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ESTIMATING POPULATION PROJECTION MATRICES FROM MULTI-STAGE
MARK–RECAPTURE DATA
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Abstract. Multi-stage mark–recapture (MSMR) statistics provide the best method for
estimating the transition probabilities in matrix population models when individual capture
history data are available. In this paper, we improve the method in four major ways. We
use a Markov chain formulation of the life cycle to express the likelihood functions in
matrix form, which makes numerical calculations simpler. We introduce a method to in-
corporate capture histories with uncertain stage and sex identifications, which allows the
use of capture history data with incomplete information. We introduce a simple function
that allows multinomial transition probabilities to be written as functions of covariates (time
or environmental factors). Finally, we show how to convert transition probabilities estimated
by the MSMR method into a matrix population model. These methods are applied to data
on the North Atlantic right whale (Eubalaena glacialis).
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INTRODUCTION

Mark–recapture estimates of survival probability
have been applied to many animal populations (e.g.,
Lebreton et al. 1992, Forsman et al. 1996, Weimer-
skirch et al. 1997, Hastings and Testa 1998, Caswell
et al. 1999, Pease and Mattson 1999), and this method
has become an important tool in population manage-
ment. Mark–recapture estimates are based on capture
histories of individually identified animals, which con-
tain information on whether or not each individual was
captured at each sampling occasion. For example, cap-
ture history data may be obtained by annual observa-
tions of banded birds or photographically identified
whales. When such data are available, mark–recapture
statistics are considered one of the best approaches for
estimation of survival probability.

Modern demographic analysis goes beyond calcu-
lating survival, by breaking the life cycle into stages
(which may be based on age, size, developmental or
behavioral states, physiological condition, spatial lo-
cation, or any other property that divides individuals
into subgroups). The fate of individuals is described in
terms of transition probabilities among these stages,
and those transition probabilities form the basis for
matrix population models (Caswell 2001). Nichols et
al. (1992) introduced a method to estimate transition
probabilities among stages from mark–recapture data,
which we call the multi-stage mark–recapture (MSMR)
method. This method extends the method originally
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developed to estimate probabilities of movement
among spatial locations (Arnason 1972, 1973, Brownie
et al. 1993, Lebreton 1995). For the MSMR method,
in addition to information on whether or not each in-
dividual was captured, the capture history data must
also include the stage of captured individuals at each
capture occasion. MSMR models account for inter-
group heterogeneity in survival and capture probability
by grouping similar individuals into stages. The de-
velopment from single-stage to multi-stage mark–re-
capture statistics parallels the development from un-
structured to structured population models. In fact, one
motivation for the statistical development was the need
to estimate parameters in stage-structured matrix pop-
ulation models from mark–recapture data (Nichols et
al. 1992).

The analysis is based on maximization of a likeli-
hood function that depends on all of the possible se-
quences of stage transitions compatible with an ob-
served capture history. There can be very many of these
sequences, and one of the most complicated parts of
the method of Nichols et al. (1992) is writing them all
down with their associated probabilities. In this paper,
we describe the life cycle as a Markov chain, and take
advantage of this description to write the likelihood in
a simple matrix notation. A sketch of this method was
given in Caswell (2001: Section 6.1.2.2). Here we give
a complete presentation, and extend the method to in-
corporate uncertainty in stage and sex identifications,
which allows the use of capture histories containing
incomplete information. We also introduce a simple
function that allows multinomial transition probabili-
ties to be written as a function of covariates (e.g., en-
vironmental variables or time). Finally, we show how
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FIG. 1. A stage structure for (a) female and (b) male right
whales. This structure is used as an example for the MSMR
statistics.

to convert the estimated transition probabilities into a
matrix population model.

MSMR STATISTICS

The MSMR method involves three main steps: (1)
constructing an appropriate stage structure; (2) ex-
pressing the likelihood function in terms of parameters,
based on available capture histories; and (3) finding
the best parameter estimates using maximum likelihood
theory. The parameters in the MSMR model are those
that define the capture probabilities of each stage at
each sampling occasion and the transition probabilities
among stages between consecutive sampling occasions.
The method assumes that individuals in the same stage
are identical and independent, but that individuals in
different stages may differ in their transition and cap-
ture probabilities. The MSMR method is very flexible
and can be applied to almost any stage structure. Con-
structing a useful stage structure that is compatible with
the life cycle of populations requires experience, in
addition to sufficient mathematical and biological
knowledge, and different stage structures are exten-
sively reviewed in Caswell (2001). In this paper, meth-
ods for expressing the likelihood function and esti-
mating parameters are described, assuming that an ap-
propriate stage structure has been constructed.

