
Interactive Deformation with Triangles

James Dean Palmer and Ergun Akleman∗

Visualization Sciences Program
Texas A&M University

Jianer Chen
Department of Computer Science

Texas A&M University

Abstract

In this paper, we present a new deformation technique
based on triangular deformers. One of the advantage of tri-
angles over lines is that triangles uniquely define three lin-
early independent vectors in 3D. These three vectors can
be used as a local coordinate system. Deformation is de-
scribed by a set of source and destination triangles. For
each source and destination triangle and for any point 3D
space, we can compute a unique transformation vector for
any given source and destination triangles.

We combine these transformation vectors described by
each deformer pair, by using a weigted average that is a
function of the distance to the source traingle. In the pa-
per, we provide a set of blending functions to effectively
interpolate these transformation vectors from each triangle
to compute a combined transformation. To obtain a defor-
mation of a given polygonal mesh, we simply translate each
vertex of the polygonal mesh with a combined transforma-
tion vector that is computed by using the position of the
vertex.

Our technique can be used for both 2D and 3D deforma-
tion. We have implemented systems for interactive 2D and
3D deformations. In our 2D implementation, we use line
and point deformers in addition to triangles.

1. Introduction and Motivation

This paper presents a new deformation technique that is
based on triangle deformers. The first deformation method
in computer graphics was introduced by Alan Barr in 1984
[2]. In 1986, Sederberg and Parry introducedFree-Form
Deformations(FFD), which involves a mapping from one
coordinate space to another through a trivariate tensor prod-
uct Bernstein polynomial [12]. Over the years a number
of variations on FFD have been introduced. These include
Coquillart’s Extended Free-Form Deformation(EFFD) [6]

∗Corresponding Author. Address: 216 Langford Center, College Sta-
tion, Texas 77843-3137. email: ergun@viz.tamu.edu. phone: +(979) 845-
6599. fax: +(979) 845-4491. Supported in part by the Texas A&M, Inter-
disciplinary Program.

and Lazaris, Coquillart and Jansene’sAxial Deformations
[8]. Jin, Li and Peng used generalized metaballs for general
constrained deformations [10]. Borrel and Rappoport in-
troducedConstrained Deformations[4], Singh and Fiume
proposedWires[13] and Crespin introducedImplicit Free-
Form Deformations(IFFD). IFFD provides a frame work in
which most of the Free-Form Deformation techniques can
be used but is based on deformers defined by a local tool and
a blending function [7]. Within the IFFD model, a set of de-
formers act on a model. Each deformer is characterized by
a local coordinate space, an invertible mapping function, an
invertible transformation function and a potential function.
These deformers are then applied to geometry using a pro-
cess similar to FFD [7].

Crespin’s work inspired our initial investigations with
using implicit functions and simplicial complexes to de-
form geometry. We also observed a number of similarities
between our technique and theFeature-Based Image Meta-
morphosis(FBIM), which is introduced in 1992 by Beier
and Neely [3] and has been used as a visual effect in a
number of motion pictures as well as the Michael Jackson’s
video Black and White. FBIM uses line deformers to de-
form the location of pixel with inverse mapping [3]. Al-
though, FBIM is not really a deformation approach, the un-
derlying transformation algorithm shares many similarities
to deformation algorithms.

Mathematically, there are two differences between our
technique and FBIM technique:

• Our deformations are based on trangles instead of
lines.

• Our technique is a forward mapping instead of inverse.

Line deformers are appropriate for only 2D deforma-
tions; For 3D deformations, triangle deformers are needed.
The main advantage of triangles over lines in 3D is that tri-
angles uniquely define three linearly independent vectors.
These three vectors can be used as a local coordinate system
to compute a unique transformation vector for any given
source and destination triangles. Another advantage of us-
ing triangle deformers is that triangles can effectively ex-



press non-uniform scaling and shear from the source to the
destination.

