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Meshes, which generalize polyhedra by using non-planar faces, are the most commonly
used objects in computer graphics. Modeling 2-dimensional manifold meshes with a
simple user interface is an important problem in computer graphics and computer aided
geometric design. In this paper, we propose a conceptual framework to model meshes.
Our framework guarantees topologically correct 2-dimensional manifolds and provides a
new user interface paradigm for mesh modeling systems.
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1. Introduction and Motivations

Most current shape modeling systems are based on tensor product parametric
surfaces such as Tensor Product B-splines [1]. However tensor product surfaces can
only support quadrilateral meshes as control meshes for smooth surfaces, and do
not provide general topology [2, 3]. The restriction to quadrilateral meshes also
makes the modeling process difficult for users. There have been significant efforts
in solving this problem by still staying in the parametric surface realm [2, 3]. On the
other hand, subdivision surfaces, which were originally proposed as a generalization
of B-spline surfaces [4, 5], have recently resurfaced as an alternative for providing
general topologies [6, 7).

Subdivision surfaces assume that the users provide an irregular control mesh.
These initial control meshes can either be created by direct modeling or obtained
by scanning a sculpted real object. A smoother version of this initial mesh without
changing the original topology is obtained by subdivision operations. The effective

159



160 E. Akleman & J Chen

usage of subdivision surfaces requires that the initial control meshes represent a
valid and correct 2-dimensional manifold in 3-D space. Since the quality and topol-
ogy of the smooth surface resulting from subdivision rules greatly depend on the
initial control mesh, theoretical assurance of the quality of initial control meshes is
extremely important. In other words, the process of obtaining the initial control
mesh must be robust and guarantee valid 2-dimensional manifolds. Unfortunately,
set operations, which are the most commonly used operations in mesh modeling, can
result in non-manifold surfaces. Moreover, the existing data structures in mesh mod-
eling are specifically developed in such a way that they can represent non-manifold
surfaces resulting from the set operations. In particular, they do not guarantee
valid 2-dimensional manifold surfaces. Because of this fundamental problem, in the
process of obtaining the initial control mesh, unwanted artifacts can be generated.
These artifacts include wrongly-oriented polygons, intersecting or overlapping poly-
gons, missing polygons, cracks, and T-junctions. There have been recent research
efforts to correct these artifacts [8, 9].

Besides guaranteeing topological consistency, data structures for mesh modeling
should also support topological operations efficiently.

The classical view of mesh representation is based on adjacency relationships
between points, edges and faces. For instance, the vertex-edge adjacency relation-
ship specifies two adjacent vertices for each edge. There exist nine such adjacency
relationships, but it is sufficient to maintain only three of the ordered adjacency
relationships to obtain the others [10].

In most practical computer graphics applications, meshes are often represented
with one adjacency relationship. The data structure is generally organized as an
unordered list of polygons where each polygon is specified by an ordered sequence
of vertices, and each vertex is specified by its z, y, and z coordinates [8]. Let us
call this data structure a wvertez-polygon list. Vertex-polygon lists do not always
guarantee topological consistency. In addition, they can even create degeneracies
such as cracks, holes and overlaps [8, 9].

These degeneracies can be partly eliminated by adding an additional adjacency
relationship: edge lists to vertex-polygon lists [8]. In a vertez-polygon-edge list struc-
ture, a list of vertices, a list of directed edges, and a list of polygons are described.
Vertices are specified by their three coordinates, directed edges are specified by two
vertices, and polygons are specified by an ordered sequence of edges. Each poly-
gon is oriented in a consistent direction, typically counter-clockwise when viewed
from outside of the model. Because of the last condition, vertex-polygon-edge lists
are more powerful than vertex-polygon lists. However, the representation does not
guarantee valid manifold surfaces either. It is still possible to specify a non-manifold
surface by giving wrong specifications in terms of the vertex-polygon-edge list.

