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We present a method for accelerating GW quasi-particle (QP)

calculations. This is achieved through the introduction of

optimal basis sets for representing polarizability matrices. First

the real-space products of Wannier like orbitals are constructed

and then optimal basis sets are obtained through singular value

decomposition. Our method is validated by calculating the
vertical ionization energies of the benzene molecule and the

band structure of crystalline silicon. Its potentialities are

illustrated by calculating the QP spectrum of a model structure

of vitreous silica. Finally, we apply our method for studying the

electronic structure properties of a model of quasi-stoichio-

metric amorphous silicon nitride and of its point defects.
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1 Introduction Density-functional theory (DFT) has
grown into a powerful tool for the numerical simulation of
matter at the nanoscale, allowing one to study the structure
and dynamics of realistic models of materials consisting of
up to a few thousands atoms, these days [1]. The scope of
standard DFT, however, is limited to those dynamical
processes that do not involve electronic excitations.
Moreover, its time-dependent extension [2], which has been
conceived to cope with such processes, still displays
conceptual and practical difficulties.

The most elementary excitation is the removal or the
addition of an electron from a system originally in its ground
state. These processes are accessible to direct/inverse photo-
emission spectroscopies and can be described in terms of
quasi-particle (QP) spectra [3]. In insulators, the energy
difference between the lowest-lying quasi-electron state and
the highest-lying quasi-hole state is the QP band gap, a
quantity that is severely (and to some extent erratically)
underestimated by DFT [4].

Many-body perturbation theory (MBPT), in turn,
provides a general, though unwieldy, framework for
calculating QP properties and other excitation (such as
optical) spectra [3]. A numerically viable approach to QP
energy (QPE) levels (known as the GW approximation,
GWA) was introduced in the 1960s [5], but it took two
decades for a realistic application of it to appear [6, 7], and
even today the numerical effort required by MBPT is such
that its scope is usually limited to systems of a few handfuls
of inequivalent atoms. The two main difficulties are the
necessity to calculate and manipulate large matrices
representing the charge response of the system (electron
polarizabilities or polarization propagators) [8], on the one
hand, and that of expressing such response functions in terms
of slowly converging sums over empty one-electron states
[8, 9–11], on the other hand. Recently, we addressed both
problems. In a first work [8] we introduced a method to
significantly reduce the computational and memory loads
of GWA calculations through the introduction of optimal
basis sets for representing polarizability operators built
upon Wannier-like orbitals [12–14]. Then, in a following
communication [15], we proposed an approach to obtain
fully converged GWA calculation avoiding at the same
time any sum over empty states. In the same work we
explained how also optimal polarizability basis sets can
be constructed without explicitly evaluating empty states.

In this review, we present the strategy we have conceived
for obtaining optimal polarizability basis sets and for
calculating QPE levels, still considering sums over empty
states. The paper is organized in this way: in Section 2 we
briefly introduce the GW approximation, in Section 3 we
describe our method for constructing optimal polarizability
basis sets and for performing GWA calculations in isolated
� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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and extended systems, in Section 4 we validate our method
by considering the benzene molecule, crystalline silicon, and
a model of vitreous silica, in Section 5 we use our method for
studying the electronic properties of a model of quasi-
stoichiometric amorphous silicon nitride and of its point
defects. Conclusion and perspectives are drawn in Section 6.

2 The GW approximation QP energies and QP
amplitudes (QPA) are eigenvalues and eigenvectors of a
Schrödinger-like equation (QPEq), which is similar to the
DFT Kohn–Sham equation with the exchange-correlation
potential, Vxc(r), replaced by the non-local, energy-depen-
dent, and non-Hermitian self-energy operator, ~Sðr; r0;EÞ (a
tilde indicates the Fourier transform of a time-dependent
function):
� 20
� 1

2
Dþ Vext þ ~SðEnÞ

� �
jn ¼ EnjnðrÞ; (1)
where we are using atomic units (�h ¼ 1, m¼ 1, and e¼ 1)
and Vext is the external (ionic) potential and En and jn are the
n-th QPE and QPA, respectively. It is worth noting that the
Hartree–Fock equation can be obtained from Eq. (1) by
setting:
~Sðr; r0;EÞ ¼ � rðr; r0Þ
jr�r0j ; (2)
where r is the one-particle density matrix and e is the
elementary charge.