By using a weigted average, we combine the transforma-
tion vectors described by each deformer pair. The weights
are functions of the distance to the source traingle. They
are similar to implicit blending functions. For predictable
results, they must be always positive and monotone decreas-
ing. In the paper, we provide a set of blending functions. To
obtain a deformation of a given polygonal mesh, we simply
translate each vertex of the polygonal mesh with a com-
bined transformation vector that is computed by using the
position of the vertex.

We have implemented systems for interactive 2D and 3D
deformations. In our 2D implementation, we use line and
point deformers in addition to triangles. In 2D, instead of
using FBIM’s inverse mapping technique, we use forward
mapping functions to manipulate the geometry of the grid.
The deformation of the grid also deforms the texture that
is mapped to the grid. This approach takes the advantage
of 3D acceleration hardware that supports texture mapping
and provides interactive deformations in 2D. Our 3D im-
plementation uses exactly the same deformation concept as
the 2D implementation but in 3D we only support triangle
deformers to uniquely define a local coordinate system.

2. Methodology

Our approach is based on functions that are constructed
by the operations that are used in implicit surface construc-
tion. The overall deformation is described by a set of de-
former pairs (point, line and triangle pairs). Each deformer
pair consists of one source and one destination. For each
source and destination shape a local coordinate is computed
to describe the transformation described by the change of
position and shape between the source and destination. In
addition, for each shape a weight function that is described
by the distance to the shape is given. Then, the transforma-
tions are combined by using these weight function.

In our framework, to describe a deformation, the users
defines a set of deformer pairs. Each deformer pair consists
of two shapes: the source shape and the destination shape.
Each one of these pairs uniquely describe a transformation
vector for any given point in the source image. In this sec-
tion, we discuss the effect of different types of deformer
pairs.

The simplest of these deformers are point pairs. A point
deformer can uniquely define transformation in any dimen-
sion. As can be observed from Figure 1.A, point deformer
can only implement translations, but not allow scaling, ro-
tating, or shearing.

Beier and Neely uses line deformer pairs [3]. An advan-
tage of using lines over a simple point deformer is that one
can describe scaling and rotation up to 360 degree. Fig-

ure 1.B shows a source image is translated, rotated, and
scaled from the source line to the destination line by chang-
ing the coordinate system to be relative to the source and
destination lines. As can be observed from the image, the
line primitive doesn’t allow us to shear the image and we
can only scale the image uniformly. We cannot, for exam-
ple, scale only the width or scale only the height. Another
problem with line deformers is that in 3D deformation not
uniquely defined.

Figure 1. Examples of point and line deform-
ers.

On the other hand, triangular deformers allow us to ef-
fectively translate, rotate, scale, and shear an image and
uniquely describe a transformation. Moreover, unlike line
deformers, deformations uniquely defined by triangle de-
formers in 3D. Figure 2.A shows the effect of triangle de-
formers. The source image is translated, rotated, scaled and
sheared from the source triangle to the destination trian-
gle by changing the coordinate system to be relative to the
source and destination triangles. Figure 2.B shows an ex-
ample of 3D deformation of a teapot by a single triangle
deformer pair.

If there exists more than one deformer, the problem is
to appropriately combine the transformations described by
each deformer pair. In order to compute the combined trans-
formation, we simply calculate a weighted average of trans-
formations given by each simplex pair. Weights are com-
puted based on the distance of a deformer to a given point.

Figure 3.A illustrates how two triangles can be used to-
gether to deform an image. One application of image de-
formation is caricature. Akleman, Palmer and Logan have



Figure 2. 2D and 3D examples of triangle de-
formers.

recently used the 2D deformation system for generating ex-
treme caricatures [1]. Figure 3.B shows 3D deformations
with multiple deformers. In this example, we have added
a small deformer to the teapot handle while using another
deformer to actually make the teapot body longer. We then
used two deformers on the spout to make it large at the base
of the spout but small and narrow at the tip of the spout.

