
Lecture for Week 6 (Secs. 3.6–9)

Derivative Miscellany I
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Implicit differentiation

We want to answer questions like this:

1. What is the derivative of tan−1 x ?

2. What is
dy

dx
if

x3 + y3 + xy2 + x2y − 25x− 25y = 0 ?
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x3 + y3 + xy2 + x2y − 25x− 25y = 0.

Here we don’t know how to solve for y as a func-
tion of x, but we expect that the formula defines
a function “implicitly” if we consider a small
enough “window” on the graph (to pass the “ver-
tical line test”).
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Temporarily assuming this is so, we differen-
tiate the equation with respect to x, remember-
ing that y is a function of x.

0 =
d

dx
(x3 + y3 + xy2 + x2y − 25x− 25y)

= 3x2 + 3y2y′ + y2 + 2xyy′ + 2xy + x2y′ − 25− 25y′

= (3x2 + y2 + 2xy − 25) + y′(3y2 + 2xy + x2 − 25).

y′ =
25− 3x2 − y2 − 2xy

3y2 + 2xy + x2 − 25
.
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To use this formula, you need to know a
point (x, y) on the curve. You can check that
(3, 4) does satisfy

x3 + y3 + xy2 + x2y − 25x− 25y = 0.

Plug those numbers into

y′ =
25− 3x2 − y2 − 2xy

3y2 + 2xy + x2 − 25

to get y′ = − 3

4
.
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But (x, y) = (3,−3) also satisfies the equa-
tion, and it gives y′ = −1. And (3,−4) satisfies
the equation and gives y′ = + 3

4 . Three different
functions are defined near x = 3 by our equation,
and each has a different slope.
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The curve in this problem is the union of a
circle and a line:

0 = x3 + y3 + xy2 + x2y − 25x− 25y

= (x2 + y2 − 25)(x+ y).
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We can clearly see the three points of intersec-
tion with the line x = 3. Two other interesting
points are:

1. x = 5, y = 0 (vertical tangent): The denom-
inator of the formula for y equals 0, but the
numerator does not.

2. x = −5/
√
2, y = 5/

√
2 (intersection): Both

numerator and denominator vanish, because
the slope is finite but not unique.
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An inportant application of implicit differ-
entiation is to find formulas for derivatives of
inverse functions, such as u = tan−1 v. This
equation just means v = tanu, together with the
“branch condition” that −π

2 < u < π
2 (without

which u would not be uniquely defined). So

1 =
dv

dv
=

d

dv
tanu =

(

d

du
tanu

)

du

dv
.

But
d

du
tanu = sec2 u = 1 + tan2 u = 1 + v2.

9



Putting those two equations together, we get

d

dv
tan−1 v =

du

dv
=

(

d

du
tanu

)

−1

=
1

1 + v2
.

Generally speaking, the derivative of an in-
verse trig function is an algebraic function! We
will see more of this in Sec. 4.2.
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Exercise 3.6.39

Show that the curve families

y = cx2, x2 + 2y2 = k

are orthogonal trajectories of each other.

(That means that every curve in one family (each
curve labeled by c) is orthogonal to every curve in
the other family (labeled by k).
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For the curves y = cx2 we have
dy

dx
= 2cx.

(No implicit differentiation was needed in this
case.) For the curves x2 + 2y2 = k we have

2x+ 4y
dy

dx
= 0 ⇒ dy

dx
= − x

2y
.

If the curves are orthogonal, the product of the
slopes must be −1 (and vice versa). Well, the
product is

(2cx)

(

− x

2y

)

= − cx2

y
= −1.
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Derivatives of vector functions

No big surprise here: Conceptually, we are
subtracting the “arrows” for two nearby values
of the parameter, then dividing by the parameter
difference and taking the limit.
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r(t)r(a)
∆r

r′(a) = lim
t→a

r(t)− r(a)

t− a
≡ lim

h→0

∆r

h
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And calculationally, since our basis vectors
do not depend on t, we just differentiate each
component:

d

dt

[

t2 î+ 3t ĵ+ 5 k̂
]

= 2t î+ 3 ĵ.
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Second (and higher) derivatives

This is fairly obvious, too: The second
derivative is the derivative of the first derivative.

s(t) = At2 +Bt+ C ⇒ s′(t) = 2At+B

⇒ s′′(t) = 2A.

