ray-quadrics.

Our contributions in this paper are the following:

1. A new formulation for ray-quadrics, relating them
to univariate quadratic polynomials. The new
formulation simpli�es the development of soft-
ware implementation.

2. An intuitive method for polygonizing ray-quadric
surfaces.

1. INTRODUCTION

The key problem in developing a sculptor-friendly
shape modeling system comes from the restrictions
imposed by the commonly used tensor-product B-
spline parametric forms. Since B-splines can provide
interactive shape construction and easy implementa-
tion, they are extremely attractive for the designers
of solid modeler designer systems. However, since
the control point mesh of tensor-product B-splines
must be organized as a regular rectangular structure,
they can only support surfaces with limited topology.
For modeling surfaces of arbitrary topology with B-
splines a number of techniques have been advanced.
Forsey and Bartels proposed Hierarchical B-Splines
[9], Loop and DeRose introduced S-patches for gen-
eralization of B-spline surfaces to support arbitrary
topologies [13], Loop later introduced quad-nets to re-
�ne irregular meshes [14] and Grim and Hughes used
manifolds for modeling surfaces of arbitrary topol-
ogy [11]. Catmull and Clark Subdivision surfaces
o�ers an non-analytical alternative, and overcomes
the topological restrictions of the tensor product B-
splines [8, 12, 15]. Other analytic alternatives for
representing arbitrary topologies include implicit rep-
resentations such as Soft-Objects [22], Constructive

Solid Geometry [20, 19], F-representations [17], Hy-
perquadrics [10], Ray-quadrics [2] and others. The
major obstacle for some implicit representations lies
in computation time. The problem is that more com-
plicated shapes require a larger system of implicit for-
mulas. This usually results in more computations due
to the increased size of the implicit formula. Ray-
quadrics is not an exception. A general ray-quadric
formula can be extremely hard to compute. How-
ever, for a certain subset of ray-quadrics the computa-
tion time remains constant, completely independent
of shape complexity [1]. Moreover, this constant com-
putation time is small enough to permit interactive
shape construction. Thus, a subset of ray-quadrics
guarantees interactive computation.

Another advantage of ray-quadrics is that their
topological limitations are di�erent from those of ten-
sor product B-splines. Ray-quadrics can only repre-
sent surfaces that satisfy the ray-quadric condition.
A surface satis�es the ray-quadric condition if there
exists a point such that every ray originating from
this point intersects the surface at at most two points.
This condition can be considered an important com-
promise for many shape modeling applications. How-
ever, for some other applications such as sculpting
faces, ray-quadrics can be extremely useful. Faces
have just such handles (or holes) - the mouth, nos-
trils, eyes and so on - and can be topologically repre-
sented by toroids with several handles. If we exclude
the ears, for most faces it is possible to �nd a point
such that every ray originating from this point inter-
sects the face at at most two points, which is exactly
like a surface that satis�es the ray-quadric condition.

Ray-quadrics had two earlier problems that lim-
ited their use. First, the mathematical description of
ray-quadrics was too complicated. Ray-quadrics are a
subset of a class of functions called ray-polynomials.
We have recently developed a more intuitive math-
ematical formulation which relates ray-polynomials
with univariate quadratic equations. The new for-
mulation based on ray-polynomials simpli�es working
with ray-quadrics and the development of software



based on ray-quadrics. Second, polygonization of ray-
quadric surfaces was not intuitively simple. By in-
troducing the concept of dummy intersection points,
the polygonization process has become more intu-
itive. We have developed prototype software for inter-
active shape modeling based on these new approaches.

The paper is organized as follows. In the next
section, the descriptions of ray-polynomials and ray-
polynomial shapes are introduced. We also intro-
duce ray-quadrics as subsets of ray-polynomials. In
addition, we brie
y explain the topological proper-
ties of ray-quadrics and how to construct ray-quadric
shapes. The subsequent section is the discussion of
the polygonization of ray-quadric surfaces. We con-
clude with the presentation of a prototype shape mod-
eling system and discussion of its restrictions.