One of the oldest formalized data structures that supports manifold surfaces
is the winged-edge representation [11]. Winged-edge data structures support 2-
dimensional manifold surfaces, but like vertex-polygon-edge lists they can also ac-
cept non-manifold surfaces [11, 12].
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Baumgart suggested using a winged-edge structure and Euler operators in order
to obtain coordinate free operations [13]. Guibas and Stolfi introduced the quad-
edge data structure and topological operators such as splice operators [14].

When using set operations, resulting solids can have non-manifold boundaries
[15, 16, 17, 18]. It is worthwhile to note that although the data structures, such as
winged-edge, can handle some non-manifold surfaces, they actually complicate the
algorithms for solid modeling [16, 19]. Data structures that can support a wider
range of non-manifold surfaces have been investigated. Examples of such work are
Weiler’s radial-edge structure [20], Karasick’s star-edge structure [21], and Vanecek’s
edge-based data structure [22].

In the current paper, we propose to return back to the basic concept of coordi-
nate free operations over 2-dimensional manifold surfaces by ignoring set-operations.
Similar to our approach, instead of set operations the usage of Morse operators that
describe the changes of cross-sectional contours at critical sections (peaks, passes
and pits) has recently been investigated [24, 23]. We use topological graph op-
erations which are similar to Euler’s operations and based on graph embeddings.
The biggest advantage of our operations is that they are extremely simple and al-
ways guarantee topological consistency. Only two operations, INSERT(edge) and
DELETE(edge), are enough to change the topology. If an inserted or deleted edge
adds or removes a handle, we can efficiently find the new topology by using graph
embeddings. This efficient computation is due to our Doubly Linked Face List
(DLFL) data structure [31]. We propose to use this data structure to support a
representation in which the basic topological operations related to computer graph-
ics, such as surface subdivision, adding or removing a handle, can all be done very
efficiently.

DLFL not only supports efficient computations on 2-dimensional manifolds,
but also always guarantees topological consistency, i.e. it always gives a valid 2-
dimensional manifold. In addition, DLFL uses the minimum amount of computer
memory.

In order to provide an intuitive interface to users for manipulating the topology
of 2-dimensional manifolds, we add parameter coordinates into vertex specifica-
tions. These parameter coordinates come from the polygonal representations of
orientable 2-dimensional manifolds which are 4n-sided polygons that are obtained
from transforming the torus with n handles and 2n cuts [25]. We also show that
the polygonal representation of 2-dimensional manifolds is efficiently supported by
our DLFL structure.

The combination of the graph rotation system representation and the polygonal
representation of meshes provides a new approach for defining modeling meshes.

e The topology of meshes can be updated automatically during the modeling
process simply by adding or removing new vertices and edges to the graph.

e A new topology can be obtained by merging two polygonal representations of
two 2-dimensional manifolds.
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o The polygonal representation can be used for texture coordinates. By chang-
ing the parametric coordinates of the vertices, users can change the texture
mapping. Moreover, the users can directly paint in the parameter space in
order to create a texture.

e Our new proposed data structure will be extremely useful in the computation
of the subdivision surface when the mesh is used as a subdivision surface
control mesh.

2. New Representations and Their Data Structures

In this section, we introduce the fundamentals of graph embeddings and graph
rotation systems, and present a new data structure for them, which provides a new
representation for 2-dimensional manifold mesh modeling.

2.1. Graph Rotation System

The graph rotation system is a powerful tool for guaranteeing topological con-
sistency. In this subsection, we introduce historical background and some mathe-
matical fundamentals (see [26] for more detailed discussion).

The concept of rotation systems of a graph originated from the study of graph
embeddings and it is implicitly due to Heffter [27] who used it in Poincare dual form.
A graph embedding in an orientable surface corresponds to an obvious rotation
system, namely, the one in which the rotation at each vertex is consistent with the
cyclic order of the neighboring vertices in the embedding. Edmonds [28] was the
first to call attention explicitly to studying rotation systems of a graph.

