
Generalized Distance Functions

ERGUN AKLEMAN

Visualization Sciences
College of Architecture
Texas A&M University

College Station, Texas 77843-3137
email: ergun@viz.tamu.edu

phone: +(409) 845-6599
fax: +(409) 845-4491

JIANER CHEN

Department of Computer Science
College of Engineering
Texas A&M University

College Station, TX 77843-3112
email: chen@cs.tamu.edu
phone: +(409) 845-4259

fax: +(409) 847-8578

Abstract

In this paper, we obtain a generalized version of the well-
known distance function familyLp norm. We prove that the
new functions satisfy distance function properties. By using
these functions, convex symmetric shapes can be described
as loci, the set of points which are in equal distance from
a given point. We also show that these symmetric convex
shapes can be easily parameterized. We also show these
distance functions satisfy a Lipschitz type Condition. We
provide a fast ray marching algorithm for rendering shapes
described by these distance functions. These distance func-
tions can be used as building blocks for some implicit mod-
eling tools such as soft objects, constructive soft geometry,
freps or ray-quadrics.

1 Introduction and Significance

The concept of distance function has been developed
to provide a formal description for measuring distance be-
tween two points in a vector space. Any function which
satisfies the following logical conditions for distance can be
used for measuring distance in a vector space.

Definition 1.1 Let V be a vector space and<∗ be the set
of all non-negative numbers, a functionf : V −→ <∗ is a
distance function, if it satisfies the following distance con-
ditions:

(1) f(v) = 0 if and only ifv = 0;
(2) f(v) = f(−v);
(3) f(v1 + v2) ≤ f(v1) + f(v2) for anyv1, v2 ∈ V.

There exist various distance functions defined over
different vector spaces such asLp norm, Hausdorf-
Besicowitch distance, and Hamming distance.Lp norm

is a particularly interesting distance function for modeling
shapes. In 3-dimensional vector space,Lp is given as

f(x, y, z) = (|x|p + |y|p + |z|p)1/p
.

Lp norm is based on the operator(
∑r

i=1()
p)1/p which we

call Minkowski operators. These operators satisfy well-
known Minkowski’s inequality. Interested readers can find
a proof for this inequality in many classical mathematics
textbooks (e.g., [15], page 55).

Proposition 1.1 (Minkowski) If ai ≥ 0 and bi ≥ 0, for
i = 1, . . . , r, andp ≥ 1, then

(
r∑

i=1

(ai + bi)p

)1/p

≤
(

r∑

i=1

ap
i

)1/p

+

(
r∑

i=1

bp
i

)1/p

The Minkowski operators have been used in implicit
shape modeling in quite a long time. Ricci [20] extended
these operators by including negativep values and ob-
tained exact and approximate set operations which we call
Ricci operators. Barr [3], independently, has developed su-
perquadrics by using Minkowski operators. Hanson [11]
also used Minkowski operators to generalize superquadrics
to Hyperquadrics. Akleman [1] developed ray-linears, a
function family that provide fast computation and closed
under Ricci operators. Wyvill [24] has developed Con-
structive Soft Geometry also by using Ricci’s operators.
Even Rvachev’s exact set operations [17] are related to
Minkowski operators. Distance functions are also useful
to generate implicit field functions from various types of
shape information [13, 8, 9, 10]. In this paper, we obtain
new distance functions also using Minkowski operations.

Distance functions are interesting for shape modeling for
many reasons.

p=1 p=1.5 p=2 p=3 p=4

p=8 p=16 p=32 p = oo

Figure 1. Simple Locus with Lp norm.

• Locus of all the points which have equal distance to
a given point gives various symmetric convex shapes
when different distance functions are used. For in-
stance,Lp norm in 3-dimension gives shapes including
octahedron, sphere and cube as shown in Figure 1.

• It can be shown that the loci defined above by using
distance functions can be computed extremely fast and
interactively be modified.

• Since these loci can be modified interactively, they can
be used as building blocks in constructive (either solid
or soft) geometry. In this way, the user can have an
approximate idea how the overall shape will look like,
before rendering the whole shape.

• The new distance functions we propose extend the
number of building blocks considerably by including
every symmetric convex polyhedra and their approxi-
mation.