The next level of approximation is the GWA [5] whereS
is the product in time of the one-electron propagator, G, and
of the dynamically screened interaction, W:
SGWðr; r0; tÞ ¼ iGðr; r0; t þ hÞWðr; r0; tÞ; (3)
where h is a positive infinitesimal and W is expressed in
terms of the bare Coulomb interaction yðr; r0Þ and of the
reducible polarizability operator Pðr; r0; tÞ:
W ¼ yþ y �P � y; (4)
where we indicate with a dot the product of two operators,
such as in y � xðr; r0; tÞ ¼

R
dr00yðr; r00Þxðr00; r0; tÞ.

Then, the reducible polarizability operator is obtained
from the irreducible polarizability operator P through the
following Dyson’s equation:
P ¼ ð1�P � yÞ�1 � P: (5)
Finally, the irreducible polarizability is given from the
product in time of one-electron propagators:
Pðr; r0; tÞ ¼ �iGðr; r0; tÞGðr0; r;�tÞ: (6)
The GWA alone does not permit to solve the QPEq,
unless G and W are known, possibly depending on the
solution of the QPEq itself.

One of the most popular further approximations is the
so-called G8W8 approximation, where the one-electron
11 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
propagator G is obtained from the eigenfunctions cn(r) and
eigenenergies en of a one-electron (usually a Kohn–Sham)
Hamiltonian:
G�ðr; r0; tÞ ¼ i
X
y

cyðrÞc�
yðr0Þ e�ieytuð�tÞ

�i
X
c

ccðrÞc�
cðr0Þ e�iectuðtÞ;

(7)
where, referred to the Fermi energy, y and c suffixes indicate
valence states below and conduction states above the Fermi
energy, respectively, and u is the Heaviside step function.
Now, using the definition of G8 in Eq. (6) is equivalent to
calculating the irreducible polarizability within the random-
phase approximation (RPA) which we indicate with P8.
Then, from Eqs. (5) and (4), we obtain the approximate
reducible polarizability operator P8 and dynamically
screened Coulomb operator W8. Finally, the approximate
self-energy operator in the G8W8 scheme is calculated
through:
SG�W� ðr; r0; tÞ ¼ iG�ðr; r0; t þ hÞW�ðr; r0; tÞ: (8)
A further approximation, usually referred to as the
diagonal approximation, is introduced for solving the QPEq:
the QPAs are approximated directly with the non-interacting
eigenfunctions:
jnðrÞ � cnðrÞ: (9)
This permits to find the QPEs by solving the following
self-consistent one-variable equation:
En � en þ h~SG�W� ðEnÞin�hVXCin; (10)
where hAin ¼ hcnjAjcni.
The apparently simple G8W8 approximation still

involves severe difficulties, mainly related to the calculation
and manipulation of the polarizability that enters the
definition of W8. These difficulties are often addressed using
the so-called plasmon-pole approximation [6], which
however introduces noticeable ambiguities and inaccuracies
when applied to inhomogeneous systems [16]. A well-
established technique to address QP spectra in real materials
without any crude approximations on response functions is
the space–timemethod (STM) by Godby and coworkers [17].
In the STM the time/energy dependence of the G8W8
operators is represented on the imaginary axis, thus making
them smooth (in the imaginary frequency domain) or
exponentially decaying (in the imaginary time domain).
The various operators are represented on a real-space grid, a
choice which is straightforward, but impractical for systems
larger than a few handfuls of inequivalent atoms. In the STM,
the self-energy expectation value in Eq. (10) is obtained by
analytically continuing to the real frequency axis the Fourier
www.pss-b.com
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transform of the expression:
hS

�

www
G�W� ðitÞin ¼ �
X
l

eelt

Z
cnðrÞclðrÞclðr0Þcnðr0ÞW�ðr; r0; itÞ dr dr0;

(11)
where the upper (lower) sign holds for positive (negative)
times, the sum extends below (above) the Fermi energy, and
QPAs are assumed to be real. For simplicity, in the rest of
the paper, one-particle wavefunctions will be always
considered to be real, which is always possible for time-
symmetric systems. By substituting y for W, Eq. (11) yields
the exchange self-energy, whereas y �P � y yields the
correlation contribution, SC, whose evaluation is the main
size-limiting step of GW calculations.
3 The method: Optimal polarizability basis Let
us suppose that a small, time-independent, orthonormal basis
set {Fm(r)} exists for representing polarizability operators:
Pðr; r0; itÞ �
X
mn

PmnðitÞFmðrÞFnðr0Þ: (12)
Then, the correlation contribution SC to the self-energy
is given by Eq. (11):
hSCðitÞin � �
X
lmn

eeltPmnðitÞSnl;mSnl;nuðE1
C�elÞ;

(13)
where E1
C is an energy cutoff that limits the number of

conduction states to be used in the calculation of the self-
energy and:
Snl;n ¼
Z

cnðrÞclðrÞ
1

jr�r0jFnðr0Þ dr dr0: (14)
Then a convenient representation of the polarizability
would thus allow QPEs to be calculated from Eq. (10), by
analytically continuing to the real axis the Fourier transform
of Eq. (13). Our goal is to shrink the dimension of the
polarizability basis set {Fm(r)} without loss of accuracy.
Therefore, an optimal polarizability basis would allow fast
and accurate GW calculations.