Let G be a graph. A rotation at a vertex v of G is a cyclic permutation of
the edge-ends incident on v. A rotation system of G is a list of rotations, one for
each vertex of G. Given a rotation system of a graph G, to each oriented edge
(u,v) in G, one assigns the oriented edge (v, w) such that vertex w is the immediate
successor of vertex u in the rotation at vertex v. The result is a permutation on
the set of oriented edges, that is, on the set in which each undirected edge appears
twice, once with each possible direction. In each edge-orbit under this permutation,
the consecutive oriented edges line up head to tail, from which it follows that they
form a directed cycle in the graph. If there are r oriented edges in an orbit, then
an r-sided polygon can be fitted into it. Fitting a polygon to every such edge-orbit
results in polygons on both sides of each edge, and collectively the polygons form a
2-dimensional manifold.

For example, consider the graph G given in Figure 1, where G is drawn in such a
way that the rotation at each vertex can be traced by traversing the incident edges
in clockwise order. More specifically, the rotation system of G is:

a: a'cdb b: baec c: cbfa

d: deaf e: €'fbd f: fl'dee
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a': abdc b : bce'a c: cdf't

d: df'de e: edbf f': fedd
This rotation system has twelve orbits, which are given as follows:

01 = adfc 05 = dabe O3 = ebcf
Oy =4d'de'd Os =d'd'c'f! O¢ = f'c't'e’
Or =dd'f'f Og = d'dee’ Oy = fflele

O10 = ad'b'd 011 = d'acc 012 =bb'cc

If we associate each orbit with a 4-sided polygon, we obtain an embedding of the
graph G on the torus (i.e., the 2-dimensional manifold of genus 1), as shown in
Figure 2.

Fig. 1. A graph G drawn in a rotation system

Edmonds [28] has shown that every rotation system of a graph gives a unigue ori-
entable 2-dimensional manifold. Moreover, the corresponding orientable 2-dimensional
manifold is constructible, as we described above. For any 2-dimensional manifold
S, there is a graph G and a rotation system p of G such that p corresponds to an
embedding of G on S [29].

Therefore, the existence of the bijective correspondence between graph embed-
dings on orientable 2-dimensional manifolds and graph rotation systems enables
us to represent topological objects by combinatorial ones. In particular, every 2-
dimensional manifold can be represented by a rotation system of a graph, and every
rotation system of a graph corresponds to a valid 2-dimensional manifold. In con-
sequence, the presentation of graph rotation systems always guarantees topological
consistency. Recently, we have developed a very efficient algorithm that, given a
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Fig. 2. The embedding of the graph G corresponding to the rotation system in Figure 1

rotation system of a graph, constructs the corresponding 2-dimensional manifold
[30].

We should also point out that each edge of a graph appears exactly twice in any
of its rotation systems. Therefore, the amount of computer memory used to store
a graph rotation system is very small.

2.2. The Doubly Linked Face List

Graph rotation systems are an effective tool for representing 2-dimensional man-
ifolds. We have identified the following topological operations on rotation systems
as essential for 2-dimensional manifold mesh modeling:

e FACE-TRACE(f) outputs a boundary walk of the face f. This is related to
reconstructing a polygon in a 2-dimensional manifold and to triangulation of
a polygon in a 2-dimensional manifold.

e VERTEX-TRACE(v) outputs the edges incident on the vertex v in the (circular)
ordering of the rotation at v. This is useful when a 2-dimensional manifold
needs reshaping.

o INSERT(cy, ca, €) inserts the new edge e between the face corners c¢; and c;
(a face corner is a subsequence of a face boundary walk consisting of two
consecutive edges plus the vertex between them). This is used in triangu-
lation of a polygon in a 2-dimensional manifold, changing the topology of a
2-dimensional manifold (i.e., adding a handle to a manifold), and gluing two
separated manifolds. Figure 3 shows two examples of edge insertion. The first
insertion does not change the topology, but the second insertion changes the
topology.
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o DELETE(e) deletes the edge e from the current embedding. This is the con-
verse operation of edge insertion and is also used in changing the topology of
a manifold.

o COFACIAL(cy, c2) returns true if the two face corners ¢; and ¢y belong to the
same face of the current embedding and false otherwise. This operation is
useful in maintaining topological consistency of manifolds.

o SUBDIV (e, v) subdivides the edge e = (u, w) by a new vertex v of degree 2 so
that the edge e becomes two new edges (u,v) and (v, w). This is the operation
that increases the number of vertices in a mesh.