(This was essentially Exercise 3.8.37.)
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The most important application of second
derivatives is acceleration, the derivative of veloc-
ity, which is the derivative of position.

Exercise 3.8.49

A satellite completes one orbit of Earth at an al-
titude 1000 km every 1 h 46 min. Find the veloc-
ity, speed, and acceleration at each time. (Earth
radius = 6600 km.)

16



The period is 1 46
60 = 1.767 hr. Therefore,

the angular speed is 2π/1.767 = 3.557 radians
per hour. The radius of the circle is 7600, so the
speed in the orbit is 7600 × 3.557 = 27030 km/h
at all times. To represent the velocity we must
choose a coordinate system; say that the satellite
crosses the x axis when t = 0 and moves counter-
clockwise (so it crosses the y axis after a quarter
period). Then

v(t) = 27030〈− sin(3.557t), cos(3.557t)〉.
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(When t = 0, v is in the positive y direction;
after a quarter period, it is in the negative x di-
rection.) The acceleration is the derivative of
that,

a(t) = 27030× 3.557〈− cos(3.557t),− sin(3.557t)〉.

Finally, let’s find the position function. Its deriv-
ative must be v, so a good first guess is

r(t) =
27030

3.557
〈cos(3.557t), sin(3.557t)〉.
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To this we could add any constant vector, but a
quick check shows that r(0) is in the positive x
direction as we wanted, and this orbit is centered
at the origin as it should be. So this is the right
answer. Notice that a points in the direction op-
posite to r (i.e., toward the center of the orbit),
as always for uniform circular motion.
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Slopes and tangents of parametric curves

What is the slope of a curve defined by par-
ametric equations

x = x(t), y = y(t) ?

If we had y as a function of x, we would just cal-
culate dy

dx
. But we can find the slope without

eliminating t from the equations. It may come
as no surprise that the answer is obtained by
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“dividing numerator and denominator by dt”:

dy

dx
=

dy

dt
dx
dt

.

The valid proof of this formula is simply an ap-
plication of the chain rule:

dy

dt
=

dy

dx

dx

dt
.
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But, you should be shouting, what if the de-
nominator is 0? If dx

dt
= 0 and dy

dt
6= 0, the curve

is vertical at that point, so the slope is properly
undefined. If both derivatives are 0, we need to
consider another parametrization to get an an-
swer; the moving point has slowed to a standstill
at the time of interest, so the parametric deriva-
tives give no information.
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To apply the formula, you may need to do
some work to determine the correct value of t to
plug in.

Exercise 3.9.19

At what point does the curve

x = t(t2 − 3), y = 3(t2 − 3)

cross itself? Find equations of both tangents at
that point.
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If the curve crosses itself, there must be two
values of t that yield the same x and y, so

t1(t1
2−3) = t2(t2

2−3) and 3(t1
2−3) = 3(t2

2−3).

From the second equation, t1 = ±t2 , and so from
the first one, either t1 = +t2 or t1 = ±

√
3 = −t2 .

Only the second possibility is of interest to us.
Let’s define t1 to be the positive root.

Now calculate the derivatives:

x′(t) = (t2 − 3) + t(2t) = 3t2 − 3, y′(t) = 6t.
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So the slope is

dy

dx
=

6t

3t2 − 3
.

Substituting t = ±
√
3, we get

dy

dx
=

±6
√
3

6
= ±

√
3.

(Unlike the implicit differentiation example ear-
lier, there is no 0

0 ambiguity, because the two lo-
cal curve segments correspond to different values
of t, each with a uniquely defined slope.)
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To find the tangent lines we need to know
the point, which is easily found from the original
formulas:

(x, y) = (0, 0).

Then in Cartesian terms, the tangent lines are

y = ±
√
3x.

In parametric terms, they are

x = (t−
√
3), y =

√
3(t−

√
3);

x = (t+
√
3), y = −

√
3(t+

√
3).
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