2. DESCRIPTION OF RAY-POLYNOMIALS

To describe ray-polynomials we �rst describe ray-cons-
tants. Let v be a vector in <3, then a ray-constant A
is a function from <3 to < that satis�es the condition
A(v) = A(�v) where � is any positive real number.
In other words, ray-constants are functions only of
the orientation of the vectors, v.1 A simple example
of a ray-constant is the cosine of the angle it makes
with a vector, v0, which is given by v0�v

jv0jjvj
. Let g

be any function from < to <, then it is easy to show
that if A(v) is ray constant then so is g(A(v)). In
this paper, capital letters A;B;C and D will be used
to denote ray-constants.

The description of ray-polynomials is based on
ray-constants. Let X denote the length of v, then a
function F from <3 to<will be called a ray-polynomial
if it has the form

F (v) =
NX
n=0

An(v)X
n(v) =

NX
n=0

AnX
n: (1)

The function F will be called ray-quadric if N = 2,
ray-a�ne or ray-linear if N = 1. Note that the us-
age of X instead of jvj helps to simplify the notation
and emphasize the univariate structure of ray-poly-
nomials.

We must also introduce the de�nitions of ray-
polynomial solids V(F ) and boundaries of ray-polynomial
solids (Ray-polynomial surfaces) S(F ) by relating them
to their ray-polynomial implicit equations as

V(F ) = f v j F (v) � 0 g;

and
S(F ) = f v j F (v) = 0 g:

1Ray-constant is really a function on the unit sphere. Since

there is no requirement, the value of a ray-constant function

can change drastically across the unit sphere. Moreover, the

function is not continuous at origin 0. Unless it is clearly

stated, we presume that the value of a ray-constant function

at origin is a positive number.

If F is ray-quadric or ray-a�ne these shapes will be
called ray-quadric or ray-a�ne solids or surfaces.

This paper focuses mainly on the problem of poly-
gonization of ray-quadric surfaces. To explain the
polygonization process using a familiar notation, in-
stead of the general ray-quadric form, a restricted
form is used2

F (v) = X2 � 2BX + C: (2)

For ray-a�nes we also use another simpler form

F (v) = X � A: (3)

These forms give a geometrically intuitive explana-
tion of the shapes. For instance, V(X�A) means the
set of vectors whose lengths are no longer than A(v)
and S(X�A) means the set of vectors whose lengths
are equal to A(v). The same type of geometric in-
tuition can also be used for ray-quadric shapes. For
instance, V(X2� 2BX +C) means the set of vectors
whose lengths are between B �D and B +D where
D =

p
B2 � C. There is an additional advantage to

choosing these forms. V(X�A) and V(X2�2BX+C)
are guaranteed to be bounded solids when the values
of A(v); B(v) and C(v)'s are bounded.

2.1. Topology of Ray-Quadric Surfaces

It is helpful to �rst examine ray-a�ne surfaces. The
topology of ray-a�nes comes directly from their de-
scription; every ray originating from the origin will
intersect ray-a�ne surface S(X � A) at at most one
point. Based on this observation it is possible to show
that V(X � A) is a star shape and S(X � A) is the
boundary of a star shape. Stars are not as restric-
tive as they sound. Many shapes around us are star
shapes. For instance, many faces can be approxi-
mated as star shapes. Construction of shapes resem-
bling human faces is possible by using an earlier in-
teractive shape modeling system based on ray-a�nes
[1].

The claim in the previous paragraph is easily shown
to be correct. A ray starting from the origin can be
given by the direction of a vector. Since A(v) is a ray-
constant and has a unique value for any given direc-
tion, the equation X = A has at most one solution.3

It is important to note that if A(v) is negative there
will be no solution, sinceX is the length of the vector,
which should be a non-negative real number.