• The distance functions satisfy a Lipschitz type con-
dition. This condition provides a fast ray marching
method for rendering shapes described by these dis-
tance functions.

2 Generalized Distance Functions

To provide generalized distance functions, we first show
that the following simple functions, which are generaliza-
tions ofLp norm, are distance functions.

2.1 Simple Case

Let S = {n1, . . . , nr} be a set of vectors, letV =
span(S) and letp ≥ 1 be a real number. We define a func-
tion fS from V to<∗ as follows.

fS(v) =

(
r∑

i=1

|ni · v|p
)1/p

where|ni · v| is the absolute value of the inner product of
the vectorsni andv.

Theorem 2.1 The functionfS defined above is a distance
function.

PROOF. By the definition,v = 0 implies fS(v) = 0.
On the other hand, supposev 6= 0. Sincev ∈ V andV =
span(S), we can write it asv =

∑r
i=1 aini. If we multiply

both sides with vectorv, we getv ·v =
∑r

i=1 aini ·v. Since
left side is always positive for anyv 6= 0, at least one of the
ni · v should be non-zero. Then since at least one of the
values|ni · v| is nonzero, we havefS(v) > 0. This proves
(1).

Since |ni · v| = |ni · (−v)| for any vectorsni andv,
condition (2) holds.

Now we prove condition (3). We have

fS(v1 + v2) =

(
r∑

i=1

|ni · (v1 + v2)|p
)1/p

=

(
r∑

i=1

|ni · v1 + ni · v2|p
)1/p

≤
(

r∑

i=1

(|ni · v1|+ |ni · v2|)p

)1/p

≤
(

r∑

i=1

|ni · v1|p
)1/p

+

(
r∑

i=1

|ni · v2|p
)1/p

= fS(v1) + fS(v2)

The first inequality follows from the fact|a + b| ≤ |a| +
|b| for any real numbersa andb, and the second inequality
follows from Minkowski’s inequality.

The next section describes a generalized function and
show that this function is also a distance function.

2.2 Generalized Case

We again letS = {n1, . . . , nr} be a set ofr vectors and
V = span(S). Let T be a tree ofr leaves. We say that the
treeT is alabeled tree(with respect to the setS) if each leaf
of T is labeled by a vectorni in S, and each internal node
σ of T is labeled with a real numberpσ ≥ 1. An example
of labeled tree is shown in Figure 2.

A function fT from V to <∗ can be defined from the
labeled treeT as follows.

For a given vectorv in V, each nodeσ in T is associated
with a valuevalue(σ, v), which is recursively defined as
follows. If the nodeσ is a leaf labeled by a vectorni, then
value(σ, v) = |ni · v|; if σ is an internal node labeled with
a real numberpσ ≥ 1 and the chidren ofσ areτ1, . . ., τh,

n1 n2

n6

n7

n3 n4 n5

p1 p2

p3

p4

T

Figure 2. An example of labeled tree.

then

value(σ, v) =




h∑

j=1

(value(τj , v))pσ




1/pσ

The functionfT (v) is defined to be equal to the value of the
root of the treeT . Note that in particular,f(v) = |ni · v| is
a function in the spacespan(ni).

Theorem 2.2 Let T be a labeled tree with respect to the
vector setS. Then the functionfT defined above is a dis-
tance function.

PROOF. The proofs for distance conditions (1) and (2)
from definition 1.1 are similar to that of Theorem 2.1, thus
are omitted. We now prove condition (3).

The proof is by induction on the depth of the labeled tree
T .

If the depth of the tree is0, then the treeT consists of
a single nodeσ, which is labeled by a vectorn. By the
definition,fT (v) = value(σ, v) = |n · v|. Therefore, we
have

fT (v1 + v2) = value(σ, v1 + v2)
= |n · (v1 + v2)|
= |n · v1 + n · v2|
≤ |n · v1|+ |n · v2|
= value(σ, v1) + value(σ, v2)
= fT (v1) + fT (v2)

Thus the theorem holds.
Now suppose that the labeled treeT is of depthd > 0.