To make our discussion more concrete, we will dem-
onstrate the method using a stage structure (Fig. 1)
developed to describe the life history of the North At-
lantic right whale (Eubalaena glacialis). This is a two-
sex, multi-stage model that distinguishes calves (stage

1), immature individuals (stage 2), and mature indi-
viduals (stage 3). In addition to these three stages, fe-
males also have a stage for individuals nursing a calf
(stage 4); we call the individuals in this stage
‘‘mothers.’’ Stage 0 corresponds to death, and the prob-
abilities f0i associated with the arrows going to stage
0 are stage-specific mortality rates. As usual, ‘‘mor-
tality’’ includes both death and permanent emigration.

The objective of the MSMR approach is to estimate
the transition probabilities associated with each arrow
and the capture probabilities of each stage. In the next
section, we will show how to construct matrices con-
taining the transition and capture probabilities, and to
account for uncertainty in the assignment of individuals
to stages. Then we will show how to calculate the like-
lihood in terms of these matrices.

Transition and capture probability matrices

The transition matrix is constructed by first putting
the transition probability fji from (living) stage i to
(living) stage j in the ( j, i) position. To this matrix is
appended a row containing the probabilities of tran-
sition from each stage to stage 0 (death) and a column
containing the probabilities of transition from stage 0
to each stage. Because we treat death as a stage, the
result is the transition matrix of an absorbing Markov
chain, with death as an absorbing state. The matrix is
column stochastic. The ability to treat transitions as a
Markov chain is critical to our analysis. The transition
matrix for females, corresponding to the stage structure
in Fig. 1, is

0 0 0 0 0) 

f (t) f (t) 0 0 021 22 ) 
(f)F (u) 5 0 f (t) f (t) f (t) 0 (1)) 32 33 34t

0 f (t) f (t) 0 0)42 43 
)f (t) f (t) f (t) f (t) 1 01 02 03 03

where fji(t) is the probability of females making tran-
sition from stage i to j between time t and t 1 1. The
upper left block of the matrix describes the transition
among live stages; the lower left block of the matrix
contains stage-specific probabilities of death. The 1 in
the (5, 5) entry is the probability of dead individuals
remaining dead in the following year. The notation fji(t)
in this paper corresponds to ftij in Nichols et al. (1992).

Similarly, the transition matrix for males, corre-
sponding to the stage structure in Fig. 1, is

0 0 0 0) 
)f (t) f (t) 0 0 21 22(m)F (u) 5 (2)) t 0 f (t) f (t) 032 33 ) 
)f (t) f (t) f (t) 1 . 01 02 03

We have written and as functions of a vector(f) (m)F Ft t

of parameters u. These parameters can be the fji them-
selves, or lower level parameters from which the fji

can be calculated. The objective is to estimate u.
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Capture probability matrices Pt, defined for females
and males separately, contain stage-specific capture
probabilities on the diagonal and zeros elsewhere:

p (t) 0 0 0 0 1

0 p (t) 0 0 02 
(f)P (u) 5 0 0 p (t) 0 0 (3) 3t

0 0 0 p (t) 04 
0 0 0 0 0 

p (t) 0 0 0 1

0 p (t) 0 0 2(m)P (u) 5 (4) t 0 0 p (t) 03 
0 0 0 0 

where pj(t) is the probability of capturing individuals
in stage j at time t. This notation corresponds to pjt in
Nichols et al. (1992). As written here, and(f) (m)P Pt t

assume that dead individuals are never captured ( (f)p0

5 5 0), but such captures could be included.(m)p0

Transition and capture probability matrices can be
defined separately for females and males when infor-
mation on sex identification is available, as in our ex-
ample, but it is not always possible or necessary to
have a two-sex model. In such cases, only a single
transition and capture probability matrix is needed.