—

No Need
for a Change
in Topology

Fig. 3. Topological effect of edge insertion in a rotation system.

We have initiated the study of algorithms on graph rotation systems in order to
implement these operations efficiently [31]. We have first observed that if a rotation
system of a graph is represented in the edge-list form, which for each vertex v
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contains the list of its incident edges, arranged in the order according to the rotation
at v, the representation does not efficiently support the operations listed above.

Another data structure, which is closely related to the winged-edge structure, the
doubly-connected-edge-list (DCEL) has been widely used in computational geometry
[32]. DCEL can also be directly used for representing a rotation system. However,
we observed that the DCEL structure does not support the operations INSERT and
DELETE efficiently [31].

We introduce a new data structure and show that the new data structure effi-
ciently supports all of the operations listed above.

Each face is given by a sequence of vertices corresponding to a boundary travers-
ing of the face. The vertex appearances in the sequence will be called vertez nodes.
Note that two consecutive vertex nodes in the sequence correspond to an edge side
in the embedding. The sequence is represented by a cyclically concatenatable data
structure. For specific discussion, we will use 2-3 trees for this concatenatable data
structure [33]. For readers’ convenience, we recall that a 2-3 tree is a balanced tree
whose depth is always logarithmic in the number of nodes in the tree. Moreover,
operations on 2-3 trees such as inserting a node, deleting a node, splitting a 2-3 tree
into two 2-3 trees, and concatenating two 2-3 trees into a single 2-3 tree, can all be
done in logarithmic time (see [33] for more detailed discussion).

Definition 1 Let p(G) be an embedding of a graph G = (V, E) with face set F.
A doubly-linked-face-list (DLFL) for the embedding p(G) is a triple L = (F,V,£),
where the face list F consists of a set of |F| sequences. Each is given by a 2-3 tree
and corresponds to the boundary walk of a face in the embedding p(G). Moreover,
the roots of the 2-3 trees are connected by a circular doubly linked list. The vertex
array V has |V| items. Each V[v] is a linked list of pointers to the vertex nodes of
v in the 2-3 trees in F. The edge array £ has |E| items. Each Ele] is doubly linked
to the first vertex nodes of the two edge sides of the edge e in the 2-3 trees in F.

Figure 4 gives an illustration of the DLFL data structure for a tetrahedron. It
can be shown that the DLFL structure and the DCEL structure used in computa-
tional geometry can be converted from one to the other in linear time [31]. This
implies that the computer space used by a DLFL structure to represent a mesh
modeling is linear in the size of the mesh, which is the best possible.

Now we discuss how the above listed operations for mesh modeling are imple-
mented on the DLFL structure.

The operations FACE-TRACE(f) and VERTEX-TRACE(v) are given in Figure 5.
Recall that in the DLFL structure, each face f is specified by the face array element
F[f] and each vertex v is specified by the vertex array element V[v].

Theorem 1 Based on the DLFL structure, the operation FACE-TRACE(f) can
be done in time linear in the size of the face f, and the operation VERTEX-TRACE(v)
can be done in time linear in the degree of the vertex v.

Proof. The FACE-TRACE algorithm is basically just the traversing algorithm
for the 2-3 tree representing the face f. It is well known that its time complexity is



Guaranteeing the 2-Manifold Property for Meshes
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Fig. 4. An illustration of the DLFL data structure for a tetrahedron.
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FACE-TRACE(F[f]).

1. r = the root of the 2-3 tree for the face f;
2. Traverse(r).

Traverse(r).

1. if r is a leaf then print(r), return;
2. for each child u of r do Traverse(u).

VERTEX-TRACE(V[v]).