In 2D, if we use only line primitives, FBIM’s weight
function and inverse maps instead of forward ones, our de-
formation technique will be exactly the same as the FBIM
technique. In other words, our technique can be considered
as a generalization of the FBIM technique. Our generaliza-
tion comes from (1) using triangle and point primitives in
addition to line primitives, (2) using new weight functions
and (3) using forward maps instead of inverse ones. By
using triangles in addition to lines, we provide users with
shear transformations in addition to translation, scaling and
rotation. And by using forward maps, we are able to de-
velop an interactive system by taking advantage of texture
mapping hardware.

Our 3D approach can be considered a straight general-
ization of FBIM to 3D since lines are natural simplest de-
formers for 2D and triangles are natural deformers for 3D.

3. Implementation

Several important implementation choices had to be
made in developing software to test and analyze the algo-
rithms we have developed. These issues include what lan-
guage to write the application in, what user interface toolkit
to use, and what graphic toolkit to use.

Figure 3. 2D and 3D examples of blended tri-
angle deformers.

Our implementation is written in C++ which is an object
oriented language. By using an object oriented approach in
writing this software we were able to abstract the deformers
into pluggable objects. In 2D, a triangle deformer can work
seemlessly with a point or line deformer. Furthermore, new
deformers can be added to this system without having to
change much existing code and the new objects can work
seemlessly with the deformers we have already developed.

We chose to use OpenGL as the graphic toolkit since
OpenGL supports hardware texture and 3D acceleration.
By using forward mapping functions to manipulate texture
mapped grids, we can harness the hardware accelerated tex-
ture mapping support to interactively deform 2D images.
While hardware accelerated texture mapping and 2D/3D
transformations are used extensively in games and 3D ap-
plications, most 2D applications don’t utilize the function-
ality that is becoming standard in the newest generation of
consumer display adaptors. The application we have de-
veloped is a good example of using hardware acceleration
generally intended for use in 3D within a 2D application.
And of course, OpenGL was an excellent choice when we
extended our 2D deformation engine to 3D as well.

Fltk was chosen as the GUI (graphic user interface)
toolkit, because it is very portable and has excellent
OpenGL support. The applications we have developed have
been compiled under Irix and Linux. Porting them to other
platforms, such as MS Windows, should not be difficult.

2D user interface that we have developed supports point,
line, and triangle primitives. It also supports several dif-
ferent blending functions and it is extremely easy to add
other blending functions. We can also vary the blending



constants in these equations to gauge their effect. 3D user
interface supports loading OBJ format 3D models instead of
2D images. The interface also provides convenient tools to
navigate about the object or scene being deformed. It also
supports multiple “frames” so one can do simple key framed
animation. The 3D implementation also supports all of the
same blending features that our 2D implementation does.

4. Results and Discussion

Figure 4.A shows that drastic deformations can be ob-
tained with only a few deformers. In this example, we
changed a neutral character into a grumpyone by turning
down the nose and manipulating the mouth into a frown.
Figure 4.B demonstrates a head that has been deformed into
a happy character. We have used the deformers to change
the mouth into a smile and we have moved the forehead
and brow higher. Figures 4.A and 4.B also show that we
don’t necessarily need to be extremely accurate in bound-
ing features with triangle deformers. Figure 5.A shows a
nose feature that has been closely bounded by a triangle de-
former. The deformed feature stays relatively close to the
destination triangle. Figure 5.B shows a nose feature that
has been loosely bounded by a triangle deformer. Since
the deformer is effectively deforming all of the space that
it bounds, it will not pull the nose feature out as far as the
closely bounded example did.

Figure 4. Deformation of a human head model
to create grumpy and happy characters.

Figure 5. Deformation of a nose to create dif-
ferent noses.

5. Future Work and Conclusion

We developed a new interactive deformation technique.
This technique improves on existing techniques and pro-
vides a powerful framework for future work. The simplicial
complex based deformation algorithms that we are work-
ing with should work well across n dimensions and have a
plethora of applications. Applications for this work include
2D morphing and warping, as well as 3D warping, model-
ing, and animation.

One limitation of the local coordinate based approaches
such as this technique or FBIM is that the coordinate trans-
formation can not express a rotation of more than 360 de-
grees. If we had defined a coordinate mapping transfor-
mation in terms of scale rotation and translation we could
have expressed rotations more than 360 degrees. We have
already developed and have had some initial successes in
using this alternate mapping framework, but future work is
necessary to extend it to 3D and to compare and contrast it
to the local coordinate based approach.

