Richard Skinnerrls2723Sheet\#25
Week \#12Problem 7.6.15
http://208.180.24.221/7_5_9.htm

Find a potential function $V(\vec{x})$ so that $\vec{F}(\vec{x})=-\nabla V(\vec{x})$, if

$$
\vec{F}(x, y, z)=y^{2} z \hat{i}+2 x y z \hat{j}+x y^{2} \hat{k}
$$

Solution:
First, we know that

$$
\mathrm{V}(\vec{x})=\left(\frac{\partial}{\partial x} V\right) i+\left(\frac{\partial}{\partial y} V\right) j+\left(\frac{\partial}{\partial z} v\right) k
$$

Therefore by integrating the components of $F(x)$, we can find $V(x)$.

$$
\int y^{2} z d x=y^{2} z x
$$

This here is enough to show our final answer. However, for completeness, we can go ahead and calculate the rest of the integrals and make sure they match this one.

$$
\begin{aligned}
& \int 2 x y z d y=y^{2} z x \\
& \int x y^{2} d z=y^{2} z x
\end{aligned}
$$

You can see that all of the component integrals have the same answer. This is our function for $-\mathrm{V}(\mathrm{x})$. Therefore

$$
V(x)=-x y^{2} z
$$