We construct an optimal representation in three steps:
(i) w
e first express the Kohn–Sham orbitals, whose
products enter the definition ofP8, in terms of localized,
Wannier-like, orbitals,
(ii) w
e thenconstructabasis setof localizedfunctions for the
manifold spanned by products of Wannier orbitals,
(iii) fi
nally, this basis is further restricted to a set of
approximate eigenvectors of P8, corresponding to
eigenvalues larger than a given threshold.
.pss-b.com
Let us start from the RPA irreducible polarizability:
~P
�ðr; r0; ivÞ ¼

X
cy

FcyðrÞFcyðr0Þ~x�
cyðivÞ; (15)
where
~x�
cyðivÞ ¼ 2Re

1

iv�ec þ ey

� �
; (16)
and
FcyðrÞ ¼ ccðrÞcyðrÞ: (17)
We express valence and conduction QPAs in terms of
localized, orthonormal maximally localized Wannier func-
tions [12, 14]:
usðrÞ¼
X
y

UyscyðrÞuð�eyÞ

ysðrÞ¼
X
c

VcsccðrÞuðecÞuðE2
C�ecÞ;

(18)
where E2
C � E1

C is a second energy cutoff that limits a lower
conduction manifold (LCM) to be used only in the
construction of the polarizability basis and the U and V
matrices are unitary.

We then reduce the number of product functions from the
product, which scales quadratically with the system size,
between the number of valence and the number of
conduction states, to a number that scales linearly. Indeed,
we have transformed the problem of calculating products in
real space of delocalized (usually Kohn–Sham) orbitals in
that of calculating products in real space of localized
Wannier functions. We express the F’s as approximate
linear combinations of products of the u’s y’s:
FcyðrÞ �
X
rs

Ocy;rsWrsðrÞuðjWrsj2�s1Þ; (19)
where:
Ocy;c0y0 ¼ Uyy0Vcc0 ; (20)
and the products in real space are given by:
WrsðrÞ ¼ urðrÞysðrÞ; (21)
and jWcyj is the L2 norm of Wrs(r), which is arbitrarily small
when the centers of the ur and ys functions are sufficiently
distant, and s1 is an appropriate threshold.

The number of basis functions can be further reduced on
account of the non-orthogonality of the W’s. Indeed it is
possible to obtain an orthonormal basis for representing the
W’s whose dimension can be significant smaller that the
number of retained W’s. This is done through a procedure
analogous to a singular value decomposition. We first define
the overlap matrix:
Qrs ¼
Z

WrðrÞWsðrÞ dr; (22)
� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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where the r and s indices stand for pairs of rs indices. Then,
we calculate the eigenvalues {qv} and eigenvectors fUng of
the matrix Q. It should be noted that the matrix Q is always
positive definite. The magnitude of the eigenvalues is a
measure of the relevance of their corresponding eigenvec-
tors. Indeed an orthonormal basis sets which spans the space
of the {Wr} is given by the states F:
� 20
FnðrÞ ¼
1ffiffiffiffiffi
qn

p
X
r

UnrWrðrÞ: (23)
An optimal polarizability basis can be obtained by
retaining those F’s for which qv is larger than a given
threshold, s2. We can now write:
FcyðrÞ �
X
r0n0

Ocy;r0
ffiffiffiffiffiffi
qn0

p Un0r0 ; (24)
where the indices r0 and n0 run only over the elements which
have been retained according to the thresholds s1 and s2,
respectively.