1. pick a pointer in the list V[v] to find an edge side (v,wo); print(v,wo);
2. find the 2-3 tree T in F that contains the edge side (wo,v);
3. let (v,w) be the edge side following (wo, v) in the 2-3 tree T,
4. while (v,w) # (v, wo) do
print(v, w);
find the 2-3 tree T in F that contains the edge side (w,v);
let (v,w') be the edge node following (w,v) in the 2-3 tree T;
w=uw

Fig. 5. FACE-TRACE and VERTEX-TRACE
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CoFaciaL(cy, c2)

1. find the root r; of the 2-3 tree containing the face corner c;
2. find the root 72 of the 2-3 tree containing the face corner cz;
3. return (r; =r2).

Fig. 6. COFACIAL algorithm

linear in the size of the tree, thus also linear in the size of the corresponding face f.

We need some explanations on the algorithm VERTEX-TRACE(v). By the struc-
ture of the DLFL, each vertex array element V[v] is a list of pointers to the vertex
nodes labeled with v in the 2-3 trees. Therefore, picking any pointer in V[v] gives a
vertex node for v, and the vertex node wp immediately following this vertex node
makes an edge side (v, wp). Since the edge E[e] with two ends v and wyp is doubly
linked to the first vertex nodes of the two edge sides (v, wo) and (wo,v), in constant
time we can find the vertex node of wp followed immediately by a vertex node of v.
Therefore, the 2-3 tree T' containing the edge side (wp,v) can be found in constant
time. Finally, note that if the edge side (v,w) follows right after the edge side
(wp,v) in the 2-3 tree T, then vertex w is right after vertex wp in the rotation at
vertex v. Therefore, the VERTEX-TRACE algorithm correctly prints the edge (v, w)
right after edge (v,wp). For the same reason, the execution of the while loop in
step 4 prints each of the edges incident on vertex v in the order of the rotation
at the vertex v. Since we can always find in constant time the next edge in the
rotation at the vertex v, we conclude that the VERTEX-TRACE takes time linear in
the degree of the vertex v. 0O.

The CoFACIAL operation is simple. Note that a face corner can be given simply
by a vertex node in the 2-3 trees. Given two face corners ¢; and ¢, we only need
to check if they are in the same 2-3 tree in the face list 7. The algorithm is given
in Figure 6.

To study the complexity of the operations INSERT and DELETE, let us have a
closer look at these two operations.

First consider the operation INSERT(c1, ¢z, €), where e = (v, v2) is an edge to be
inserted between the face corner ¢; at vertex node v; and face corner cp at vertex
node vs. There are two possible cases.

If c; and cp are face corners of the same face f, then inserting the edge e will
split the face f into two faces and unchange the topology. More precisely, suppose
that the boundary walk of face f is By = aw;viw)fwavawy, where o and 3 are
subwalks, then inserting the edge e will result in two faces with the boundary walks
B} = owyv1vaw} and B}’ = Bwyvvywi, respectively. This situation is illustrated in
Figure 7. Therefore, the two new face boundary walks B} and B} can be obtained
by properly splitting the sequence By plus a couple of local modifications. Note that
the 2-3 tree representing the face f may be a circular permutation of the sequence
Bj;. In this case, we also need to first split then re-concatenate the sequence properly
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vV, 2 vV,

V)

V; Vi

Fig. 7. Inserting an edge between two corners of the same face

Fig. 8. Inserting an edge between two corners of the same face

to get the sequence By to start with.

If the face corners ¢; and c; belong to different faces awiviw] and Bwavows,
where @ and (3 are subwalks, then inserting the edge e will merge these two faces
into a larger face

Qw1 v1 Vawh Bwevavi W

Figure 8 illustrates this situation. Note also that in this case, a handle is added to
the manifold so that the genus of the manifold is increased by 1 (i.e., the topology
of the manifold'is changed). The sequence for this larger face can also be obtained
by a number of proper splitting and concatenation operations.

Summarizing the above discussion, we give the algorithm for INSERT in Figure 9.