Ray-quadrics are more expressive than ray-a�nes
in the sense that all ray-a�nes are ray-quadrics, but
the reverse is not true; every ray originating from the
origin intersects ray-quadric surfaces at at most two
points. Ray-quadrics include certain toroids with any

2By using these forms, we only lose the ray-linears which

are given by AX.
3Note that we presume that the value of a ray-constant

function at origin is a positive number. Therefore, zero vector

will not be a solution.



number of handles. For instance, a ray-quadric face
can have a mouth opening or nostrils but a ray-a�ne
face cannot.

It is also easy to show why every ray originating
from the origin intersects ray-quadric surfaces at at
most two points. For a given direction, the equation 3
has two roots

X+ = B +D and X� = B �D

where D =
p
B2 � C. For simpli�cation, we will de-

note X� = B �D, to be the set fX+; X�g. If both
roots are positive reals, then two intersections exist.
If both are negative or complex, there is no intersec-
tion. If X+ = X� there is only one intersection. It
is also true that there will be only one intersection
when one root is positive and the other one is nega-
tive. However, this will not occur as long as C(v) is
positive.

2.2. Construction of Ray-Quadric Representations

The set operations over ray-a�ne solids can be im-
plemented by functional composition of ray-constants
which result in ray-quadrics [2, 1]. These operations
are easier to explain by using the new formulations.
Let V(X�A1) and V(X�A2) be two star solids, then

V(X�A1)\V(X �A2) = V(X�min(A1; A2)); (4)

V(X�A1)[V(X�A2) = V(X�max(A1; A2)); (5)

V(X�A1)�V(X�A2) = V((X�A1A3)(X�A2A3));
(6)

where A3 = sign(A1 � A2), with sign(x) = �1 if
x < 0, sign(x) = 1 otherwise. These operations are
illustrated in the Figure 1. As shown in the Fig-
ure 1 sign(A1 � A2) term transforms symmetric set
di�erence operations into a set di�erence operation
by eliminating the roots when A1 < A2.
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Symmetric Set Difference Set Difference 
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   A 3 = sign(A 1−A2)

Figure 1: Set operations over star shapes that is given
by ray-a�nes.

The sharp edges and corners resulting from ex-
act set operations can be smoothed out by changing
some blending parameters of the functional operators.

These smoothing operations, which are also called ap-
proximate set operations, resemble real shape mod-
eling operations. For instance, the intersection of
a solid with a half-space is like cutting that solid
with a knife. Smoothing the edges by using an ap-
proximate set-operation resembles sanding the sharp
edges. These approximate operations can easily be
obtained by exchanging the max and min operations
with Ricci's approximate set operations [20] and adding
a constant term into set-di�erence operation

V(X �A1)\p V(X �A2) = V(X � �p

q
A�p1 +A�p2 );

(7)

V(X�A1)[p V(X�A2) = V(X� p

q
Ap
1 +Ap

2); (8)

V(X�A1)�rV(X�A2) = V((X�A1A3)(X�A2A3)�r)
(9)

where blending parameters p and r are positive real
numbers that control smoothing.

Another useful operation on V(X�A1) and V(X�
A2) is called boundary intersection and 
esh opera-
tion. Intersection of boundaries of solids (surfaces)
that result in space curves can also be described by
functional composition of ray-constants

V((X �A1)
2 + (X �A2)

2): (10)

This equation is notoriously unstable, since the zeroes
of (X�A)2 are all double roots and are hence subject
to 
oating point errors that make them disappear.
However, the equation 10 is extremely useful since
these space curves represented by the equation serve
as a skeleton of solids given by

V((X �A1)
2 + (X �A2)

2 � r2): (11)

where r is a positive real number that creates a 
esh
around the skeleton curve.