Let σ be the root ofT , which is labeledpσ, and suppose
thatτ1, . . ., τh are the children ofσ. Then

fT (v1 + v2) = value(σ, v1 + v2)

=




h∑

j=1

(value(τj , v1 + v2))pσ




1/pσ

=




h∑

j=1

(fj(v1 + v2))pσ




1/pσ

Since the functionfj is defined in terms of the labeled tree
Tj rooted atτj whose depth is less thand, by our inductive
hypothesis, we have

fj(v1 + v2) ≤ fj(v1) + fj(v2)

This gives

fT (v1 + v2) ≤



h∑

j=1

(fj(v1) + fj(v2))pσ




1/pσ

Now applying Minkowski’s inequality again, we get

fT (v1 + v2) ≤



h∑

j=1

(fj(v1))pσ




1/pσ

+




h∑

j=1

(fj(v2))pσ




1/pσ

=




h∑

j=1

(value(τj , v1))pσ




1/pσ

+




h∑

j=1

(value(τj , v2))pσ




1/pσ

= value(σ, v1) + value(σ, v2)
= fT (v1) + fT (v2)

This completes the proof.

3 Shape Modeling with Distance Functions

The development of various distance functions is useful
for defining shapes by using locus. The shape of locus of
all the points which have equal distance to a given point de-
pends directly on how we measure the distance. As shown
in Figure 1, even forLp norm we can obtain various shapes
with the same simple locus. Usage of our generalized dis-
tance functions considerably extends the class of shapes that
can be generated by simple locus.

3.1 Simple Locus Defined with Generalized Dis-
tance Functions

Locus of all the points which have equal distance to a
given point forms a symmetric convex shape because of the

distance conditions. Such symmetric convex shapes can be
expressed by implicit representations

L(fT , z, r) = {v | fT (v − z)− r = 0}

wherefT is the function we use for computing the distance,
z is the center andr is the desired distance.

The shapes described by this simple locus can be easily
understood by looking at the formula. Letf1(v − z) and
f2(v− z) be two generalized distance functions which also
include |ni · (v − z)|, from Ricci’s constructive geometry
[20], we know that the equation

max(f1(v − z), f2(v − z)) = r

gives the boundary of the intersection of the two shapes
which are given by the inequalitiesf1(v−z) ≤ r andf2(v−
z) ≤ r. If we replacemax operation with Minkowski op-
erations, we get an approximate version of the intersection,
i.e., the sharp corners and edges resulted from exact inter-
section will be smoothed out. The smoothing operation can
also be considered as a blending operation. The amount of
blend can be controlled by the value ofp. Lower p values
introduce more blend. The shape described by exact inter-
section by usingmax operation can also be viewed as a
control shape for the loci. For instance, inLp norm case,
cube will be considered as a control shape for sphere.

By using this insight, it is easy to get an intuition for
the locus. Since|ni · (v − z)| = r is a symmetric stripe,
the control shape will be a symmetric polyhedron described
as an intersection of these symmetric stripes. According
to the organization of labeled treeT andp values different
smoothed version of the symmetric control polyhedron can
be obtained. Figure 3 shows examples of symmetric stripes
and symmetric control shapes in 2-dimensional space.

Figure 4 gives a list of simple loci in 3D based on var-
iousfT (v) type distance functions defined on 4,6,10,7 and
16 vectors respectively and differentp values. In the exam-
ples in Figure 4, we use simple distance function (the tree
has only one internal node andr leaves). Simple loci are
obtained by using various subsets of following vectors:

n1 = (1.000, 0.000, 0.000)
n2 = (0.000, 1.000, 0.000)
n3 = (0.000, 0.000, 1.000)
n4 = (0.577, 0.577, 0.577)
n5 = (−0.577, 0.577, 0.577)
n6 = (0.577,−0.577, 0.577)
n7 = (0.577, 0.577,−0.577)
n8 = (0.000, 0.357, 0.934)
n9 = (0.000,−0.357, 0.934)

n10 = (0.934, 0.000, 0.357)

|n
i .(v−z)|<=r

r/|n
i |

A sym
m

etric stripe

z

ni

n
i .(v−z)=0

Example of Smoothin g
a Control Shape

A
Control

Shape

Figure 3. Examples of symmetric stripes and
control shapes.

n11 = (−0.934, 0.000, 0.357)
n12 = (0.357, 0.934, 0.000)
n13 = (−0.357, 0.934, 0.000)
n14 = (0.000, 0.851, 0.526)
n15 = (0.000,−0.851, 0.526)
n16 = (0.526, 0.000, 0.851)
n17 = (−0.526, 0.000, 0.851)
n18 = (0.851, 0.526, 0.000)
n19 = (−0.851, 0.526, 0.000)

The simple loci of classical distance functions in earlier Fig-
ure 1 are obtained by using the vectors fromn1 to n3.