It is worth noting that the optimal polarizability basis
vectors {Fv} are the (approximate) eigenvectors of the
polarizability operator P0 at zero time constructed with
empty states only from the LCM:
P0ðr; rÞ ¼
X
yc0

Fyc0 ðrÞFyc0 ðr0Þ; (25)
where c0 indicates the empty states belonging to the LCM.
As the U and V matrices are unitary, it holds:
P0ðr; rÞ �
X
r0

Wr0 ðrÞWr0 ðr0Þ: (26)
From this equation and from Eq. (24), it is easy to show
that:
Z

dr0P0ðr; rÞFnðr0Þ � qnFnðrÞ: (27)
This means that the construction of the polarizability
basis selects the most important eigenvectors of the
polarizability at least at zero time. We have verified,
however, that the manifold spanned by the most important
eigenvectors of P8 in the (imaginary) time domain depends
very little on time, which permits the use of a same basis at
different frequencies. We have also verified that although the
polarizability basis has been constructed only with empty
states from the LCM, it behaves very well also for
representing polarizability operators constructed with much
more complete sets of empty states.

It should be noted that equivalent optimal polarizability
basis sets could be constructed by choosing s1¼ 0 and by
considering directly products of Kohn–Sham orbitals with-
out trasforming them into localized Wannier functions.
Going through Wannier functions and discarding small
overlaps permits only to speed up the construction of the
polarizability basis set. Indeed, this results into a O(N3)
11 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
process instead of a O(N4) process. This means that also for
systems presenting delocalized orbitals it will always be
possible to obtain optimal polarizabilty basis sets. However,
in the limit case in which Kohn–Sham orbitals are simply
plane waves, the optimal polarizability basis will be simply a
basis of plane-waves. Hence, we expect to find larger benefits
from the use of optimal polarizability basis sets in the case of
isolated materials and in that of extended insulators, while in
the limit of small gap extended systems we do not expect to
find significant improvements with respect to the use of
plane-waves basis sets.

Once an optimal basis set has been identified, an explicit
representation for the irreducible polarizability,
~P
�ðr; r0; ivÞ ¼

X
mn

~P
�
mnðivÞFmðrÞFnðr0Þ; (28)
is obtained. By equating Eq. (15) to Eq. (28) and taking into
account the orthonormality of the F’s, one obtains:
~P
�
nmðivÞ ¼

X
cy

Tcy;mTcy;n~x
�
cyðivÞuðE1

C�ecÞ; (29)
with
Tcy;m ¼
Z

FcyðrÞFmðrÞ dr; (30)
where the index c runs over all the empty states defined by
the cutoff E1

C. Finally, a representation for P is obtained by
simple matrix manipulations.

While isolated system can be easily treated by applying
in Eq. (14) a truncated form of the Coulomb potential [18],
extended ones require some additional steps which we
briefly introduce here. Note that in the present work the
Brillouin zone is generally sampled at theG-point only. First,
it is convenient to introduce the frequency dependent
symmetric dielectric matrix [19]:
~esymðivÞ ¼ 1�y1=2 � ~P�ðivÞ � y1=2; (31)
where y is the Coulomb interaction. From esym the screened
Coulomb interaction W is given by:
~W
�ðivÞ ¼ y1=2 � ~esym;�1ðivÞ � y1=2: (32)
Because of the long-range character of the Coulomb
interaction, the long-wavelength components, the ‘‘head’’
(G ¼ G0 ¼ 0) and ‘‘wings’’ (G¼ 0, G0 6¼ 0), of ~esymðivÞ
cannot be neglected. As the optimal polarizability basis is
orthogonal to theG¼ 0 component, we calculate esym(iv) on
the representation of the optimal polarizability basis plus the
G¼ 0 vector. This is done by calculating the head and wings
terms at frequency iv using a linear response approach [20],
where optionally the Brillouin zone can be sampled with
denser meshes of k-points [21], and by projecting the wings
over the polarizability basis functions. Then, we extract from
www.pss-b.com
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mn ðivÞ�dm;n~e

sym;�1
G¼0G0¼0ðivÞÞhFnjy1=2:
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The contribution toSC due to the long-range part ofW is
then given by:
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Figure 1 (online color at: www.pss-b.com) Calculated ionization
lr
CðitÞin �

X
l

Z
dr dr0

cnðrÞclðrÞclðr0Þcnðr0Þ
jr�r0j

� esym;�1
G¼0G0¼0ðitÞ�1

� �
eeltuðE1

C�elÞ:
(34)
potential of the benzene molecule (solid lines, left scale) and
dimension of the polarization basis (dashed lines, right scale) versus
the s2 cutoff. The polarization basis has been constructed with a
conduction energy cutoff E2

