
Function Based Flow Modeling and Animation

Ergun Akleman, Zeki Melek and Jeff S. Haberl∗

July 14, 2006

Abstract

This paper summarizes a function-based approach to model and an-
imate 2D and 3D flows. We use periodic functions to create cyclical
animations that represent 2D and 3D flows. These periodic functions are
constructed with an extremely simple algorithm from a set of oriented
lines. The speed and orientation of the flow are described directly by the
orientation and the lengths of these oriented lines. The resulting cycli-
cal animations are then obtained by sampling the constructed periodic
functions.

Our approach is independent of dimension, i.e. for 2D and 3D flow the
same types of periodic functions are used. Rendering images for 2D and
3D flows are slightly different. In 2D function values directly are mapped
to color values. On the other hand, in 3D function values first mapped to
color and opacity and then the volume is rendered by our volume renderer.

Modeled and animated flows are used to improve the visualization of
operations of rolling piston and rotary vane compressors.

Keywords: Visualization, Image Synthesis, Computer Animation, Flow
Modeling and Flow Animation

1 Introduction

In this paper, our goal is to create user-controlled cyclical and variable speed flow
animations. We present a function based approach for modeling and animating

∗Ergun Akleman is an Assistant Professor in Visualization Sciences Program, Depart-
ment of Architecture, Texas A&M University. His address: Visualization Laboratory, 216
Langford Center, College Station, Texas 77843-3137. Email: ergun@viz.tamu.edu. Zeki
Melek is a Ph.D. student in Department of Computer Science at Texas A&M Univer-
sity. Email: melekzek@viz.tamu.edu. J. Haberl is an Associate Professor in Department
of Architecture, Texas A&M University. His address: Energy Systems Laboratory, Depart-
ment of Architecture, Texas A&M University, College Station, Texas 77843-3581. Email:
jhaberl@esl.tamu.edu.

1



2D and 3D flows. Based on the new approach it is extremely simple to develop
2D or 3D flow modeling and animating systems.

The interface concept to model the flow is very user-friendly. Based on this
concept we have developed systems for modeling 2D and 3D flows. We have
also used the modeled 2D flow animations to improve the quality of compressor
visualizations as part of a research project to investigate how multimedia can
improve engineering handbooks (see acknowledgments).

A similar problem, the creation of a flow animation for a given vector field,
has been popular in recent Computer Graphics publications. The most common
solution to the problem is to use the line integral convolution (LIC) technique
proposed by Cabral and Leedom [?]. Forsell and Cohen have also accomplished
this task with improved periodic filters which are originally suggested by Free-
man, Adelson and Heeger [?]. They modulated the rate of the function phase
shift as a function of the vector magnitude to obtain the variable-speed flow an-
imations [?, ?]. Stalling and Hege also improved this technique by eliminating
aliasing effects [?].

Max and Becker proposed a texture advancement technique to create cyclical
flow images [?]. Van Gelder and Wilhelms used color tables to animate 3D flow
fields [?]. Jobard and Leber proposed the idea of motion maps to speed up the
computation of steady flow animations [?].

Our technique originated from mathematical foundations of implicit surfaces
[?, ?] and it is loosely based on functional blend operations which are widely used
in morphing and implicit surface modeling. Feature-Based Image Metamorpho-
sis (FBIM) technique suggested by Beier and Neely uses a blending operation
to combine morphing effects of individual line pairs [?]. Similarly, Crespin also
used blending operations to develop Implicit Free-Form Deformations (IFFD),
which provides a framework in which most of the free-form deformation tech-
niques can be used but is based on deformation primitives defined by a local
tool and a blending function [?]. Blending operations are widely used in Im-
plicit surfaces to blend to implicit surfaces. Examples of blending operations
are Wywill’s Bloby surfaces [?] and Blinn’s exponential functions [?].

In our work, we do not use a given vector field to create flow animations.
Users themselves design the flow by drawing a set of oriented lines. The speed
and orientation of the flow are then described directly by the orientation and the
lengths of these oriented lines. Unlike the previous research, we use an implicit-
based approach instead of a line integral convolution (LIC) approach. Our
solution also provides a simple approach to develop an intuitive user interface
to design flow animations.