Figure 5 shows the effect of choosing different trees over
the shape of simple loci.

These simple loci are extremely easy to parameterize
since generalized distance functions have an additional
property that is called ray-linear which will be explained
in the next subsection.

3.2 Ray-Linear Property of General Distance
Functions

Definition 3.1 [1] Let V be a vector space. A functionf
fromV to<∗ is called ray-linear if it satisfies the ray-linear
property f(av) = af(v) for any vectorv in V and any
positive real numbera.

Note that ray-linear function is not necessarily linear
function. For example,f(x, y) = (

√
x+

√
y)2 is ray-linear

p=2 p=4 p=8 p=16 p=32 p=oo

p=4 p=8 p=16 p=32 p=64 p=oo

p=4 p=8 p=16 p=32 p=64 p=oo

p=4 p=8 p=16 p=32 p=64 p=oo

p=8 p=16 p=32 p=64 p=128 p=oo

Octahedral (4 vectors: from n4 to n7)

Dodecahedral (6 vectors: : from n14 to n19)

Icosahedral (10 vectors: : from n4 to n13)

Truncated Octahedral (7 vectors: : from n1 to n7)

Truncated Icosahedral (16 vectors: : from n4 to n19)

Figure 4. Simple Loci for various sets of vec-
tors and various p values. Distance function
is the one given in simple case, i.e., the tree
has only one internal node and r leaves.

but not linear. Based on the following theorem [1, 2], it is
easy to see that generalized distance functions satisfy the
ray-linear property.

Theorem 3.1 Letni be any vector inV, thenf(v) = ni · v
andf(v) = |ni · v| are ray-linear. Letf1(v) andf2(v) be

ray-linear functions, thenf3(v) = (|f1(v)|p + |f2(v)|p)1/p

is also ray-linear.

3.3 Parameterization of Simple Loci

Let a parametric representation of a unit hypersphere
centered atz be given asv(s) = g(s) + z wheres is a vec-
tor in a given parameter space andg(s) is a unit vector in
V. By using this parametric equation, we can write another
parametric equation to represent a family of rays enamat-
ing from z asv(s, t) = g(s)t + z. In the last equation,t is
a positive real number which actually gives the Euclidean
distance betweenv(s, t) andz. If we replace this equation
of rays into equation of loci we get

fT (g(s)t)− r = 0.

p1 =4 p2 =128
p3 =128

p3

n14

n15

n16

n17

n18

n19
p1

p3

n14

n15

n16
n17

n18

n19

p1 p2

n14

n15

n16

n17

n18

n19

p1 p2

p3

p1 p2

p3

n14

n15

n16

n17

n18

n19

p1 =4 p2 =128
p3 =128

p1 =4 p2 =128
p3 =128

p1 =4
p3 =128

p1 =8 p2 =128
p3 =128

p1 =8 p2 =128
p3 =128

p1 =8 p2 =128
p3 =128

p1 =8
p3 =128

p1 =4 p2 =16
p3 =128

p1 =4 p2 =16
p3 =128

p1 =4 p2 =16
p3 =128

p1 =4
p3 =128

p1 =8 p2 =8
p3 =128

p1 =8 p2 =8
p3 =128

p1 =8 p2 =8
p3 =128

p1 =8
p3 =128

Figure 5. Simple Loci with different trees.

Because of the ray-linear property offT , the equation can
be rewritten as

fT (g(s))t− r = 0.

We can easily solve this equation for a givens value as

t =
r

fT (g(s))
.

If we plug in thist value into the ray equation we get the
desired parametric equation as

v(s) =
r

fT (g(s))
g(s) + z.