3. POLYGONIZATION OF RAY-QUADRIC

SURFACES

To provide fast rendering, we �rst polygonize our ray-
quadric surfaces. Since the polygonization must be
done during the construction process, it must be fast
to provide interactive construction to the user. There
exist many general methods for polygonization of im-
plicit surfaces Bloo88,Over93,Bloo95,Hart97. How-
ever, because of special nature of ray-quadrics, fast
polygonization of ray-quadric shapes requires a spe-
cial method.

One of the earlier problem in polygonization was
the computation of the ray-constant terms coming
from approximate union and intersection operations.
It was shown that these terms can be computed in
constant time if union and intersection operations are
organized [1]. This organization is brie
y explained
in the next section. A ray-a�ne shape modeling sys-
tem for interactive construction of star surfaces by



union and intersection operations was developed ear-
lier based on fast computation of these terms [1].

Computation of ray-constant terms for set-diffe-
rence and 
esh operators, which are given by equa-
tions 9 and 11, is simple. However, there is a com-
pletely di�erent problem in this case: As a result of
these two operations ray-quadric surfaces which are
toroidal surfaces with several handles are constructed.
To support interactive construction by these opera-
tors, our polygonization process should support ray-
quadrics. Since the resulting equations of set-di�erence
and 
esh operators can be transformed into equa-
tion 3 the equation X2�2BX+C will be used to dis-
cuss the polygonization of ray-quadric surfaces. The
polygonization process will be explained by using the
simplest case where B � D � 0 with D =

p
B2 � C.

This condition guarantees that there are always two
intersections with ray-quadric surfaces.

3.1. Polygonization for the Case B � D � 0

The assumption that B � D � 0 guarantees both
roots of equation 3, X+ = B +D and X� = B �D,
are positive real and X+ � X�. In other words, there
will always be intersections with a ray starting from
the origin, and the order of the intersection points
will never change over the surface.

3.1.1. Projection of a Point onto Ray-Quadric Sur-
face

Let a direction be given by a vector vi and ni =
vi=jvij be the unit vector in the direction of vi. In
addition, let vi+ and vi� denote intersection points
with the ray-quadric surface along the ray from the
origin in the direction of vi. For simpli�cation, we
will denote vi� to be the set of intersection points
fvi+ ;vi�g. Then the intersection points can be sim-
ply computed by multiplying the unit vector ni in the
direction of vi with the roots X�

vi� = niX� = vi
B �D

jvij :

It is possible to view this operation in two di�er-
ent ways. One interpretation is the intersection of a
ray in the direction of vi with the ray-quadric surface.
The other interpretation is the projection of a point
given by vi onto the ray-quadric surface as shown in
Figure 2. The second interpretation is useful since it
makes it possible to present a simple explanation of
polygonization of ray-quadric surfaces. Let us �rst
imagine projecting a triangle onto a ray-quadric sur-
face.

3.1.2. Projection of a Triangle onto a Ray-Quadric
Surface

Let a triangle T be given by an ordered set of three
vectors T = fvi;vj ;vkg. We call this triangle a guide

Origin

v i

v i

Figure 2: Finding an intersection point or projection
of a point on a ray-quadric surface.

triangle. A triangle must satisfy three conditions to
be used as guide triangle.

� The order of the vertices of the guide triangle
must guarantee that its surface normal vector
points away from the origin. In other words,
the vertices of the triangle must satisfy an in-
equality such as (vi � vj � vj � vk) � vi > 0.

� The vertex directions must satisfy the inequal-
ity ni 6= nj 6= nk. This condition guarantees
that the triangle will not reduce to a line or a
point when it is projected.

� The solid angle of the triangle that is seen from
the origin must be small. This condition is nec-
essary in order to get a good approximation of
a ray-quadric surface.

By using the procedure in the previous section, we can
project a guide triangle onto the ray-quadric surface
and obtain two triangles which we call projection tri-
angles T+ = fvi+ ;vj+ ;vk+g and T� = fvk� ;vj� ;vi�g.
Since in this case the inside of the ray-quadric solid
is between two projection triangles T+ and T� the
order in the second triangle has to be reversed to get
the correct normal vector. The projection of a guide
triangle is illustrated in Figure 3. It is simple to gen-
eralize the guide triangle idea into a guide polyhedron
idea.