Stage-assignment matrices

A stage-assignment matrix is defined for each in-
dividual each time it is captured. The diagonal elements
of the matrix are proportional to the certainty of stage
identification at time t (i.e., to the probability that the
individual is in a given stage when it is captured). This
probability should be known prior to estimating tran-
sition and capture probabilities. In our example, indi-
vidual k is a female; its stage-assignment matrix is

(k)u (t) 0 0 0 0 1

(k)0 u (t) 0 0 02 
(k) (k)U 5 0 0 u (t) 0 0 (5) t 3

(k)0 0 0 u (t) 04 
(k)0 0 0 0 u (t) 0

where (t) is the probability that individual k at time(k)uj

t is in stage j ( j 5 1, 2, 3, 4). Similarly, if individual
k is male, its stage-assignment matrix is

(k)u (t) 0 0 0 1

(k)0 u (t) 0 0 2(k)U 5 (6) t (k)0 0 u (t) 03 
(k)0 0 0 u (t) . 0

Because we assume that the capture probability of dead
individuals is zero, the value for (t) will not enter(k)u0

into the likelihood calculations. Multiplication of (k)Ut

by a scalar has no effect on the maximum likelihood
estimates.

If the stage of the individual is known with certainty,
its stage-assignment matrix contains a one in the cor-
responding diagonal entry and zeros elsewhere. On the
other hand, if the stage of an individual is completely
unknown, the identity matrix can be used for . This(k)Ut

specifies a uniform probability distribution over the
possible stages. Alternatively, if an independent as-
sessment of the probability is available, it can be en-
tered into the matrix. For example, in an age-structured
model of fish, the age of fish is sometimes determined
from their length using age–length keys (e.g., Fournier
and Archibald 1982, Deriso et al. 1985, Quinn and
Deriso 1999). Such a key could provide the probability
distribution of ages of the fish, which can be entered
into the stage-assignment matrices, for an age-struc-
tured model.

Likelihood

The likelihood of the parameter vector u contains
contributions from the capture history of each individ-
ual. We denote by lk(u) the contribution to the likeli-
hood from individual k; it is proportional to the prob-
ability of the capture history. That probability is the
sum of the probabilities of all possible sequences of
transitions that could have been taken by the individual
k. There may be many such possibilities. Their sum,
however, can be calculated using the transition, capture
probability, and stage-assignment matrices by the fol-
lowing algorithm. We assume that the individual is first
captured at time t1.

1) Categorize individual k by its stage at its first
capture, taking uncertainty in stage assignment
into account,

(k)U e (7)t1

where e is a vector of ones. This product is a
vector whose entries are proportional to the prob-
abilities of the initial stage of the individual at t.

2) Calculate the probability distribution of the stage
at t2 by multiplying this vector by the transition
matrix :Ft1

(k)F U e. (8)t t1 1

3) Calculate the probabilities of observation out-
comes at t2. If individual k was captured at t2,
multiply by the sighting matrix :Pt2

(k)P F U e. (9)t t t2 1 1

If individual k was not captured at t2, multiply by
(I 2 ):Pt2

(k)(I 2 P )F U e (10)t t t2 1 1

where I is the identity matrix.
4) Account for stage identification at t2 by multiply-

ing by the stage assignment matrix. If individual
k was captured at t2,
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TABLE 1. Some possible capture histories of North Atlantic
right whales corresponding to the example stage structure
in Fig. 1 and their likelihood.

Indi-
vidual

(k)
Capture
history† Likelihood lk (u)

1
2
3
4
5
6
7

3433
122X
22X3
1X22
X343
12XX
XX33

eTU P4F3U P3F2U P2F1U e(1) (1) (1) (1)
4 3 2 1

eT(I 2 P4)F3U P3F2U P2F1U e(2) (2) (2)
3 2 1

eTU P4F3(I 2 P3)F2U P2F1U e(3) (3) (3)
4 2 1

eTU P4F3U P3F2(I 2 P2)F1U e(4) (4) (4)
4 3 1

eTU P4F3U P3F2U e(5) (5) (5)
4 3 2

eT(I 2 P4)F3(I 2 P3)F2U P2F1U e(6) (6)
2 1

eTU P4F3U e(7) (7)
4 3

8
9

10
11
12
13
14

X43X
4XX3
2X2X
X3X4
XX1X
X3XX
2XXX

eT(I 2 P4)F3U P3F2U e(8) (8)
3 2

eTU P4F3(I 2 P3)F2(I 2 P2)F1U e(9) (9)
4 1

eT(I 2 P4)F3U P3F2(I 2 P2)F1U e(10) (10)
3 1

eTU P4F3(I 2 P3)F2U e(11) (11)
4 2

eT(I 2 P4)F3U e(12)
3

eT(I 2 P4)F3(I 2 P3)F2U e(13)
2

eT(I 2 P4)F3(I 2 P3)F2(I 2 P2)F1U e(14)
1

Notes: When the stage of the captured individual is i,
U is a matrix with 1 in the ith row of the ith column and(k)

t

0 elsewhere. Terms are as follows: Ft, transition probability
matrix at time t; U , stage assignment matrix for individual(k)

t

k at time t; Pt, capture probability matrix at time t; I, identity
matrix; e, vector containing 1’s in its entries.