The DELETE operation can be done similarly. Given the edge e = (v, v2) to be
deleted from the 2-dimensional manifold, we first get from the edge array element
Ele] in the DLFL structure the two edge sides (v1,v2) and (v2,v1) of e and use
COFACIAL operation to check whether the two edge sides belong to the same face
in the embedding. If the two edge sides belong to different faces awv;v, and Buvav;
of the embedding, then deleting the edge e will merge the two faces into a single
face av; Buy with the topology unchanged. If the two edge sides of e belong to the
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INSERT(c1, €2, €)

1. assume the face corners ¢1 and cz are at vertex nodes labeled by v and v2,
respectively, where e = (v1,v2);
2. if CoFAcIAL(cy,c2) then
find the 2-3 tree By in F containing the face corners ¢; and cz;
{ the next two statements make a circulation of the face boundary By
so that the edge side (v2,w}) appears at the end of the sequence. }
split the sequence By at wh into subsequences By = dvow}), and Bg;
re-concatenate B and B into By = Bg - B1 = awiv1w] Swavewh;
split By at w} to two subsequences awiv1 and Bwzvaw); '
split Bwav2w) at w) to obtain Sfwavs;
concatenate owyv1, vz, and wh to obtain the sequence B} = oqw1v1v2W);
concatenate Swavz, v1, and w] to obtain the sequence Bff’ = ﬂw2v2v1w'1;
else
find the 2-3 tree B1 = owiv1w} in F containing the face corner c1;
find the 2-3 tree Bz = Swavaw) in F containing the face corner c;
split awiviw] at w} to obtain awivy;
split fwavaw) at w) to obtain Sfwavs;
concatenate awiv1, va, wh, fwavs, v1, W into awivivew)Bwavaviw].

Fig. 9. INSERT algorithm

same face dvjvyyvav1, then deleting the edge e will break the face into two faces
dv; and yvs and decrease the embedding genus by 1 (thus change the topology).
The DELETE algorithm is given in Figure 10.

Finally, the SUBDI1V (e, v) operation is implemented in the DLFL structure by
replacing the edge e = (u, w) by two new edges (u,v) and (v, w), and introducing a
new vertex v. The detailed algorithm is given in Figure 11.

Theorem 2 The DLFL structure supports the operations COFACIAL, INSERT,
DELETE, and SUBDIV in logarithmic time.

Proof. It is well known that the depth of a 2-3 tree is logarithmic to the number

DELETE(e)

1. find the two edge sides (v1,v2) and (v2,v1) of e;
2. if the two edge sides of e belong to different faces avivz and Svav; then
split avyve at v1 to obtain «;
split Bvav; at v2 to obtain 3;
concatenate «, v1, 8, and vg to obtain av;fvs;
else {the two sides of e belong to the same face dvivayvov1}
split dv1v2yvav1 to obtain two new faces dv; and yva.

Fig. 10. DELETE algorithm
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SuBD1V(e,v)

1. find the 2-3 trees By and B; that contain the two sides (u,w) and (w,u) of
the edge e;

2. insert v in By between u and w and insert v in By between w and u;

3. create a new vertex v in the vertex list, pointing to the two occurrences of v
in B; and Bg, respectively;

4. remove edge e and add edges e; and ez in the edge list such that the two
pointers of e; point to u in B; and v in Bs, and the two pointers of ez point
to v in By and w in Bs.

Fig. 11. SuBD1V algorithm

of leaves in the tree [33], and that traversing from any leaf to the root in a 2-3 tree,
inserting a new node, deleting a node, splitting a 2-3 tree into two smaller trees,
and concatenating two 2-3 trees into a larger tree all take logarithmic time [33].

The COFACIAL algorithm is implemented by two traversings from leaves to roots
in the 2-3 trees in the DLFL structure, the INSERT, DELETE, and SUBDIV algo-
rithms are implemented by a small number of insertions, deletions, splittings, and
concatenations on the 2-3 trees in the DLFL structure. Therefore, we conclude that
all these algorithms take logarithmic time under the DLFL structure. O.