C ¼ 16:7 eV (red, 100 states),
E2
C ¼ 28:6 eV (green, 300 states), and E2

C ¼ 38:3 eV (blue, 500
states).
As the calculation of such terms closely resembles the
evaluation of exchange terms, we calculate them using the
scheme introduced in Ref. [22], optionally using a denser
sampling of the BZ. Finally, the contribution toSC due to the
short-range part of W is given by:
hSsr
CðitÞin � �

X
lmn0mn0

eeltSnl;mSnl;nu E1
C�el

� �

� y
�1=2
mm0 esym;�1

m0n0 ðitÞ�dm0;n0e
sym;�1
G¼0G0¼0ðitÞ

� �
y
�1=2
n0n ;

(35)
where the operator y is calculated first on the polarizability
basis:
ymn ¼ hFmjyjFni: (36)
The evaluation of Eq. (36) does not present any difficulty
as the polarizability basis functionsF’s are orthogonal to the
G¼ 0 vector.

4 Implementation and validation Our scheme has
been implemented in the QUANTUM-ESPRESSO density func-
tional package [23], for norm-conserving as well as ultra-soft
[24] pseudopotentials, resulting in a new module called
gww.x which uses a Gauss–Legendre discretization of the
imaginary time/frequencies half-axes, and that is paralle-
lized accordingly. In the following examples, DFT calcu-
lations were performed using the energy functional from Ref.
[25] and pseudo-potentials have been taken from the
Quantum-Espresso tables [23]. We used an imaginary time
cutoff of 10 a. u., an imaginary frequency cutoff of 20 Ry,
and grids of 80 steps in both cases. The self-energy was
analytically continued using a two poles formula [17].

4.1 Benzene We first illustrate our scheme by con-
sidering an isolated benzene molecule in a periodically
repeated cubic cell with an edge of 20 a.u. using a first
conduction energy cutoff E1

C ¼ 56:7eV, corresponding to
1000 conduction states, and a threshold on the norm of
Wannier products s1¼ 0.1 a.u. We used the norm-conserving
pseudopotentials: C.pz-vbc and H.pz-vbc. The wavefunc-
tions and the charge density were expanded on plane waves,
defined by kinetic energy cutoffs of 40 and 160 Ry,
.pss-b.com
respectively. In Fig. 1 we display the dependence of the
calculated ionization potential (IP) on the second conduction
energy cutoff used to define the polarization basis,E2

C, and on
the cutoff on the eigenvalues of the overlap matrix between
Wannier products, s2. Convergence within 0.01 eV is
achieved with a conduction energy cutoff E2

C smaller than
30 eV (less than 300 states) and a polarizability basis set
of only 	400 elements. The convergence of other QPEs is
similar.

In Fig. 2, we display the convergence of the IP with
respect to E1

C, which turns out to be quite slow. These data
can be accurately fitted by the simple formula:
IPðE1
CÞ ¼ IPð1Þ þ A

E1
C

; (37)
resulting in a predicted ionization potential IP(1)¼ 9.1 eV,
in good agreement with the experimental value of 9.3 eV
[26].

4.2 Bulk Si In order to demonstrate our scheme for
extended systems, we consider crystalline silicon treated
using a 64-atom simple cubic cell at the experimental lattice
constant and sampling the corresponding Brillouin zone
(BZ) using theG-point only. This gives the same sampling of
the electronic states as would result from six points in the
irreducible wedge of the BZ of the elementary 2-atom unit
cell. We used an norm-conserving pseudopotential: Si.pz-
rrkj. The wavefunctions and the charge density were
expanded on plane waves, defined by kinetic energy cutoffs
of 18 and 72 Ry, respectively. Then, the GW calculations
were performed using E1

C ¼ 94:6 eV (corresponding to 3200
conduction states) and E2

C ¼ 33:8 eV (corresponding to 800
states in the LCM), s1¼ 1.0 a.u. and two distinct values for s2

(0.01 and 0.001). For calculating the head and wing terms of
� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 2 (online color at: www.pss-b.com) Calculated ionization
potential as a function of the overall conduction energy cutoff, E1

C.
Black line: experimental value; red line: fit to the calculated values
(green triangles); blue line extrapolated value. See text for more
details.

Figure 3 Electronic density of states for a model of vitreous silica:
LDA (dashed line) and GW (solid line). A Gaussian broadening of
0.25 eV has been used. The top of the valence band has been aligned
to 0 eV.
the symmetric dielectric matrix we used a 4� 4� 4 grid for
sampling the BZ of the 64-atom cubic cell. Then, for
calculating the long-range contribution to the self-energy
given in Eq. (34), we used a 2� 2� 2 grid. In Table 1 we
summarize our results and compare them with previous
theoretical results, as well as with experiments. An overall
convergence within a few tens meV is achieved with a s2

cutoff of 0.001 a.u., corresponding to a polarizability basis of
	6500 elements. The residual small discrepancy with
respect to previous results [17] is likely due to our use of a
supercell, rather than the more accurate k-point sampling
used in previous works.