† X indicates that the individual was not captured; numbers
indicate the stage of captured individuals.

(k) (k)U P F U e. (11)t t t t2 2 1 1

If individual k was not captured at t2,

(k)I(I 2 P )F U e. (12)t t t2 1 1

5) Repeat steps 2–4 until the end of the capture his-
tory for individual k. The result is a vector whose
ith entry is proportional to the probability of all
the pathways by which individual k could have
moved from its initial stage at t1 to stage i at th

and that are compatible with its capture history.
6) The final step is to sum the resulting vector of

probabilities to obtain

T (k) (k)l (u) 5 e U · · · F U e. (13)k k t t th 1 1

In this algorithm, the probability distribution of the
individual’s stage is updated sequentially over time,
taking into account the new data available at each time
step and possible stage transitions determined by the
stage structure. Therefore, the right-hand side of Eq.
13 is the probability of the capture history for indi-
vidual k, taking into account all possible transition se-
quences compatible with that history.

The likelihood lk(u) is calculated using only female
or male matrices if the sex of individual k is known.
If the sex of individual k is uncertain, algorithm (13)
is repeated to get likelihoods (u) and (u) using the(f) (m)l lk k

female- and male-specific matrices, respectively. Then,
the likelihood lk(u) is

(f) (m)l (u) 5 p l (u) 1 (1 2 p )l (u)k f k f k (14)

where pf is the probability that the individual k is fe-
male. The probability pf is 1 or 0 when the sex of the
individual is known to be female or male, respectively.
If the sex of the individual is unknown, a probability
must be provided to calculate the likelihood.

Some examples of probabilities of the capture his-
tories of individuals with four capture periods are
shown in Table 1. Because our example contains mul-
tiple stages, many possible capture histories exist, of
which only a few are shown in Table 1. For simplicity,
we assume that the sex of all individuals is known to
be female.

None of the likelihoods in Table 1 contains P1, be-
cause the probability of a capture history is always
conditional on the first capture; therefore, capture prob-
ability at the first sampling time cannot be estimated.
For the same reason, the likelihoods of individuals 5,
7, 8, 11, 12, and 13 do not begin at time t 5 1, because
capture histories prior to the first capture of an indi-
vidual do not enter into probability calculations.

Given the likelihood functions lk(u) for all individ-
uals, the likelihood associated with the data consisting
of n capture histories is proportional to the product of
the n likelihood functions:

n

L(u) } l (u). (15)P k
k51

Here, we assume that individuals are captured and
make stage transitions independently, but based on
identical probability distributions (i.e., we assume that
the number of outcomes falling into the possible cap-
ture history sequences is multinomial).

Maximum likelihood estimates ( ) are found byû
maximizing L(u). The likelihood function can be max-
imized numerically using software such as MATLAB
(1999). For example, the MATLAB routine ‘‘fminu()’’
can be used to find the maximum likelihood by mini-
mizing 2log L(u).

TRANSITION PROBABILITIES AS FUNCTIONS

OF COVARIATES

Transition probabilities fji(t) may change over the
course of a study, and the changes may be correlated
with various factors. We would like to model the prob-
abilities as functions of covariates measuring those fac-
tors. For example, population density and sampling ef-
fort were used to model the survival and capture prob-
abilities in studies of the roe deer (Capreolus capreo-
lus) and the common lizard (Lacerta vivipara),
respectively (Lebreton et al. 1992), and time has been
used to model the survival probability of the Northern
Spotted Owl (Strix occidentalis caurina; Forsman et
al. 1996) and the North Atlantic right whale (Caswell
et al. 1999).