3. User Interface for Topological Operations

INSERT and DELETE operations in internal representation may change the topol-
ogy of a mesh. INSERT operation requires a special attention. An inserted edge must
satisfy some constraints to get a unique topological description. To explain why we
need some constraints, we need to look at rotation systems more closely. A rotation
system is defined by the order of connections for every edge. In other words, from
the 3-dimensional positions and orientations of the edges, it should be possible to
get a unique order of connection to update the rotation system. If the user draw
any edge freely in 3-dimensional space, it is not possible to give a unique order.
Therefore, in such a situation, ambiguities can occur and edge insertion may not
correspond to one unique topology as shown in Figure 12. In other words, we need
to ensure that the user defines a unique order for the connections between vertices.

The example we have shown in Figure 3 illustrates a constraint that can be
used: the new inserted edge must be drawn on the surface of 2-manifold in which
the mesh belongs. In order to enforce such a constraint we must force the user to
draw each new edge over the 2-manifold. As it can easily be seen, this constraint is
too restrictive for interactive modeling. Fortunately, this constraint is sufficient but
not necessary to get a unique topological description. There exists another simpler
constraint that is both sufficient and necessary.

To illustrate this simple constraint, let us look at the property of rotation sys-
tems. Since, for any 2-manifold, a small neighborhood around every point is home-
omorphic to an open disk, it is possible to define a disk around every vertex of
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the mesh as shown in Figure 13. If every edge originated from a given vertex is
constrained to the disk of this vertex, it is possible to give an order. For example
as shown in Figure 13 in a planar disk that includes a given vertex, it is possible to
determine the order of connections. In other words, if the inserted edges should be
constrained to the disks that are in 2-manifold surface and include the end vertices
of the edges, it is possible to determine a unique rotation system and a unique
topology. This is not extremely restrictive constraint. Each vertex can be defined
by a point and a tangent plane which are shown as a space circle. Each edge leav-
ing a vertex can be constrained to the plane. The user can change the order of the
connection and orientation of the tangent plane. Note that these edges need to be
represented at least a third degree parametric curve such as Bezier or Hermitian
curve [1].

The minimum constraint explained above suggests that the topological opera-
tions can be effectively done even in 2-dimensional space. To provide an effective
interface for handling 2-dimensional manifolds, we also propose a new visual repre-
sentation that will be used as an interface in the modeling topology of 2-dimensional
manifolds. This 2-dimensional visual representation is useful since it can clearly sep-
arate topological and geometrical operations.

Topological
Ambiguity

?

Fig. 12. An edge insertion without any constraint may not define one unique topology.

4. Visual Representation of Topology and 2D User-Interface

It is well-known in topology that the orientable 2-dimensional manifold of genus
n can be represented by a 4n sided polygon, called its polygonal representation [25].

LSaY
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Fig. 13. A simple constraint around vertices is enough to define unique topology.

The 4n sided polygon (4n-gon) that corresponds to the 2-dimensional manifold
with genus n can be obtained by 2n cuts on the manifold. For each handle, we
need to make 2 cuts. For example, the torus in Figure 2 can be represented in
its polygonal representation in the rectangle shown in Figure 14, with the opposite
sides of the rectangle being identified. Using the techniques we developed for DLFL,
we can also apply topological operations efficiently to the polygonal representations
of 2-dimensional manifolds. Figure 15 shows the process of obtaining a polygonal
representation going from a 4n-gon with one handle to a 4(n + 1)-gon.

B

Fig. 14. Polygonal representation of previous graph G.