2 Methodology

Our approach is based on functions that are constructed by the operations
that are used in an implicit surface construction. The flow is described by

2



a set of oriented lines. For each oriented line segment a periodic function is
created to describe a flow in the direction and position of the line. Then, these
periodic functions are combined using an approximate union operation. The
following subsection describes how the periodic function is created for a given
line segment.

2.1 Flow Described by One Line Segment

Let an oriented line be given by two end points v1 and v2. Our first goal is to
construct a periodic function that will give a flow in the direction of v2 − v1

with the speed |v2 − v1|. Such a function can simply be written as

p(v, t) = 0.5 sin
(

t + ω
(v − v1) • (v2 − v1)

|v2 − v1|2
)

+ 0.5, (1)

where ω is the frequency, t is the phase and • scalar multiplication operator.
Note that the range of this function is [0, 1]. Therefore, it is easy to render this
function using linear interpolation.

Let the color in any point of space v in any given time t be denoted by
C(v, t) to render the function p(v, t) we use a linear interpolation to map real
numbers to colors as

C(v, t) = C0(1− p(v, t)) + C1p(v, t) (2)

where C0 = (r0, g0, b0) and C1 = (r1, g1, b1) are two user defined colors. An
example of the rendering of the function p(v, t) is shown in Figure ??. This
figure also demonstrates the effect of ω.

By simply changing t between 0 and 2π in equal intervals, we obtain a set
of image frames. When these frames are viewed as a cyclic animation they give
an illusion of a flow in the direction of v2 − v1 with the speed |v2 − v1|.

Unfortunately, the periodic function p(v, t) does not indicate the position of
the line (Any line with the same direction and length create similar images).
Therefore, in order to visually emphasize the line that creates the motion we
use a function d(v) that gives minimum distance [?] to the given line segment.
The function d(v) is given by the equality

d(v) =




|v − v1| if (v1 − v2) • (v − v1) ≥ 0,
|v − v2| if (v2 − v1) • (v − v2) ≥ 0,
z otherwise,

where

z = |(v − v1)× (v2 − v1)
|v2 − v1| |.

Figure ?? shows loci curves which are specified as d(v) = c where c is a positive
real number that indicates the distance from the line segment.

3



Figure 1: Periodic function for an oriented line segment. ω values are 2π, 4π
and 6π.

Figure 2: Equidistant curves described by a distance function for an oriented
line segment.

4



Based on the function d(v), we introduce a parameter

s =
d(v)

r|v2 − v1|
where r is a scale factor. The parameter s is 0 on the line and is 1 at r|v2− v1|.
Using this parameter, we introduce the amplitude (or opacity) function

a(v) =
{

(1− s)3 + 3s(1− s)2 if s ≤ 1,
0 otherwise.

The amplitude function a(v) is a C1 function. It takes value 1 on the line
segment and 0 for every point whose distance is larger than |v2 − v1|/r to the
line segment.

In these equations p(v, t) gives the flow and a(v) gives the shape of the
line. A flow described by one line segment can threfore be described using a
combination of these two functions p(v, t) and a(v).

2.2 Opacity and Color Functions

To render the flow we map function values to opacity and color. Let color and
opacity in any point of space v in any given time t be denoted by C(v, t) and
O(v, t) respectively.

The color C(v, t) is computed using the linear interpolation we introduced
before in equation ??. For the computation of opacity O(v, t) we introduce a
new function which is a combination of the functions p(v, t) and a(v) as

f(v, t) = (1− u)a(v)p(v, t) + ua(v), (3)

where u is a real number between 0 and 1. The effect of r and u are shown
in Figures ?? and ?? respectively. If u = 1, the shape of the flow looks like a
capsule as shown in Figure ??. The thickness of the capsule can be controlled
by the r parameter as shown in Figure ??. For u = 0.25, we can get a shape that
consist of blobs as shown in Figure ??. These blobs can be further separated
using smaller values of u.