Origin

Figure 3: Guide and projection triangles.

3.1.3. Projection of a Guide Polyhedron onto a
Ray-Quadric Surface

Let a star polyhedron be given and the origin be the
center point of this star shape. Let us also assume
that each face of the star polyhedron is transformed
into a set of triangles. Then, the polygonization of
ray-quadric surface can be easily done by projecting
all of the triangles of the star polyhedra onto ray-
quadric shape. We call this star polyhedron guide



polyhedron. In practice, instead of general star poly-
hedra, we use regular convex polyhedra such as a cube
or an icosohedron. No doubt The faces of the cube
or icosohedron are tesselated into smaller triangles as
required to get better tesselation of the ray-quadric
surface.

3.2. Polygonization for General Case

In the general case where the condition B2 � C � 0
does not necessarily hold, it is possible for roots to
be negative, complex or change across the surface. If
both roots are negative or complex, there will be no
intersection with the ray-quadric surface in the direc-
tion of the given vector vi. In this situation we can
say that vi cannot be projected onto the ray-quadric
surface. If none of the three vertices of a guide trian-
gle can be projected, the usage of this guide triangle
will simply be eliminated. However, if one or two
vertices but not all three can be projected, the poly-
gonization becomes complicated and a special process
has to be developed.

In the case when only one or two vertices can be
projected, the problem becomes determination of the
directions that give only one intersection, as shown
in the 2D example in Figure 4. This determination
requires changing the guide polyhedron into a new
one as also shown in Figure 4. To change the guide
polyhedron, each guide triangle with one or two un-
projected vertices has to be transformed into a new
set of guide triangles. The procedure for changing
a guide triangle into a set of new guide triangles is
shown in Figure 5. This procedure is based on the cre-
ation of dummy intersection points when there is no
intersection. Using these dummy intersection points,
the guide triangles can be transformed onto the ray-
quadric surface. As explained below, the dummy in-
tersection points are chosen so that their order is re-
versed from neighboring intersection points. Thus,
the projection triangles will intersect with each other.
The corners generated by this intersection are used
to describe new guide triangles as shown in Figure 5.
Note that the dummy intersection points are thrown
away once the new guide vertices are found.
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Figure 4: Determination of directions that give only
one intersection.
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Figure 5: Determination of new guide triangles

is the crucial step in this process. Computation of
dummy intersection points depends on whether roots
of X2 � 2BX + C are complex or negative.

� If B2 � C is negative, the roots will be com-
plex. This case will occur when applying both
set-di�erence and 
esh operators given by equa-
tions 9 and 11. In this case, a dummy D =p
B2 � C value is computed as Ddm =

�pC �B2. If B is positive dummy rootsXdm�

and Xdm+
are given Xdm� = B � Ddm. Note

that since Xdm� � Xdm+
, the order of dummy

intersection points will be reversed.

� If B is negative and B2 � C is positive, roots
will be negative real. This case will occur only
when applying set-di�erence operator given by
equation 9. In the set-di�erence operation if the
term sign(A1 � A2) is negative B will be neg-
ative. In our applications both A1 and A2 are
non-negative, therefore, B2 � C will be always
positive. In this case, dummy roots are com-
puted as Xdm� = �B �D = �X�. The e�ect
of this computation is again reversing the order
of roots of a shape resulting from symmetric set
di�erence operation.

The procedure described above is applied until the
distance between dummy points is smaller than a cho-
sen threshold. Once we reached that threshold, a
point in between two dummy points will be used as
an intersection point. The algorithm explained in [1]
uses old values of ray-constants in order to compute
new ones in a given direction v. Therefore, the re�ne-
ment of guide triangles to achieve high quality can be
costly, since re�nement requires computation of val-
ues of ray-constants for new directions. To avoid this



computation, the system computes only one iteration
in interactive mode. The resulting shapes are still of
good quality. All images in this paper are obtained
using only one iteration.