The polygonal representation of a manifold can be obtained efficiently using the
method of graph embeddings based on our DLFL structure. In order to obtain
the polygonal representation of an orientable 2-dimensional manifold of genus k,
we first embed a bouquet of 2k edges into the manifold (a bouquet of 2k edges is a
single-vertex graph with 2k selfloops) so that the embedding has only a single face
(34], then cut the manifold along the edges of the bouquet to obtain a 4k polygonal
representation of the manifold. Note that this 4k sided polygon is actually the face
boundary walk of the unique face for the embedded bouquet of 2k edges. Therefore,
the 4k sided polygon representation can be easily obtained from the DLFL repre-
sentation of the embedded bouquet. Moreover, suppose we add a new handle to a
2-dimensional manifold given in its polygonal representation, the polygonal repre-
sentation for the new 2-dimensional manifold can be easily obtained by inserting
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A 4n-gon A change in topology

New 4{n+l)-gon

Fig. 15. Obtaining 4(n + 1) sided polygon.

two new edges (see Figure 15 for an illustration). Similarly, removing a handle in
the 2-dimensional manifold can be easily implemented by deleting two edges in the
bouquet. In summary, the polygonal representation of a 2-dimensional manifold
can be conveniently managed by the DLFL structure on a one-face embedding of
the bouquet.

The polygonal representation of a 2-dimensional manifold has the advantage
that the figures drawn on a local area in the manifold look exactly the same as on
its polygonal representation. Therefore, local manipulations on a manifold can be
performed conveniently and intuitively on the corresponding polygonal representa-
tion. For local manipulations interesting figures need to be moved to the center of
the polygon for easier manipulations. Moving in a polygonal representation can be
performed effectively by using the fact that all the corners of the polygonal represen-
tation correspond to the same point in the 3-dimensional space. In other words, in
order to move in a polygonal representation, it is possible to cut the 2-dimensional
manifold surface differently. Since it is possible to move the cutting edges slowly,
the user can perceive the change as a move in a polygonal representation as shown
in Figure 16.

An additional advantage of the polygonal representation is that the positions
of the vertices in the 4n sided polygon can be used as the texture coordinates for
the mesh surface and the users can control texture mapping by changing the vertex
positions in the polygonal representation.

The polygonal representation provides us a paradigm for an interface for topol-
ogy control. The interface can be similar to 2-dimensional graph drawing or draw-
ing systems. By using such an interface, the user can make manipulations over the
topology and change texture coordinates. The user is also able to define and merge
polygonal representations of several meshes.

5. Discussion and Future Work

Our theoretical framework does not take into account the 3-dimensional posi-

Wy
s



Guaranteeing the 2-Manifold Property for Meshes 175

Fig. 16. Moving a figure to the center by changing cutting edges.

tions of the vertices. Some choices of these positions may result in self-intersection
of the meshes. Such a self-intersection is not desirable unless the user particularly
wants to achieve it.

The problem with self-intersections can easily be explained with 1-dimensional
manifolds. As we know a polygon in 2-dimensional space is a 1-dimensional man-
ifold. Therefore, we expect that a polygon separates the 2-dimensional space into
three regions: inside the polygon and outside the polygon and the polygon itself.
However, by moving a vertex in 2-dimensional space, the user can create a self-
intersecting polygon which has neither inside nor outside. In 2-dimensional drawing
systems, this is not considered a problem since the user can easily correct it. If the
user does not correct a self-intersection, the result can still be considered to be an
acceptable shape and in some systems, such self-intersecting polygons are filled by
using geometry-based inside-outside tests. This approach to self-intersection used
in 2-dimensional drawing systems is not useful for modeling meshes. Since some of
the faces of the mesh will be hidden, the user can create self-intersection without
even realizing it. Moreover, unlike the 2-dimensional case, it is not easy for the
user to detect such self-intersection. Therefore, if the user does not want to create
self-intersection, the system must prevent it from occuring by restricting the posi-
tions of the vertices. We are currently working on several possible solutions to this
problem.

The DLFL structure has been implemented as a C++ class. We are also planning
to develop a Java version for the structure.

6. Conclusions

A5

AN
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We have proposed a conceptual framework for the development of systems for
modeling topologically consistent meshes. We combine the graph rotation system
representation and the polygonal representation into one integrated system, in which
the graph rotation system is used as an internal representation for manifolds, while
the polygonal representation is used in the user interface. We also provide effi-
cient topological operations for edge insertion and deletion, and vertex and polygon
tracing,.
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