By using C++’s object oriented inheritance we can easily
define new deformers that can be plugged into our applica-
tion and will blend seemlessly with existing deformers. We
intend to extend our current work to higher dimensions and
then we intend to define distance functions for more com-
plex simplicial complexes. Simplicial complexes and oper-
ations on simplicial complexes are well defined in higher di-
mensions. By building our algorithms’ framework on these
structures our algorithm should easily extend from 2D to
3D and potentially to even higher dimensions.

More generally our algorithm should be applicable to
simplicial complexes. A simplex is a set of d+1 points
whose convex hull has dimension d. The points of the sim-
plex may exist in a space whose dimension is larger than
d. In 2D, simplexes includes points, lines and triangles. A
simplicial complex is composed of a number of simplices.



The intrinsic dimension of the complex is the dimension of
each simplex in the complex. The embedded dimension of
the simplicial complex is the dimension of the space of the
points in the simplicial complex.

Simplicial complexes represent a straightforward and
well defined data structure that allow one to take advan-
tage of linear programming methods for the solution of ge-
ometric problems, boundary evaluation, affine transforma-
tions, subdivision, and constructive solid geometry opera-
tors. Simplicial complexes also provide a very simple and
general method for expressing geometry in n-dimensional
space. [11]

Using this technique with simplicial complexes instead
of the more specific cases we have used in this research
would allow a more general framework of deformation tools
that scale to N dimensions and can represent more complex
deformations.

References

[1] E. Akleman, J. D. Palmer, R. Logan. Making Extreme
Caricatures with a New Interactive 2D Deformation
Technique with Simplicial Complexes.Visual 2000
Proceedings, 100-105, Sept. 2000.

[2] A. H. Barr. Global and local deformations of solid
primitives.Computer Graphics SIGGRAPH ’84 Pro-
ceedings, 18(3):21-30, 1984.

[3] Beier and Neely. Feature-Based Image Metamorpho-
sis.Computer Graphics, 26(2):35-42, 1992.

[4] P. Borrel and A. Rappoport. Simple constrained de-
formations for geometric modeling and interactive de-
sign.ACM Transactions on Graphics, 13(2):137-155,
1994.

[5] E. Brisson. Representing geometric structures in d di-
mensions: topology and orderACM Symposium on
Computational Geometry,218-227, 1989.

[6] S. Coquillart. Extended Free-Form Deformation :
A Sculpturing Tool for 3D Geometric Modeling.
Computer Graphics SIGGRAPH ’90 Proceedings,
24(4):187-196, 1990.

[7] B. Crespin. Implicit Free-Form Deformations.Implicit
Surfaces, 1999.

[8] F. Lazarus, S. Coquillart, and P. Jancene. Axial de-
formations: an intuitive deformation technique.Com-
puter Aided Design, 26(8):607-613, 1994.

[9] R. Logan. Automated Interactive Facial Caricature
Generation.Masters Thesis: Texas A&M University.
December 2000.

[10] X. Jin, Y. Li and Q. Peng. General Constrained Defor-
mations Based on Generalized Metaballs.Computers
& Graphics, 24:219-231, 2000.

[11] A. Paoluzzi, F. Bernardini, C. Cattani and V. Ferrucci.
Dimension-independent modeling with simplicial
complexes.ACM Transactions on Graphics,12(1):56-
102, 1993.

[12] T. W. Sederberg, S. R. Parry. Free-form Deformations
of solid geometric models.Computer Graphics SIG-
GRAPH ’86 Proceedings, 20(4):151-160, 1986.

[13] K. Singh and E. Fiume “Wires: a geometric deforma-
tion technique”Computer Graphics SIGGRAPH ’98
Proceedings, 405-414, 1998.

[14] B. Wyvill and G. Wyvill. Field Functions for Implicit
Surfaces.Visual Computer, 5:75-82, 1989.