4.3 Vitreous silica Our ability to treat large super-
cells give us the possibility to deal with disordered systems
that could hardly be addressed using conventional
approaches. In Fig. 3 we show the QPE density of states
(DOS) as calculated for a 72-atom model of vitreous silica
[27].We used a norm-conserving for pseudopotential for
Si (Si.pz-vbc) and an ultrasoft [24] one (O.pz-rrkjus) for O.
The wavefunctions and the charge density were expanded on
Table 1 QPEs (eV) calculated in crystalline silicon and compared
with experimental (as quoted in Ref. [17]) and previous theoretical
results [17].

Th1 Th2 prev th expt

NP 4847 6510

G1y �11.45 �11.49 �11.57 �12.5
 0.6
X1y �7.56 �7.58 �7.67
X4y �2.79 �2.80 �2.80 �2.9, �3.3
 0.2

G0
25c

0. 0. 0. 0.

X1c 1.39 1.41 1.34 1.25

G0
15c

3.22 3.24 3.24 3.40, 3.05

G0
2c

3.87 3.89 3.94 4.23, 4.1

‘‘Th1’’ and ‘‘Th2’’ indicate calculations made with s2¼ 0.01 and s2¼ 0.001

a.u., respectively, while NP is the dimension of the polarization basis.

� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
plane waves, defined by kinetic energy cutoffs of 24 and
200 Ry, respectively. We usedE1

C ¼ 48:8 eV (corresponding
to 1000 conduction states), E2

C ¼ 30:2 eV (corresponding to
500 states in the LCM), s1¼ 1 a.u. and s2¼ 0.1 a.u. (giving
rise to a polarization basis of 3152 elements). We checked
the convergence with respect to the polarization basis by
considering s2¼ 0.01 a.u. which leads to a basis of 3933
elements. Indeed, the calculated QPEs differ in average by
only 0.01, eV with a maximum discrepancy of 0.07 eV. The
QP band-gap resulting from our calculations is 8.5 eV, to be
compared with an experimental value of	9 eV [28] and with
a significantly lower value predicted by DFT in the local-
density approximation (5.6 eV).

5 Example: Point defects in a-Si3N4 Amorphous
silicon nitride (a-Si3N4) is being widely studied as its
mechanical and electronic properties lead to a wide range of
applications [29] In microelectronics, amorphous silicon
nitride (a-Si3N4) is used to fabricate insulating layers in triple
oxide-nitride-oxide structures [30]. In particular, because of
its high concentration of charge traps, a-Si3N4 is employed as
charge storage layer in non-volatile memory devices [31].
Moreover, silicon nitride based materials are nowadays
proposed for optoelectronic devices [32]. Due to the non-
trivial nature of its structures, first-principles methods
become very important for investigating its properties at
the atomistic scale [33]. We review here how our gww
method permitted to investigate the electronic structure of
quasi-stoichiometric a-Si3N4 addressing a 152-atoms model
structure [33].

5.1 Model generation In a-Si3N4 silicon atoms are
fourfold coordinated forming almost regular SiN4 tetrahe-
dra. The latter are connected by corners in such a way that
each N atom is shared by three tetrahedra. Nitrogen atoms are
threefold coordinated, with the silicon neighbors arranged at
the vertexes of a planar triangle. This results in a quite rigid
network structure. Furthermore the a-Si3N4 network is
supposed to contain not only corner-sharing but also edge-
sharing SiN4 tetrahedra [33, 34].
www.pss-b.com
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Figure 4 (online color at: www.pss-b.com) Balls-and-sticks pic-
tureof thea-Si3N4 model.SiatomsandNatomsarecoloredwithdark
and light gray, respectively. Threefold and fivefold coordinated Si
atoms are colored in purple and yellow, respectively. Twofold and
fourfoldcoordinatedNatomsarecolored in redandgreen.Hydrogen
are colored in pink.

Table 2 Structural properties of our model of a-Si3N4 and refer-
ence values: average Si–N–Si and N–Si–N angles, and average
bond length dSiN.

nSi–N–Si nN–Si–N dSiN (Å)

model 117.28 (15.18) 109.18 (13.08) 1.73 (0.06)
ref. 1208a 109.478a 1.729b

The respective standard deviations are given in parenthesis.
aIdeal bonding geometry. bExpt. (Ref. [39]).