As it can be seen in Figures ??, ??, ??, and ??, the same concept works
for both 2D and 3D flow modeling. The only difference in handling 2D and 3D
flows is in rendering.

2.3 Rendering Flow Described by One Line Segment

For rendering 2D flow, we simply sample color and opacity functions, C(v, t)
and O(v, t), and obtain a set of image frames with associated color and opacity.
By compositing these images with a background image, we obtain image frames
for 2D flow animation. Figure ?? shows the frames of 2D flow animation with a

5



r=1 r=0.5

r=0.25 r=0.125

Figure 3: The effect of r (ω = 4π and u=0.9).

u=1 u=0.5

u=0.25 u=0.0

Figure 4: The effect of u (ω = 4π, r=0.5 and C0 = C1).

6



gray background image. Only 4 frames are enough to create an animation. In
order to avoid temporal aliasing the functions need to be sampled with a spatial
and temporal jittering [?].

Figure 5: The capsule shape of the flow obtained with u = 1 (C0 6= C1).

For rendering 3D flow we first sample color and opacity functions, C(v, t)
and O(v, t) and obtain a set of volumes with associated color and opacity. We
then render these volumes using a ray-tracing version of the Volume Rendering
method of Drebin, Carpenter and Hanrahan [?]. These volumes can be an
object in a ray tracing scene, i.e. they can create shadow and reflection over
other objects in the scene. For instance, the scenes in the Figures ?? and ??
include a background plane. Figure ?? shows shadow of the flow over this
background plane. The volume object can have specular reflection. For instance,
In Figure ??, the flow has specular reflection in addition to diffuse reflection.
Similar to 2D case, to avoid temporal aliasing the functions need to be sampled
with a spatial and temporal jittering [?].

2.4 Flow Functions for Multiple Lines

If there exists more than one line, the problem is to appropriately combine the
functions p(v, t) and a(v) associated with each line. To compute the combined
translation, we simply calculate a weighted average of the functions described
by each directed line. Let pi(v, t) and ai(v) denote the functions described by

7



Figure 6: The bloby flow obtained with u = 0.25 (C0 6= C1).

each line i where i = 0, 1, . . . , n. The combined functions p(v, t) and a(v) are

p(v, t) =

n∑

i=0

wipi(v, t)

n∑

i=0

wi

a(v) =

n∑

i=0

wiai(v)

n∑

i=0

wi

where wi is a positive valued function that is computed using the distance from
the line i. (The function fi(v, t) is computed as before, in equation ??.)

Let di(v) be the distance from the line i described earlier. Any monotone
decreasing always positive function of di can be used as wi. One example of
such functions is

wi(di) = exp(−di/µi) (4)

where µi is any positive real number. Larger µi values give smoother warping

8



effects. Beier and Neely used the following function for wi:

wi(di) =
(

li
ai + di

)bi

where li, pi, ai and bi are real constants. Beier and Neely suggest that values of
bi in the range of [0.5, 2] are the most useful values. The value of ai must always
be positive. Smaller values provide more precise control while larger values
yield smoother warping. The scalar li can be used to give different importance
to each line. In our examples we generally use simple exponential function given
in equation ??.

An important concern in choosing an approapriate blending operations is
their associativity and commutativity [?]. If associative and commutative blend-
ing operations such as the one given in equation refeq3 are used, the resulting
flow functions F (v, t) can be recomputed in constant time (i.e. it is constant
time updateable) after deleting, changing or adding a constant number of line
segments [?].

2.5 Rendering Flow Described by Multiple Lines

Similar to one line case, we first map the function values to opacity and color.
The color and opacity functions, C(v, t) and O(v, t), are computed using the
same functions given in equations ?? and ??.

For rendering 2D flow, we again sample color and opacity functions, C(v, t)
and O(v, t), and obtain a set of image frames with associated color and opacity.
We obtain image frames for 2D flow animation by compositing these images with
a background image. As we have mentioned earlier, in order to avoid temporal
aliasing the functions need to be sampled with a spatial and temporal jittering
[?].