Covariates are incorporated in the transition proba-
bility using a link function. The link function must
satisfy the constraint that each column of the transition
matrix sums to 1, and each entry of the matrix must
lie between 0 and 1. A flexible function that satisfies
these properties is the polychotomous logistic function,
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which is derived by expressing the log of the odds ratio
as a linear function of the covariates (Hosmer and Le-
meshow 1989). Let be the value of dth covariate at(d)xt

time t. The polychotomous logistic function is

(d) (d)exp a 1 b xOji tji1 2d

f (t) 5 (16)ji

(d) (d)1 1 exp a 1 b xO Oji tji1 2j d

where aji is an intercept parameter, and is a slope(d)bji

parameter associated with the dth covariate. When all
of the slope parameters are zero for all d, i, and j, the
transition matrix is constant over time. The simple lo-
gistic function that is often used in mark–recapture
literatures (e.g., Burnham et al. 1987, Lebreton et al.
1992) is a special case of the polychotomous logistic
function for a binary outcome.

MATRIX POPULATION MODELS

Population projection matrices contain both transi-
tion probabilities and fertilities (see Caswell 2001). Be-
cause the transition probabilities are estimated by the
MSMR method, we can construct the projection matrix
if we know the fertility terms. In this section, we show
an example of how those terms might be obtained, and
how to compute confidence intervals for population
growth rate calculated from the population matrix.

Conversion from a transition matrix to a population
projection matrix

The right whale example provides enough infor-
mation to write a two-sex model. To do so, we renumber
the male stages in Fig. 1 as 5, 6, 7. Letting fji(t) denote
the transition probability as before, the projection ma-
trix is:

0 F (t) F (t) 0 0 0 0) 2 3

f (t) f (t) 0 0 0 0 021 22 )0 f (t) f (t) f (t) 0 0 032 33 34 
A 5 0 f (t) f (t) 0 0 0 0) t 42 43

0 F (t) F (t) 0 0 0 06 7 )0 0 0 0 f (t) f (t) 065 66 
.)0 0 0 0 0 f (t) f (t) 76 77

(17)

The upper-left and lower-right blocks describe produc-
tion of females by females and males by males, re-
spectively. The entries in the lower-left block describe
production of males by females.

When constructing a population projection matrix,
transition probability and fertility terms are often es-
timated from two separate data sets (Caswell 2001),
but the fertility terms can be estimated directly using
the MSMR method if the stage structure includes moth-
ers that give birth between two consecutive sampling
periods (i.e., stage 4 in our example). Each time an

individual enters this stage, it gives birth; therefore,
transition probabilities into the fertile stage are also
probabilities of giving birth. If the number of female
and male births at each reproductive event are bf and
bm, respectively, the fertility terms in the projection
matrix are given by the product of the number of off-
spring and the transition probabilities:

F (t) 5 b f (t) (18)2 f 42

F (t) 5 b f (t) (19)3 f 43

F (t) 5 b f (t) (20)6 m 42

F (t) 5 b f (t). (21)7 m 43

An important assumption in these fertility terms is that
mothers and their newborns have the same probability
of being captured during sampling. To ensure that this
condition is satisfied, when mothers are captured, their
offspring should also be captured and entered into the
database as new individuals. Similarly, when newborns
are captured, their mothers should be captured and
identified as mothers. Later, we will show one example
of remedial methods when the equal ‘‘capturability’’
assumption is not met.

Model (17) is female-dominant; males do not affect
population dynamics. This assumption is often legiti-
mate when the population size of males is large enough
that searching for a partner does not limit reproduction
by females. Thus, for calculation of population growth
rate, the two-sex matrix may be reduced to the female
matrix:

0 F (t) F (t) 0 2 3

f (t) f (t) 0 0 21 22A 5 (22) t
0 f (t) f (t) f (t)32 33 34 
0 f (t) f (t) 0 . 42 43

Confidence intervals for population growth rate

The long-term population growth rate implied by a
projection matrix At is given by the dominant eigen-
value l of At. A confidence interval for l can be ap-
proximated from the MSMR statistics, using the ei-
genvalue sensitivity formula and the covariance matrix
of the parameters.