Since the concept of dummy intersection points
makes the process geometrically intuitive, we think
that the new process is appealing for programming.

4. PROTOTYPE SYSTEM

We have recently developed a new prototype shape
modeling system based on results discussed in pre-
vious sections. Using this new system, ray-quadric
surfaces can be interactively constructed with entry
level graphic workstations such as SGI O2.

In this system, constructions using union and in-
tersection are inherited from the earlier ray-a�ne shape
modeling system, which is mentioned in the previous
section. Since shapes resembling faces can be rep-
resented by star shapes, it was possible to interac-
tively construct shapes resembling human faces by
using that ray-a�ne system. In the new system the
user speci�es two star shapes instead of one.

4.1. Star Surface Construction and Its User Inter-
face

In the system, users specify control shapes by us-
ing exact set operations over half-spaces. These half
spaces are given by the ray-quadric plane equation

X � aijvj
niv

, where ai is the distance to the origin and
ni is the unit normal to the planar surface. The user
describes these half-spaces by �rst drawing convex
polygons on each of two perpendicular planar sur-
faces. These perpendicular planar surfaces are either
the planes x=0 and y=0 or x=0 and z=0. Each con-
vex polygon actually de�nes an in�nite prism whose
axis is perpendicular to the planar surface on which
the polygon is drawn (i.e., the edges of the polygons
describe half-spaces perpendicular to the planar sur-
face on which the polygon is drawn). The intersection
of the two prisms describes a convex polyhedral con-
trol shape. By changing the blending parameter p
of approximate intersection operation, the user can
generate a smoothed out convex shape as shown in
Figure 6.

If the user get exact unions of these convex poly-
hedra, the resulting shape becomes a star polyhedron
with a center point origin. The user can smooth out
sharp corners and edges resulting from exact set op-
erations by changing the blending parameter p of the
approximate union and intersection operations. We
view this star polyhedron as a ray-linear surface con-
trol shape. 4

4If this star polyhedron resulting from exact set operations

is used as guide shape for the polygonization of approximate

shapes, errors from polygonization will be bounded.

Two Perpendicular
Planar Polygons

Related Infinite 
Prisms

Convex Control Polyhedron 
( Intersection of Prisms )

Actual Interface

Smoothly Blended
Approximation of
Control Polyhedron

Figure 6: Usage of in�nite prisms to describe convex
control polyhedron.

4.2. Ray-Quadric Surface Construction

Ray-quadric surfaces are constructed by two star poly-
hedra. Smooth approximations of each star polyhe-
dron give smoothly blended star shapes. Set-di�erence
and 
esh operators over two smoothly blended star
shapes gives ray-quadric surfaces. These operations
are given by equations 9 and 11.

After a control polyhedron has been described,
the user can change the smoothly blended solid by
manipulating the half-spaces that describe the con-
trol polyhedron. In the program this manipulation
is accomplished by simply moving the vertices of the
polygons. The example in Figure 7 shows the con-
trol shape, set-di�erence, boundary intersection and

esh operations. All solids that are shown in Fig-
ure 8 are ray-quadric solids which are constructed us-
ing union, intersection and set-di�erence operations
and then smoothing out sharp edges resulting from
the exact set operations. The shapes in Figure 9 are
constructed with boundary intersection and 
esh op-
erations.

Two Star 
Shapes

Set 
Difference

Boundary 
Intersection
and Flesh 

Control
Shapes

Figure 7: Ray-quadric solid construction.



Figure 8: E�ect of parameter r in set di�erence op-
erations.

Two Star Shapes Intersection of
Their Boundaries Flesh

more and more Flesh

Figure 9: E�ect of 
esh parameter r in boundary
intersection and 
esh operations.