Table 3 Composition of first-neighbor shells in our model of a-
Si3N4.

composition nSi dSiN

Si[3] 2 1.64 (0.05)
Si[4] 59 1.73 (0.05)
Si[5] 3 1.81 (0.09)

composition nN dSiN

N[2] 3 1.61 (0.03)
N[3] 79 1.73 (0.05)
N[4] 2 1.85 (0.09)
NSi3H 2 1.78 (0.02)

Coordination numbers of Si and N atoms are indicated by the superscript

number in square brackets. The number of Si and N atoms found in our model

for each coordination are indicated by nSi and nN. Average Si–N bond length

dSiN (Å) together with its standard deviation (in parenthesis) is given for each

composition. We used cutoff radii of 2.2 Å.
We generated a model of a-Si3N4 through first-principles
molecular dynamics using the DFT approach and the
exchange and correlation functional of Ref. [25]. Core-
valence interactions were described through ultrasoft
pseudopotentials [24] for N and H atoms and through a
normconserving pseudopotential for Si atoms. The
electronic wavefunctions and the charge density were
expanded using plane waves basis sets defined by energy
cutoffs of 25 and 200 Ry, respectively. The Brillouin’s zone
was sampled at the G-point. The model structure was
generated through first-principles molecular dynamics start-
ing from a diamond-cubic model of crystalline silicon which
was changed into Si3N4 by addition of N atoms at
intermediate distances between Si–Si neighbors. The initial
model structure contained 64 Si and 86 N atoms in a
periodically repeated cubic cell. A composition ratio r¼ [N]/
[Si] of 1.34 was chosen slightly differing from the ideal
stoichiometry in order to trigger the formation of defects. We
set up the density to the experimental value of 3.1 g/cm3 [35].
Car and Parrinello [36] molecular dynamics runs were then
performed for obtaining the model of a-Si3N4. First the
system was thermalized at the temperature of 3500 K for
12 ps using a Nosé–Hoover thermostat [37]. Successively,
the sample was quenched for 5 ps down to 2000 K below the
theoretical melting point. Finally, the structural geometry
was further optimized by a damped molecular dynamics run.
As the model presented an empty state close to the top of the
valence band, we passivated it by adding to the structure two
H atoms in proximity of the two Si atoms which were
threefold coordinated [38]. After structural relaxation, the H
atoms moved close to two near N sites. We note that the
structural and electronic properties of our model were only
marginally affected by the addition of the two H atoms.

5.2 Model structure We report a picture of the final
model structure in Fig. 4. The main structural parameters are
reported in Table 2. The average Si–N bond length equals to
1.730 Å with a standard deviation (std) of 0.060 Å. This
value is found to be in excellent agreement with the
experimental bond length of 1.729 Å [39]. The structure
shows well-defined SiN4 tetrahedral units. The average
N–Si–N angle equals 109.18with a standard deviation of 138.
This is very close to the ideal angle of 109.478 for regular
tetrahedra. Moreover our structure shows also well-defined
quasi-planar NSi3 units. The average Si–N–Si angle equals
117.28 with a standard deviation of 158. This is consistent
with the value of 1208 for regular planar NSi3 units.

The amount of SiN4 tetrahedra and NSi3 triangular units
is reported in Table 3 where we give the coordination
numbers in the first-neighbor shells of Si and N atoms,
together with the relative Si–N bond length averages. The
majority of Si atoms is fourfold coordinated and shows an
average Si–N bond length of 1.73 Å. Few Si atoms are three-
or fivefold coordinated. Correspondingly, almost all nitrogen
atoms are bound to three silicon atoms and only a few show
two- or fourfold coordination. Consequently, our model
shows at short-range high topologic and chemical order. We
www.pss-b.com � 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 6 Partial DOS obtained by projecting the electronic states
onto(a)1sorbitalsofHatoms, (b)2pand2sorbitalsof twofold(solid)
want now to understand the role of the point defects on the
electronic structure.