Note that this equation is valid for any dimension and for
any generalized distance functionfT (v), as far as we have a
parameterization of unit hypersphere. To create the images
in Figures 1, 4 and 5, for parameterization of the shapes
we used the following parameterization of a unit sphere:

g(s1, s2) =




sin(2πs1)sin(πs2)
cos(2πs1)sin(πs2)

cos(πs2)




wheres1, s2 ∈ [0, 1].

3.4 Lipschitz Type Condition for Faster Ray
Marching

Kalra and Barr [4] introduced Lipschitz condition into
Computer Graphics for guaranteeing to find intersections
with a ray and an implicit surface.

Definition 3.2 A positive real numberk is called a Lips-
chitz constant on a functionf : U −→ < in a given region
U ⊆ V, if given any two pointsx, y ∈ U , the following
condition holds:

kd(y − x) ≥ |f(y)− f(x)|

whered(.) is a vector norm. If the constantk exists a Lips-
chitz condition is said to exist on the functionf in the region
U .

Hart [12] also used Lipschitz condition to develop sphere
tracing method and later applied Lipschitz condition to de-
velop faster ray marching algorithm by letting longer steps
in casting rays. The ray marching algorithm is originally
introduced by Perlin & Hoffert [19] to ray cast implicitly
represented volumes,

The distance functions in general (not only the ones we
proposed in this paper) naturally satisfy a Lipschitz type
condition. By using this condition, it is also possible to use
long step sizes in ray marching.

Theorem 3.2 Every distance functionf satisfies the fol-
lowing Lipschitz type condition

f(y − x) ≥ |f(x)− f(y)| ∀x, y ∈ V (1)

PROOF. Sincef is a distance function, it satisfies the in-
equalityf(y−x)+f(x) ≥ f(y). If we takef(x) to the right
side of the inequality, we obtain the following inequality

f(y − x) ≥ f(y)− f(x) (2)

The distance functionf also satisfies the inequalityf(y) +
f(x − y) ≥ f(x). Because of the symmetry property of
distance functions, we can rewrite this inequality asf(y) +
f(y − x) ≥ f(x). If we takef(y) to the right side of the
inequality, we obtain

f(y − x) ≥ −f(y) + f(x) = −(f(y)− f(x)) (3)

By combining inequalities (2) and (3), we get Lipschitz type
condition given in inequality (1).

This theorem helps to develop a good sampling estima-
tion for casting rays for rendering shapes defined by our dis-
tance functions. For instance, let a shape be given by simple

locusf(v−z) = r and a ray be given by a parametric func-
tion v = v1t + v0. Let the intersection exist and be given
by t = tint. To optimize ray marching there is a need for
the development of a method to obtain a series oftn values
which quickly converges totint. In other words, the goal is
to use the function value att = tn to find a good estimate
t = tn+1 in such a way thattn+1 can be as close as pos-
sible totint without intersecting the surface. Although, we
do not know the actual value oftint, we do know the lower
bound given by Lipschitz type condition. This lower bound
can be obtained by using the inequality (1). First note that
the left side of Lipschitz type condition is independent ofz:

f(y− x) = f((y− z)− (x− z)) ≥ |f(y− z)− f(x− z)|
If we plug in y = v1tint + v0 andx = v1tn + v0 in the
above inequality

f((v1tint + v0)− (v1tn + v0)) =
f(v1(tint − tn)) ≥

|f(v1tn + v0 − z)− f(v1tint + v0 − z)|.
Sincef(v1tint + v0 − z) = r we can rewrite the above

inequality as

f(v1(tint − tn)) ≥ |f(v1tn + v0 − z)− r|.
Because of ray-linear property of our distance functions, we
can rewrite the last inequality as

f(v1)(tint − tn) ≥ |f(v1tn + v0 − z)− r|.
By organizing this inequality, we obtain a lower bound for
the value oftint as

tint ≥ tn +
|f(v1tn + v0 − z)− r|

f(v1)

If we choosetn+1 not larger than this lower bound, we can
guarantee not to intersect with the surface,

tn+1 = tn +
|f(v1tn + v0 − z)− r|

f(v1)

3.5 Generalized Loci and Lipschitz Type Condi-
tion

Locus of all the points which have the same sum of the
distances to a set of given points gives a general loci. Such
shapes can be expressed by implicit representation