The eigenvalue sensitivity formula is

v w]l j i
5 (23)

]a ^w, v&ji

where v and w are the left- and right-dominant eigen-
vectors of the population projection matrix (Caswell
1978, 2001). If the aij are functions of some other pa-
rameters ur, the sensitivity of l to ur is:

]a]l̂ ]l̂ ĵ i
5 . (24)O O

]u ]a ]uj ir ji r

Now let u be a vector of parameters estimated by the
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MSMR method. An approximate 95% CI for l is cal-
culated by

]l̂ ]l̂
l̂ 6 1.96 ĉ (25)O qr1 21 2! ]u ]uq,r q r

where ĉqr is the (qr)th entry of the estimated covariance
matrix Ĉ. The covariance matrix C can be estimat-
ed by inverting the Hessian matrix (the information
matrix; e.g., Burnham et al. 1987). This method of
constructing the confidence interval is an application
of the delta method (see Seber 1982: Chapter 1), taking
advantage of the existence of the eigenvalue sensitivity
formula (23).

APPLICATION TO THE NORTH ATLANTIC

RIGHT WHALE

We have applied the MSMR method to data on the
North Atlantic right whale (Eubalaena glacialis). The
northern right whale is considered one of the most en-
dangered large whale species in the world (Waring et
al. 1999). The current population in the western North
Atlantic contains fewer than 300 individuals. They mi-
grate from the Bay of Fundy, which is a summer feed-
ing ground, to the coast of Florida, which is a winter
calving ground. Caswell et al. (1999) showed that the
crude survival probability of individuals in this pop-
ulation has been declining since 1980.

Data on the North Atlantic right whale have been
collected by the New England Aquarium and consist
of annual sighting histories of photographically iden-
tified animals from 1980 to 1997 (Crone and Kraus
1990). For the purpose of our analysis, we consider
individuals to have been marked on the occasion of
their first identification, and recaptured when they were
resighted during a subsequent year. Of the 372 indi-
viduals used for the analysis, 141 are known to be
females and 143 to be males. We assumed the remain-
der to be either female or male with 50% probabilities.
A few sightings of dead individuals exist, but are not
included in this analysis.

Stage-assignment matrices

We attempted to assign each individual at each cap-
ture to one of the stages shown in Fig. 1. A whale was
considered mature if it was known to be $9 yr old or,
for females, if it had been observed with a calf. Stages
could be assigned with certainty in 78% of the captures.
The remainder were known to be either immature or
mature; for these captures, we must calculate the entries
u2, u3, u5, and u6 of the stage-assignment matrices (5)
and (6). In the absence of information to the contrary,
we assume that these probabilities are constant over
time and across individuals, but differ between females
and males. Because we use different criteria to assign
females and males to stages, we expect that the prob-
ability distribution of stages among the unknown-
staged captures would differ for females and males.

When the stage of a captured individual is uncertain,
the (2, 2) entry of the stage-assignment matrix is the
probability that the individual is immature, given that
the stage is uncertain. Similarly, the (3, 3) entry is the
probability that the individual is mature, given that the
stage is uncertain. The other entries are all zero. To
express these probabilities in mathematical form, let X
be a random variable giving the stage of an individual
and let Y be a random variable taking the value 1 if
the stage is known and 0 if the stage is uncertain. Then
the two probabilities are:

u 5 Pr(X 5 2 z Y 5 0) (26)2

u 5 Pr(X 5 3 z Y 5 0) 5 1 2 u . (27)3 2

To calculate Pr(X 5 2 z Y 5 0), we use Bayes’ Rule to
derive

Pr(X 5 2 z Y 5 0)

Pr(X 5 2) 2 Pr(X 5 2 z Y 5 1)Pr(Y 5 1)
5 . (28)

1 2 Pr(Y 5 1)

Here, Pr(Y 5 1) is the probability that the stage of an
immature or mature individual is known, and can be
estimated from the capture history data as

N 1 N2 3Pr(Y 5 1) 5 (29)
N 1 N 1 N2 3 u

where N2, N3, and Nu are numbers of captures of im-
mature, mature, and uncertain stages, respectively. Pr(X
5 2 z Y 5 1) is the probability that the stage of an
immature or mature individual is immature, given that
the stage is known. This probability can be calculated
from the capture history data as

N2Pr(X 5 2 z Y 5 1) 5 . (30)
N 1 N2 3

Finally, Pr(X 5 2) is the probability that the stage is
immature, given that the stage is either immature or
mature, regardless of whether the stage is known or
uncertain. To estimate this probability, we estimated
the parameters for a time-invariant projection matrix
from the subset of the data containing only certain cap-
tures. From the stable stage distribution w (i.e., the
right eigenvector associated with the dominant eigen-
value) of this matrix, we calculated the proportion of
individuals in stage 2 among stages 2 and 3 and used
it as our estimate of Pr(X 5 2):

w2Pr(X 5 2) 5 . (31)
w 1 w2 3

For males, the same method was applied to the male
stages (5 and 6). It should be noted that these calcu-
lations work best when the capture probabilities of
stages 2 and 3 (5 and 6 for males) are similar. Other-
wise, each count in (29) and (30) should be divided by
the corresponding capture probability (Nichols et al.
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TABLE 2. Dependence of the best capture model for the
North Atlantic right whale on effort level and time.