5. DISCUSSION AND FUTURE WORK

In this work, we develop a simple formulation for ray-
polynomials and provide a simple method for poly-
gonization of ray-quadric surfaces. We also develop
a prototype ray-quadric shape modeling system to
show the viability of ray-quadrics as a computer aided
shape modeling tool. However, this prototype sys-
tem is extremely limited and does not provide the
full range of possibilities of ray-quadrics [2].

5.1. Limitations of the Prototype User-Interface

One of the limitations in the system comes from con-
struction methodology. First, convex shapes are ob-
tained using intersections. Then, star shapes are con-
structed by using unions. The order does not have
to be this way. However, by choosing this order the
computation price is considerably reduced.

In the general case, the computational price for
determining the values of ray-constant functions A's
can be linearly dependent on the total number of half-
spaces N . This can be a big problem when the number
of half-spaces is large. By using our order of opera-
tions and some bookkeeping explained in detail in [1]
this price is greatly reduced into a constant during
the construction process.

Some of the restrictions of user interface could be
removed in the future. For instance, one of the re-
strictions is that the system provide only a certain
type of convex control shape: those that are given as
a union of convex polyhedra that are constructed by
the union of two perpendicular prisms. This restric-
tion could be removed by describing convex shapes
as either a convex hull of a set of points or an inter-
section of the half-spaces which can be manipulated

freely in three-dimensions with virtual reality tools.

Another restriction that can be removed comes
from the building blocks themselves. These building
blocks do not have to be half-spaces and the faces
of the control shapes do not have to be planar. For
instance, a cylinder could be part of a control solid
since it is the exact intersection of an in�nite cylin-
der and two half-spaces. Removing this restriction
requires a di�erent construction methodology which
permits approximate intersection of constructed con-
vex shapes. Removing this restriction would again
require addressing the linearly dependent computa-
tion price for ray-constants.

Current interface cannot support ray-linear sur-
faces which are given as S(AX) since they are cap-
tured neither by S(X � A) nor by S(X2 � 2BX +
C). Some applications may require ray-linear sur-
faces. For instance, regular toroid is constructed by

esh operator over an in�nite cylinder (a ray-a�ne
surface ) and a plane passing thorough origin (a ray-
linear surface).

Current interface has another problem. When the
number of polygons is high, it becomes di�cult to
choose and move the points in 3D space. For spe-
ci�c applications, usage of projections can be useful.
Moreover the system requires a great deal of knowl-
edge about ray-quadrics. A sculptor, generally, does
not want to know all the restrictions.

5.2. Future Work

Despite its limitations, this prototype ray-quadric shape
modeling system shows the viability of ray-quadrics
as a computer aided shape modeling tool. Its user
interface can be improved into a more intuitive one
by restricting ourselves to special kind of objects such
as faces.

We have shown that feature based templates can
provide an intuitive user interface for facial modeling.
[3]. Set-operation based construction of ray-quadrics
solids is suitable for developing feature based user in-
terfaces for modeling faces. In such a system, the
sculptors can simply draw the polygonal facial fea-
tures for front and side views of the face and the sys-
tem can automatically construct the facial solid from
the front and side views as shown in the Figure 10.
Development of such a system requires methods to
�nd the control shapes from described features. As a
future work, we are planning to develop a ray-quadric
based facial modeler.

When ray-quadrics are used in facial modeling,
they can provide additional advantage. Facial data
may be greatly reduced by using Ray-quadric repre-
sentations. The user can save the data as a template.
The template will actually be the coe�cients of the
ray-quadrics equations. Seventy integer coe�cients
between 0-128 are enough to represent the face shown
in Figure 10. These coe�cients are extremely robust;
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Figure 10: Feature Based User Interface for Facial
Modeler.

in other words, the resulting shape is only slightly
e�ected by small changes in the coe�cients [1].
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