Lecture for Week 6 (Secs. 3.6-9)

Derivative Miscellany 1



Implicit differentiation

We want to answer questions like this:

1. What is the derivative of tan !tz ?

2. What is @ if
dx

23+ 3 + 2y + 2y — 252 — 25y =07



3 + 3 + zy® + 2%y — 252 — 25y = 0.
Here we don’t know how to solve for y as a func-
tion of x, but we expect that the formula defines
a function “implicitly” if we consider a small
enough “window” on the graph (to pass the “ver-
tical line test”).
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Temporarily assuming this is so, we differen-
tiate the equation with respect to x, remember-
ing that y is a function of x.

d
0= d—(ch + 4% + zy® + 2%y — 25z — 25y)
xr

= 322 + 3y°%y + y? + 2zyy’ + 2xy + 22y’ — 25 — 25y
= (32% 4+ v + 22y — 25) + v/ (3y* + 22y + 2% — 25).

) 25 — 3% — y? — 22y
3y 422y 422 -25°
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To use this formula, you need to know a
point (x,y) on the curve. You can check that
(3,4) does satisfy

3 4+ y° + zy? + 2%y — 252 — 25y = 0.
Plug those numbers into

) 25 — 3% — y? — 22y
 3y2 422y + 22— 25

Y

togety’——§
=-7



But (z,y) = (3, —3) also satisfies the equa-
tion, and it gives y' = —1. And (3, —4) satisfies
the equation and gives ¢y’ = —|—% . Three different
functions are defined near x = 3 by our equation,
and each has a different slope.
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The curve in this problem is the union of a
circle and a line:

0=a>+1y° + xy® + 2%y — 252 — 25y
= (2" +y* —25)(z + ).




We can clearly see the three points of intersec-
tion with the line x = 3. T'wo other interesting
points are:

1. x =5, y = 0 (vertical tangent): The denom-
inator of the formula for y equals 0, but the
numerator does not.

2. x = —5/v/2, y = 5//2 (intersection): Both
numerator and denominator vanish, because
the slope is finite but not unique.



An inportant application of implicit differ-
entiation is to find formulas for derivatives of
inverse functions, such as v = tan~!wv. This
equation just means v = tanu, together with the
“branch condition” that —% < u < § (without
which u would not be uniquely defined). So

o _d. (2, du
dv dv ant = du ant dv

But
d

d—tanuzseCQ’u:1—|—tan2u:1—|—v2.
U



Putting those two equations together, we get

itam_lfu—d—u— itanu _1— !
dv dv \du 1402

Generally speaking, the derivative of an in-
verse trig function is an algebraic function! We
will see more of this in Sec. 4.2.
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Exercise 3.6.39

Show that the curve families
y = cx?, % 4 2y =k

are orthogonal trajectories of each other.
(That means that every curve in one family (each

curve labeled by c¢) is orthogonal to every curve in
the other family (labeled by k).
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d
we have ey _ 2cx.
dx

(No implicit differentiation was needed in this
case.) For the curves 2 + 2y? = k we have

dy dy x
2 ygy—=0 = —=——.
v ydm dx 2y

If the curves are orthogonal, the product of the
slopes must be —1 (and vice versa). Well, the
product is

(2cz) (— ﬁ) N

2y Y

For the curves y = cx?
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Derivatives of vector functions

No big surprise here: Conceptually, we are
subtracting the “arrows” for two nearby values
of the parameter, then dividing by the parameter
difference and taking the limit.

r{(a
" r(t) —r(a) .. Ar

/ .
r(a) = lim = lim —
() t—sa t —a h—0 h
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And calculationally, since our basis vectors
do not depend on ¢, we just differentiate each
component:

d . .. .
— [t2i+3tj+5k} — 2ti+3j.
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Second (and higher) derivatives

This is fairly obvious, too: The second
derivative is the derivative of the first derivative.

s(t) = At* + Bt + C = s'(t) =2At+ B
= s''(t) = 2A.

(This was essentially Exercise 3.8.37.)
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The most important application of second
derivatives is acceleration, the derivative of veloc-
ity, which is the derivative of position.

Exercise 3.8.49

A satellite completes one orbit of Earth at an al-

titude 1000 km every 1 h 46 min. Find the veloc-
ity, speed, and acceleration at each time. (Earth

radius = 6600 km.)
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The period is 146 = 1.767 hr. Therefore,
the angular speed is 2%/1.767 = 3.557 radians
per hour. The radius of the circle is 7600, so the
speed in the orbit is 7600 x 3.557 = 27030 km /h
at all times. To represent the velocity we must
choose a coordinate system; say that the satellite
crosses the r axis when ¢t = 0 and moves counter-

clockwise (so it crosses the y axis after a quarter
period). Then

v(t) = 27030(— sin(3.557t), cos(3.557t)).
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(When t = 0, v is in the positive y direction;
after a quarter period, it is in the negative x di-
rection.) The acceleration is the derivative of

that,

a(t) = 27030 x 3.557(— cos(3.557t), — sin(3.557t)).

Finally, let’s find the position function. Its deriv-
ative must be v, so a good first guess is

27030
r(t) = 355

(cos(3.557t),sin(3.557t)).
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To this we could add any constant vector, but a
quick check shows that r(0) is in the positive x
direction as we wanted, and this orbit is centered
at the origin as it should be. So this is the right
answer. Notice that a points in the direction op-
posite to r (i.e., toward the center of the orbit),
as always for uniform circular motion. n
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Slopes and tangents of parametric curves

What is the slope of a curve defined by par-
ametric equations

If we had y as a function of z, we would just cal-

culate g—z. But we can find the slope without

eliminating ¢ from the equations. It may come
as no surprise that the answer is obtained by
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“dividing numerator and denominator by dt”:

dy

dy _dt
 dx

dax &

The valid proof of this formula is simply an ap-
plication of the chain rule:

dy _ dy dx
dt  dx dt
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But, you should be shouting, what if the de-
nominator is 07 If dw =0 and 7 # 0, the curve
is vertical at that pomt so the slope is properly
undefined. If both derivatives are 0, we need to
consider another parametrization to get an an-
swer; the moving point has slowed to a standstill
at the time of interest, so the parametric deriva-
tives give no information.
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To apply the formula, you may need to do
some work to determine the correct value of ¢ to
plug in.

Exercise 3.9.19

At what point does the curve
r=t(t*—-3), y=3(t*-23)

cross itself? Find equations of both tangents at
that point.
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If the curve crosses itself, there must be two
values of t that yield the same x and y, so

t1(t*—=3) = ta(t>—3) and 3(t1*—3) = 3(t5—3).

From the second equation, t; = £t5, and so from
the first one, either t; = +t or t; = £v3 = —t5.
Only the second possibility is of interest to us.
Let’s define t; to be the positive root.

Now calculate the derivatives:

' (t) = (t* —3)+t(2t) =3t* =3,  y/(t) = 6t.
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So the slope is

dy 6t

dr ~ 3t2—3
Substituting t = ++v/3, we get

d +
y _ £6v3 _ /3.
dax §)

(Unlike the implicit differentiation example ear-

lier, there is no % ambiguity, because the two lo-

cal curve segments correspond to different values
of ¢, each with a uniquely defined slope.)
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To find the tangent lines we need to know
the point, which is easily found from the original
formulas:

(z,y) = (0,0).
Then in Cartesian terms, the tangent lines are

Yy = +v/3 2.

In parametric terms, they are

r=(t—3), y = V3(t — V3);
r = (t+V3), y=—V3(t++V3). =
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