{ v |
N∑

i=1

aifi(v − zi) = r }

wherefi are any generalized distance functions, weightsai

are positive real numbers,z1, z2, . . . zN are points inV and

r is the desired distance. The function
∑N

i=1 aifi(v − zi)
satisfies another Lipschitz type condition.

|
N∑

i=1

aifi(x− zi)−
N∑

i=1

aifi(y − zi)| =

|
N∑

i=1

ai(fi(x− zi)− fi(y − zi)| ≤

N∑

i=1

ai|fi(x− zi)− fi(y − zi)| ≤

N∑

i=1

aifi(x− y)

Note that this inequality holds only for non-negativeai

values and right side of the inequality is independent of
zi values. Based on this result, it is easy to develop a
ray marching method by inserting a ray equationv(t) =
v0 + v1t (v1 · v1 = 1) into the inequality. (However, these
generalized loci cannot trivially be parameterized as we do
for simple loci.) The resulting difference equation will be
in the form of

tn+1 = tn +
|∑N

i=1 aifi(v0 + v1tn − zi)− r|∑N
i=1 aifi(v1)

Figure 6 shows examples of generalized loci which are
obtained by using two dodecahedral distance functions and
rendered with the algorithm above.

Figure 6. Generalized Loci obtained by two
dodecahedral distance functions.

4 Distance Functions as Building Blocks

Since the simple loci defined by generalized distance
functions can easily be computed by using their parame-
terized version, the generalized distance functions are ex-
tremely suitable to be used as building blocks for some
implicit modeling tools such as soft objects, blobs and
metaballs, constructive soft geometry, freps, or ray-quadrics
[5, 14, 23, 22, 17, 2].

It is interesting to observe that when distance functions
are used as building blocks of Blinn’s exponentials [5] or
Wyvill’s soft objects [23], one of the concerns related to
the use of distance functions can automatically be solved.
This concern comes from the fact that the distance func-
tions, because of their definitions, are not derivative contin-
uous at the origin. However, when they are used in Blinn’s
exponentials [5] as inef(v) or in Wyvill’s soft object [22]
functionsh()’s as inh(f(v)), the resulting composite func-
tions will automatically be derivative continuous at origin.
In fact, this is an expected behaviour since both operations
are initially suggested to be used over euclidean distance
functions which are also not derivative continous at origin.

These distance functions fit especially the Constructive
Soft Geometry [24] framework since Minkovski operations
we use are a subset of Ricci operations which are used as
Blending operators inBlobTrees.

5 Discussion and Conclusion

We obtain a generalized version of the well-known dis-
tance function familyLp norm. We prove that the new
functions satisfy distance function properties. By using
this functions, convex symmetric shapes can be described
as loci, the set of points which are in equal distance from
a given point. We also show that these symmetric convex
shapes can be easily parameterized. We also show these
distance functions satisfy a Lipschitz type Condition. We
provide a fast ray marching algorithm for rendering shapes
described by these distance functions. These distance func-
tions can also be used as building blocks.

We remark that the techniques presented for simple loci
are also applicable for the generation of non-symmetric
convex shapes. In order to create non-symmetric convex
shapes from symmetric convex hyperquadrics, Hanson [11]
observed that non-symmetric shapes can be obtained by in-
tersecting the symmetric convex shapes with a lower dimen-
sional hyperplane. For instance, the intersection of plane
with a cube can create triangles, quadrilaterals and pen-
tagons. The same idea can also be used to obtain non-
symmetric convex 3D shapes by intersecting 4D simple loci
with a 3D hyperplane. Moreover, The resulting shapes can
still be computed by using the ray marching algorithm we
presented.

References

[1] E. Akleman, “Interactive Construction of Smoothly
Blended Star Solids”,Proceedings of Graphical In-
terface’96, May, 1996.

[2] E. Akleman, “Ray-Quadrics”,Proceedings of Implicit
Surfaces’96, pp. 89-98, Oct., 1996.

[3] A. H. Barr, “Superquadrics”,IEEE Computer Graph-
ics and Applications,vol 1, no. 1, pp. 11-23, 1981.