Stage†
Northern
effort‡

Southern
effort§

Immature female (2)
Mature female (3)
Mature female with calf (4)
Immature male (6)
Mature male (7)

yes
yes
no
yes
yes

yes
yes
no
yes
yes

† The sighting probability of calves cannot be estimated
because the capture of a calf is always the first capture of
that individual.

‡ The Northern region includes Bay of Fundy, Brown’s
Bank, Great South Channel, and Massachusetts Bay.

§ The Southern region includes the coast of Florida and
Georgia.

FIG. 2. Stage-specific capture probabilities, 1981–1996,
for (a) immature male and female, (b) mature female, and (c)
mature male right whales. Error bars indicate point-wise 95%
confidence intervals (CI) estimated from 1000 parametric
bootstrap samples generated assuming a multivariate normal
distribution of the logit of parameters. The covariance matrix
of the distribution was estimated as the inverse of the Hessian
matrix (see Burnham et al. 1987, Lebreton 1995). Mothers
had a constant capture probability of 0.99 (95% CI 5 [0.98,
1.00]).

1994). The end result of these calculations is in u2 5
0.87, u3 5 0.13, u5 5 0.30, and u6 5 0.70.

Capture probabilities

Capture probabilities were modeled as binary logis-
tic functions of estimated sampling effort levels in the
northern and southern regions, which are major feeding
and calving grounds, respectively. These effort levels
were approximated by the number of sampling dates
per year in each region. We created models by including
all possible combinations of effort levels for all pos-
sible combination of stages. This resulted in 1024 mod-
els. The best capture model among the 1024 candidate
models was selected using Akaike Information Criteria,
AIC (Akaike (1973)). Because the sample size is large,
we did not use the small-sample adjustment to AIC
(i.e., AICc in Burnham and Anderson [1998]). The dif-
ference in AIC between the best and the second-best
capture models was about 2, indicating that the support
for the best model relative to the second best model is
high (Burnham and Anderson 1998). Furthermore, the
four best models differ only in how capture probability
of mothers depends on effort; in all cases, the capture
probability was consistently close to 1 throughout the
sampling period. Therefore, we used only the best mod-
el shown in Table 2. The capture probabilities of im-
mature males and females did not differ significantly
in the best model, based on a likelihood ratio test.
Therefore, we set these two capture probabilities equal
and used the resulting capture probability model for
further analysis.

Transition probabilities

Although we know that the vital rates have varied
over time (Fujiwara and Caswell 2001), for this ex-
ample we fit a model in which the transition probabil-
ities are constant over time (i.e., no covariates). We
also assumed that the survival probabilities of female
and male calves are the same. This model gives a time-
averaged picture of right whale demography. Estimated
capture and transition probabilities are shown in Fig.
2 and Table 3, respectively.

The population projection matrix for female right
whales is:

 0 0.5f Ïf 0.5f Ïf 042 34 43 34

 f f 0 021 22A 5 (32) 
0 f f f32 33 34 
0 f f 0 . 42 43

This matrix is the same as (22), but with a particular
set of assumptions defining the fertility terms. Consider
F2(t) in (22). When a female moves from stage 2 to
stage 4 (with probability f42), she gives birth; the new-
born is female with probability 0.5. To appear as a calf
in stage 1 at t 1 1, the newborn calf must survive long



3264 MASAMI FUJIWARA AND HAL CASWELL Ecology, Vol. 83, No. 12

TABLE 3. Estimated transition probabilities for the North
Atlantic right whale.

