PHYSICS 218

Week 1 Essentials of Calculus

- a. Use the Delta Method to find derivatives of polynomials
- b. Use the summation of areas to find integrals of polynomials
- c. Utilize formulae for derivatives and integrals for simple functions
- d. Be able to prove that differentiation and integration are mutual inverses

Week 2 Kinematics in One Dimension

- a. Derive equations of motion for a given acceleration by integration
- b. Find kinematic equations for constant acceleration
- c. Apply the equations for one dimensional motion

Week 3 Vectors and Two Dimensional Motion

- a. Find the resultant of a number of vectors
- b. Express any vector in terms of components and unit vectors
- c. Derive the two dimensional equations of motion for arbitrary time dependent acceleration
- d. Apply kinematic equations in two dimensions, e.g. projectile motion

Week 4 Newton's Laws

- a. To distinguish the forces acting on a system and identify their origins
- b. To apply Newton's Second Law to obtain the third law
- c. To become familiar with friction and elastic forces

Week 5 Applications of the Second Law

- a. To isolate a body and draw a free body diagram
- b. To apply Newton's Laws to simple systems
- c. To solve for accelerations in more complicated systems including pulleys and strings

Week 6 Work and the Work Energy Theorem

- a. To calculate the line integral for simple forces and paths
- b. To derive the Work Energy Theorem for constant forces
- c. To derive the Work Energy Theorem in general
- d. To solve various problems, e.g. springs, using the Work Energy Theorem

Week 7 Potential Energy Functions

- a. To calculate work for various forces for different paths
- b. To determine whether or not a potential energy function exists for particular forces
- c. Utilize a procedure for finding the potential energy function for conservative forces

Week 8 Conservation of Energy

- a. To combine the Work Energy Theorem and the definition of U to obtain the law of Conservation of Energy
- b. To determine whether this law is applicable in given situations
- c. To solve Conservation of Energy problems
- d. To determine system behavior given graphical representation of U Week 9 Conservation of Momentum
 - a. Calculate the position, velocity and acceleration of the center of mass of a system of particles
 - b. Incorporate Newton's Third Law to relate external forces to center of mass motion
 - c. Determine whether Conservation of Momentum applies to a system
 - d. Solve general collision or explosion problems
- e. Utilize Conservation of Momentum when only approximately valid Week 10 Polar Coordinates
 - a. Derive the expressions for the components of the velocity and acceleration in polar coordinates
 - b. Identify angular velocity and acceleration
 - c. Derive kinematic relations for given, time dependent angular accelerations

Week 11 Circular Motion

- a. To obtain Newton's Law in terms of polar components
- b. Apply the law to circular motion with special emphasis on the correct free body diagram
- c. To determine period and frequency for circular motion
- d. To relate rotational motion to translation for non-slipping motion

Week 11 Torque and Angular Momentum

- a. Calculate torque and angular momentum given forces and momentum
- b. To relate torque and angular momentum
- c. To ascertain whether angular momentum is conserved for a point particle and solve simple Conservation of Momentum problems

Week 12 Conservation of Angular Momentum

- a. To determine the relationship between torque and angular momentum for a system of particles, i.e. and extended body.
- b. To calculate the moment of inertia for a symmetric body
- c. To calculate the angular momentum of a symmetric body about the symmetry axis
- d. To apply Conservation of Angular Momentum for extended systems

e. Use the relationship between external torque and angular momentum for problems such as those with real pulleys

Week 13 Harmonic Motion

- a. To obtain the differential equation for systems with linear restoring forces
- b. To solve the equations and analyze the motion, including energy considerations
- c. To obtain the differential equation when damping and forcing are present
- d. To recognize the existence of resonances in such systems Week 14 Frames of Reference
 - a. To derive the Galilean transformation equations for position, velocity and acceleration
 - b. To show the relationship between inertial and non-inertial frames and understand the invention of fictitious forces such as the centrifugal force
 - c. To be acquainted with the basic elements Einstein's corrections