5.3 Electronic structure For obtaining the polariz-
ability basis we used a cutoff E2

C ¼ 30 eV, corresponding to
750 empty states in the LCM, and thresholds s1¼ 2. a.u. and
s2¼ 0.1. This gave rise to a polarization basis of 5867
elements. Then for the obtaining the self-energy we chose a
cutoff E1

C ¼ 45 eV, corresponding to 1500 empty states.
We show in Fig. 5a the electronic DOS for our model

calculated with the GW approach together with the partial
densities of s and p states for the Si and N atoms. The lowest
part of the valence band mainly arises from N 2s states.
While the low-energy side of the upper part of the valence
band results from the Si–N bonds, formed by Si sp3 and N 2p
orbitals, the high-energy side, which defines the top of the
valence band, consists of N 2p lone pairs. The low-energy
side of the conduction band mainly consists of antibonding
states associated to the Si–N bond. We note that the origin of
the bands is analogous to the cases of SiO2 (Ref. [40]) and
GeO2 (Ref. [41]), reflecting the common type of short-range
arrangement of atoms based on the tetrahedral unit. Similar
conclusions were obtained for the electronic DOS calculated
through an approximate density-functional Scheme [42] and
through a tight binding approach [43]. Moreover, the
calculated valence band is consistent with photoemission
spectra [44].

We focus now on the role played by the defects in the
DOS. In Fig. 6a we give the partial DOS obtained by
Figure 5 (online color at: www.pss-b.com) (a) Electronic density
of states (black) and partial DOS obtained by projecting electronic
states onto N 2s (blue/dotted), N 2p (red/dot-dashed), Si 2s (purple/
dashed), and Si 2p (green/double dot-dashed). The highest occupied
state is aligned at 0 eV. Gaussian broadening of 0.25 eV is used. GW
energies are used. (b) Inverse participation ratio (IPR) of electronic
states in silicon nitride.

and fourfold (dotted) coordinated N atoms, (c) 2p and 2s orbitals of
threefold (solid) and fivefold (dotted) coordinated Si atoms. The
highest occupied state is aligned at 0 eV. Gaussian broadening of
0.25 eV is used. GW energies are used.

� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
projecting the electronic states onto the 1s orbitals of the two
H atoms of our model structure. The partial DOS of H atoms
constitutes a very small contribution to the total DOS of
Fig. 5. In Fig. 6b and c we show the partial DOS obtained by
projecting the electronic states onto the 2p and 2s orbitals of
the N[2] and N[4] atoms and of the Si[3] and Si[5] atoms. The
partial DOS of N[4] atoms and Si[5] atoms do not show
features localized near the band edges. At variance, the
partial DOS of the N[2] atoms shows a sharp peak at the top of
the valence band, while the partial DOS of Si[3] atoms
exhibits sharp peaks close to the bottom of the conduction
band [45]. As Fig. 6a illustrates, these peaks are originated by
N and Si 2p orbitals of N[2] and Si[3] atoms, respectively.
Furthermore, the topmost occupied electronic state and the
first empty electronic state are spatially localized around a
N[2] atom and around a Si[3] atom, respectively. By excluding
these two defect states, we found a HOMO–LUMO band gap
of 4.42 eV in excellent agreement with the experimental
value of 4.55 eV of the optical band gap of sputtered a-Si3N4

given in Ref. [46]. However, we note that the band gap is
quite sensitive to the adopted production method and for
CVD samples is about 5.3 eV [46]. Yet, the GW method
www.pss-b.com
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appears to correctly describe the electronic DOS where
simpler LDA calculations fail giving for our model structure
a HOMO–LUMO band-gap of only 2.9 eV, as typical for
LDA calculations in silicon nitride [38, 42].

We now analyze the degree of localization of the
electronic states. The localization of an electronic state cn

can be quantified by the inverse participation ratio (IPR)
[38, 47]:
www
IPRn ¼ V

R
dr cnðrÞj j4R
dr cnðrÞj j2

�� ��2 ; (38)
where V is the volume of the simulation cell. The larger the
IPR the more localized is the electronic state, so that highly
localized/delocalized states show a large/small IPR. For
completely delocalized states the IPR is equal to unity. In
Fig. 5b we show the IPR for the electronic states of our
model of silicon nitride. We note that the states close to the
band edges corresponding to N[2] and Si[3] defects result
much more localized than the other electronic states. These
results are consistent with the IPR data previously
calculated for a-SiNx in Ref. [38].
6 Conclusions We have shown how the use of optimal
basis sets for representing the polarizability operator permits
to achieve a significant speed up of GW calculations,
allowing the study of large model structures up to a few
hundreds of atoms. Therefore it is appealing to use such
scheme for investigating the electronic structure of defects as
density-functional approaches result not to be adequate. The
main limitation still present in our approach is the need of
summing over a large number of empty states. For a
discussion of this point and the presentation of a solution we
indicate to the reader Ref. [15].
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