We have developed a user interface to create 2D flow animations. Using this
interface we have created various 2D flow animations. Figure ?? and ?? show
oriented control lines and related frames of the cyclic animations. The bottom
four images in Figure ?? and ?? are cyclic animation frames for the given set
of oriented line segments that are shown on the top row.

For rendering 3D flow decribed by multiple lines, we again sample color
and opacity functions, C(v, t) and O(v, t), and obtain a set of volumes with
associated color and opacity. We then volume render these volumes as before
[?]. Figures ??, ??, ?? ??, ??,and ?? show cyclic 3D animation frames for two
sets of oriented 3D line segments with three different u values. These animations
can be seen at www-viz.tamu.edu/faculty/ergun/research/flow/animations/.

9



Figure 7: Oriented lines and related frames of cyclic animation.

Figure 8: Another example of cyclic animation.
10



Figure 9: A flow modeled by multiple lines in 3D (u = 1, C0 6= C1).

Figure 10: A flow modeled by multiple lines in 3D (u = 0.25, C0 = C1).

Figure 11: A flow modeled by multiple lines in 3D (u = 0.0, C0 = C1).

11



Figure 12: A tree like flow modeled by multiple lines in 3D (u = 1, C0 6= C1).

Figure 13: A tree like flow modeled by multiple lines in 3D (u = 0.25, C0 = C1).

Figure 14: A tree like flow modeled by multiple lines in 3D (u = 0.0, C0 = C1

12



3 Application of Flow Animations to Compres-
sor Visualization

We used the 2D flow animations to improve the quality of compressor visualiza-
tions. The compressors are typical of the type found in household refrigerators
and air-conditioning systems. There are various types of compressors such as
centrifugal, scroll, rolling piston and twin-screw [?]. For heating, refrigerating
and air conditioning engineers it is essential to understand and visualize how
each type of compressor works. Therefore, the goal of compressor visualization
is to illustrate the compression principles for different types of compressors.
Unfortunately, it is almost impossible to understand the working principles of
compressors just by looking at static illustrations. It is therefore essential to
create animations that show how the individual parts of compressors and the
associated fluid move during compression cycles. However, if the animations of
the flow were not included, then the viewer is left to imagine how the gases are
compressed.

For some compressors, such as scroll, rolling piston and rotary vane, the
best staging of the compressor motion is given by parallel projection. For the
visualization of such compressors 2D flow animations can be a useful tool. We
used 2D flow animations to improve the quality of visualization of rolling piston
and rotary vane compressors. Rolling piston compressor uses a roller mounted
on the eccentric of a shaft with a single vane or blade suitably positioned in
the nonrotating cylindrical housing, generally called the cylinder block. The
blade reciprocates in a slot machined in the cylinder block. This reciprocating
motion is caused by the eccentrically moving roller. In order to create rolling
piston animation, we have developed a simple texture mapped 3D model for the
compressor and animated the cylinder blocks by using a commercial modeling
and animation package. We have then rendered this animation by using parallel
projection. Flow animations are created in our system separately. These two
animations are later combined by using a compositing program. Some frames of
resulting animation are shown in Figure ??. The animation of rolling piston can
be seen at www-viz.tamu.edu/ASHRAE/current/cdrom/chapter/section3.html.

As an example of rotary vane compressors we used an eight-bladed compres-
sor. The eight discrete volumes are referred to as cells. In this compressor, a
single shaft rotation produces eight distinct compression strokes. In a similar
way to the rolling piston case, a rotary vane compresser is modeled, animated
and rendered in 3D by using a commercial modeling and animation package.
Flow animations are created in our system separately. Then the two animations
are combined Using a commercial compositing package. Some frames of the re-
sulting animation are shown in Figure ??. The animation of rotary vane can be
seen at www-viz.tamu.edu/ASHRAE/current/cdrom/chapter/section3.01.html.

13



Frame 4 Frame 8

Frame 12 Frame 16

Frame 20 Frame 24

Frame 28 Frame 32

Figure 15: Sample frames of a rolling piston animation.