[4] D. Kalra and A. H. Barr, “Guaranteed Ray Intersec-
tions with Implicit Surfaces”,Computer Graphics, vol
23, no. 3, pp. 297-306, 1989.

[5] J. I. Blinn, “A Generalization of Algebraic Surface
Drawing”, ACM Transaction on Graphics,vol 1, no.
3, pp. 235-256, 1982.

[6] J. Bloomenthal, “Polygonization of Implicit Sur-
faces”,Computer Aided Design, No. 5, pp. 341-355,
1988.

[7] J. Bloomenthal and K. Ferguson, “Polygonization of
Non-Manifold Implicit Surfaces”,Computer Graph-
ics, vol 29, no. 4, pp. 309-316, 1995.

[8] C. Blanc and C. Schlick, “Extended Field Func-
tions for Soft Objects”,Proceedings of Implicit Sur-
faces’95, pp. 21-32, Apr., 1995.

[9] C. Blanc and C. Schlick, “Implicit Sweep Objects”,
Computer Graphics Forum, vol 15, no. 3, pp. 165-174,
Aug., 1996.

[10] B. Crespin and C. Schlick, “Generating Implicit Field
Functions from In/Out Images”,Proceedings of Im-
plicit Surfaces’98, pp. 91-98, May, 1998.

[11] A. Hanson, “Hyperquadrics: Smoothly Deformable
Shapes with Convex Polyhedral Bounds”,Computer
Vision, Graphics and Image Processing, vol 44, no. 1,
pp. 191-210, 1988.

[12] S. P. Worley and J. Hart, “Hyper Rendering of
Hyper-Textured Surfaces”,Proceedings of Implicit
Surfaces’96, pp. 99-104, Oct., 1996.

[13] Z. Kacic-Alesic and B. Wyvill, “Controlled Blend-
ing of Procedural Implicit Surfaces”,Proceedings of
Graphics Interface’91, pp. 236-245, June, 1991.

[14] H. Nishimura, M. Hirai, T. Kawai, T. Kawata, I Shi-
rakara and K. Omura, “Object Modeling by Distribu-
tion Functions”,Electronic Communications, vol 68,
no. 4, pp. 718-725, 1985.

[15] D. S. MITRINOVIC, Analytic Inequalities, Springer-
Verlag, New York, 1970.

[16] C. W. A. M. van Overveld and B. Wyvill “Shrinkwrap:
An Adaptive Algorithm for Polygonization of an
Implicit Surface”, The University of Calgary, De-
partment of Computer Science, Research Report No.
93/514/19,March 1993.

[17] A. Pasko, V. Adzhiev, A. Sourin and V. Savchenko,
“Function Representation in Geometric Modeling:
Concepts, Implementations and Applications”,Visual
Computer,no. 11, pp. 429-446, 1995.

[18] A. A. G. Requicha and H.B. Voelcker, “Solid Mod-
eling: A Historical Summary and Contemporary As-
sessment”,IEEE Computer Graphics and Applica-
tions,vol 2, no. 2, pp. 9-24, March 1982.

[19] K. Perlin and E. M. Hoffert, “Hypertexture”,Com-
puter Graphics, vol 23, no. 3, pp. 297-306, 1989.

[20] A. Ricci, “A Constructive Geometry for Computer
Graphics”,The Computer Journal,vol 16, no. 2, pp.
157-160, May 1973.

[21] . B. T. Stander and J. Hart, “Guaranteeing Topology of
Implicit Surface Polygonization for Interactive Mod-
eling”, Computer Graphics, vol 31, no. 4, pp. 279-
286, 1997.

[22] G. Wyvill and A. Trotman, “Ray Tracing Soft Ob-
jects”, CG International ‘90: Computer Graphics
Around the World,Editors: T. S. Chua and T. L. Kunii,
pp. 467-476, 1990, Springer Verlag.

[23] G. Wyvill, C. McPheeters, and B. Wyvill, “Data Struc-
ture for Soft Objects”,The Visual Computer,vol 2, no.
4, pp. 227-234, 1997.

[24] B. Wyvill, A. Guy, and E. Galin, “Extending The CSG
Tree: Warping, Blending and Boolean Operations in
an Implicit Surface Modeling System”,Proceedigns
of Implicit Surfaces’98,pp. 113-121, 1998.