Transition
probability Mean 95% CI

f21

f22

f32

f42

f33

f43

f34

f66

f76

f77

0.92
0.86
0.08
0.02
0.80
0.19
0.83
0.76
0.19
0.95

[0.74 0.98]
[0.81 0.89]
[0.06 0.12]
[0.01 0.03]
[0.77 0.83]
[0.16 0.22]
[0.77 0.88]
[0.72 0.79]
[0.16 0.23]
[0.94 0.96]

Notes: The confidence intervals were estimated from 1000
parametric bootstrap samples generated assuming multivar-
iate normal distributions of parameters. The covariance ma-
trix of the distribution was estimated as the inverse of the
Hessian matrix (Burnham et al. 1987, Lebreton 1995).

enough to be catalogued. Although newborn calves
have distinct markings, they are harder to distinguish
individually than other stages. Therefore, calf survival
is estimated from the time when the calf is seen suf-
ficiently well to permit identification, which is not nec-
essarily on its first sighting. We assumed that calves,
on average, are identified midway through their first
year, and that the mother must survive this long (with
probability ) in order for the calf to survive. F3(t)0.5f34

is calculated in a similar manner.
From this matrix, we estimated the long-term pop-

ulation growth rate and its confidence interval. They
are l 5 1.01 (95% CI 5 [1.00, 1.02]). This result shows
that the North Atlantic right whale population has been
growing by 1% annually, on average, from 1980 to
1997. (In fact, a time-varying model estimated by this
same procedure concludes that the growth rate has de-
clined from l 5 1.03 to l 5 0.98 over this time period
(Fujiwara and Caswell 2001).) This matrix can now be
analyzed to obtain the stable stage distribution, repro-
ductive value, damping ratio, sensitivity and elasticity
of l, and other demographic statistics.

DISCUSSION

The method presented here estimates a population
projection matrix from mark–recapture data, which is
one of the most commonly available data types for
animal populations. Once the population projection
matrix is estimated, it is subject to complete demo-
graphic analysis; such analyses provide powerful tools
for conservation biology (e.g., Casewell 1989, 2001,
Tuljapurkar and Caswell 1997). They can be used to
assess the causes of past population declines and to
predict the effect of possible future management ac-
tions. Because population projection matrices contain
many parameters, it has been difficult to estimate them
accurately. This has been especially true for animals
that are not captured at every sampling period.

The likelihood calculations here are simpler than
those described in Nichols et al. (1992). This allows

the use of mathematical software packages such as
MATLAB, so the transition and capture probability
models need not be limited to those available in mark–
recapture packages such as MARK (White and Burn-
ham 1999), MSSURVIV (Hines 1994), or SURVIV
(White 1983).

Our method permits the use of capture histories with
uncertain stage and sex. Individuals with such uncer-
tainties tend to have lower survival rates than the rest
of a population, because individuals that survive longer
have more chances for accurate assessment of stage
and sex identification. For example, right whales are
considered mature at 9 yr of age. If animals that die
within nine years from their first capture are excluded
because their stage is uncertain, then we would over-
estimate the survival probability. Observations with
uncertain stage or sex should never be discarded in
parameter estimation. Our approach is one way to deal
with this problem.

The stage structure that we used in this paper con-
tains as a stage females that have given birth between
consecutive sampling periods. This stage makes the
conversion of the transition matrix into a population
projection matrix relatively simple. Because the pur-
pose of the MSMR statistics often is to estimate a pop-
ulation projection matrix, we recommend the use of
this type of stage structure when possible.

The polychotomous logistic function is a flexible
way to allow transition probabilities to decrease or in-
crease with a covariate while satisfying the requirement
that each column of the transition matrix sum to one.
When time is used as a covariate, the polychotomous
function allows inferences about temporal trends in
stage-specific transition rates. This approach has been
applied to the North Atlantic right whale data (Fujiwara
and Caswell 2001).

Multi-stage mark–recapture data arise in many ap-
plications. For example, Nichols and Kendall (1995)
use them in population genetics context to test trade-
offs between survival and reproduction. Hestbeck et
al. (1991) use them to estimate spatial movement of
individuals. We have applied them to deal with the
problem of temporary emigration (Fujiwara Caswell
2002). We hope that the extensions of the analytical
method presented here will make them even more use-
ful.

Mark–recapture data are expensive to collect, and
they should be analyzed as completely as possible. If
information on the stage of individuals (e.g., age, size,
other developmental stages, or geographic locations)
is collected in addition to the basic mark–recapture
data, then MSMR statistics can be applied. The stage
information need not be complete because our method
incorporates uncertainties in stage identifications. The
value of being able to use matrix population models
for conservation makes it worthwhile to collect stage-
specific data whenever possible.
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