14



Outlet

Inlet Blades

CellsFrame 1 Frame 2

Frame 3 Frame 4

Figure 16: Sample frames of rotary vane animation.

15



4 Conclusion

In this paper, we have developed a function-based approach for user controlled
flow animation. Our approach provides a simple algorithm for modeling variable-
speed flow animations in both 2D and 3D.

5 Acknowledgments

Portions of this work were supported by The American Society of Heating Re-
frigeration and Air Conditioning Engineers (ASHRAE) through research project
1017-RP. Special thanks to Sajan Skaria who developed the models and anima-
tions of the rotary vane and rolling piston compressors.

References

[1] B. Cabral and L. Leedom, “Imaging Vector Fields using Line Inte-
gral Convolution”, Proceedings of ACM SIGGRAPH’93, pp. 263-272,
August, 1993.

[2] W. T. Freeman, E. H. Adelson and D. J. Heeger, “Motion without
Movement”, Proceedings of ACM SIGGRAPH’91, pp. 27-30, July,
1991.

[3] L. K. Forsell, “Visualizing Flow over Curvilinear Grid Surfaces Using
Line Integral Convolution”, Proceedings of IEEE Visualization’94, pp.
240-247, October, 1994.

[4] L. Forsell and S. D. Cohen, “Using Line Integral Convolution for
Flow Visualization: Curvilinear Grids, Variable-Speed Animation and
Unsteady Flows”, IEEE Transaction on Visualization and Computer
Graphics, vol. 1, no. 2, pp. 133-141, June, 1995.

[5] D. Stalling and H. C. Hege, “Fast and Resolution Independent Line
Integral Convolution”, Proceedings of ACM SIGGRAPH’95, pp. 249-
256, August, 1995.

[6] N. Max and B. Becker, “Flow Visualization Using Moving Textures”,
Proceedings of ICASE/LaRC Symposium on Visualizing Time-Varying
Data, 1995.

[7] A. Van Gelder ad J. Wilhelms, “Interactive Visualization of Flow
Fields”, Proceedings of Workshop on Volume Visualization, pp. 47-54,
1992.

16



[8] B. Jobard and W. Lefer, “The Motion Map: Efficient Computation of
Steady Flow Animations”, Proceedings of IEEE Visualization’97, pp.
323-328, October, 1997.

[9] J. Bloomenthal, C. Bajaj, M-P Cani, A. Rockwood, B. Wyvill and G.
Wyvill, Introduction to Implicit Surfaces, Morgan Kaufmann, 1997.

[10] A. Ricci, “A Constructive Geometry for Computer Graphics”, The
Computer Journal, vol 16, no. 2, pp. 157-160, May 1973.

[11] Beier and Neely. Feature-Based Image Metamorphosis. Proceedings of
ACM SIGGRAPH’92, 26(2):35-42, 1992.

[12] B. Crespin. Implicit Free-Form Deformations. Proceedings of Implicit
Surfaces’99, pp. 17-24, September 1999.

[13] G. Wyvill, C. McPheeters and B. Wyvill, “Data Structure for Soft
Objects”, The Visual Computer, vol. 2, no. 4, pp. 227-234, 1987.

[14] J. Blinn, “A Generalization of Algebraic Surface Drawings”, ACM
Transactions on Graphics, vol. 1, no. 3, pp. 235-256, 1982.

[15] R. Cook, T. Porter andL. Carpenter, “Distributed Ray Tracing”, Pro-
ceedings of ACM SIGGRAPH’84, pp. 137-145, August, 1984.

[16] R. A. Drebin, L. Carpenter and P. Hanrahan, “Volume Rendering”,
Proceedings of ACM SIGGRAPH’93, pp. 65-74, August, 1988.

[17] E. Akleman and J. Chen, “Constant Time Updateable Operations”,
Proceedings of Shape Modeling’99, 73-80, September 1999.

[18] ASHRAE, H.V.A.C. Systems and Equipment: Chapter 34 - Compres-
sors, American Society of Heating, Refrigerating and Air-Conditioning
Engineers, Atlanta, GA., 1996.

17


