
Lecture for Week 12 (Secs. 5.5 and 5.7)

Optimization Problems

and Antiderivatives
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We are concerned this week with finding the
maximum and minimum values of a function in
practical problems.

Extremum is the generic term for either type
of extreme value. Optimum is the generic term for
whichever type is considered desirable. All these
words form plurals by changing “-um” to “-a”.
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The main principle: Maximum and mini-
mum values of a function f occur at places (say
x = c) where f ′(x) = 0 (i.e., the tangent line is
horizontal).
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But there are Complications

1. A local extremum of f may occur at c even
if the tangent line does not become hori-
zontal there. This happens if f ′(c) doesn’t
exist.
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2. If c is an endpoint of the interval I , then
f(c) may be the absolute extremum of f on
I even if f ′(c) exists and f ′(c) 6= 0.

.............................................................................................................................................................................................................................

c
I←− −→
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Remark: According to what I consider the
standard terminology, an absolute maximum is
automatically a local maximum. However, in Ex-
ercise 12(a) (which I assigned last week) Stewart
seems to be reserving the term “local maximum”
for an interior maximum, occurring where f ′(c)
is either 0 or undefined.

By the way, “relative” and “global” can be
used instead of “local” and “absolute”.
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3. f ′(c) may be 0 even if f(c) is not an ex-
tremum (even a local one). This happens
for f(x) = x3, c = 0, for example.
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Procedure for finding the absolute extrema
of a function on an interval

1. Find all critical numbers in the interval (i.e.,
places where f ′(c) = 0 or f ′(c) is unde-
fined).

2. Calculate f(c) at the critical numbers and
at the endpoints of the interval.

3. Compare the results; pick out the largest
and smallest.
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Example

Your dream house will be built on a rectangular
lot. Along the side facing the street you will have
a stone wall that will cost $10 per foot (mea-
sured horizontally along the street). The other
three sides will be enclosed by a steel fence cost-
ing $5 per foot. You have $2500 to spend on wall
and fence together. Find the dimensions of the
lot with the maximum area consistent with your
plans.
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I will work out this example, then go back
and point out the general principles and strate-
gies that it illustrates.

Let L be the length of the lot (the dimen-
sion parallel to the street) and W be the width
(from front to back). The area is A = LW . The
cost of the fence is

2500 = C = 10L+ 5(2W + L) = 15L+ 10W.

Let’s solve this equation for W :
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W =
2500− 15L

10
= 250− 3

2
L.

Then

A = LW = 250L− 3

2
L2.

Now find critical numbers:

0 = A′(L) = 250− 3L ⇒ L =
250

3
.

We should also consider “the endpoints of the
interval” — but what is the interval? Well, it
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would make no sense for L to be negative, so the
interval should start at L = 0. Also, if L is too
big, then the constraint (cost) equation will force
W to be negative. So the interval ends at the
value of L that makes W = 0: L = 2500/15 =
500/3. At these two endpoints, A = 0, whereas
in the interior A is obviously positive. There-
fore, the endpoints are absolute minima of A,
and the absolute maximum must occur at the
critical point, L = 250/3. Calculate the other
quantities:
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W = 250− 3

2

250

3
= 125, A =

250

3
125 =

31250

3
.

Alternative argument that the critical point

is the minimum: A′′(L) = −3 < 0 everywhere,
hence in particular at the critical point. So the
function is concave downward there, and that
extremum must be a maximum. (So there was
no real need to study the endpoints in detail.)
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Strategy for optimization problems

1. Read the problem carefully. Understand –

• What quantity is to be extremized?
(Let’s call it Q.)

• What other quantities can vary? What
quantities are fixed?

2. Introduce notation. Draw a diagram if
appropriate.
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3. Write down the relations among the vari-
ables. (They may be given in the problem, or

deducible from general knowledge.) You need

1) an objective function expressing Q in
terms of other variables;

2) constraint equations relating those
other variables so that you can write Q
as a function of just one independent
variable (let’s call it x).
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4. Solve the constraints and substitute the re-
sults into the objective function.

• Don’t differentiate the constraints.

• Don’t differentiate Q until you have
eliminated all variables but x.

5. Differentiate Q(x) to find its critical points.
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6. Verify that your favorite critical point is the
correct extremum.

• Is it a max or a min? or neither?

• Is it in the physically allowed interval?

• Remember to check endpoints as possi-
ble candidates.
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Exercise

Redo the dream house example, but this time
suppose that the budget is flexible and you want
a lot of exactly 10,000 ft2. Find the dimensions
of the lot with the minimal wall-fence cost (and
find that cost).
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We still have the area and cost formulas

A = LW, C = 15L+ 10W.

But now the roles of objective and constraint for-
mulas are interchanged. The constraint (solved)
is W = 10000/L, so the objective is

C(L) = 15L+
100000

L
.

(In either problem I could have eliminated L
in favor of W instead of the reverse. That would
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change the intermediate algebra but not the an-
swers.)

0 = C ′(L) = 15− 100000

L2
.

L =
√

100000
15 = 100

√

2
3 .

W = 100
√

3
2 .

C = 1500
√

2
3 + 1000

√

3
2 .
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And now something completely different:

Antiderivatives

There is not a whole lot to say here, because
(1) we’ve been talking all along about the problem
of finding a function whose derivative is a given
function, and (2) such problems are either very
easy (if you know all the differentiation formulas)
or hard, and the hard part is postponed to Sec. 6.5
and next semester.
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“Given f , find a function (or all func-

tions) F such that F ′(x) = f(x).”

Let’s go ahead and write this problem in the
notation you will be using for the rest of your
life, even though it won’t be explained till next
week:

Find F (x) =

∫

f(x) dx.
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There is one crucial theoretical point: Any
two antiderivatives of a function on an interval
differ only by a constant.

Example: We know that one antiderivative
of (1 − x2)−1/2 is sin−1 x. Therefore, a formula
for all possible antiderivatives of (1− x2)−1/2 is

∫

(1− x2)−1/2 dx = sin−1 x+ C,

where “C” stands for an arbitrary constant.
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There is one exception to the rule that only
a constant is needed to get all antiderivatives.
It is handled by the disclaimer “on an interval”
in the theorem on the previous slide. If f is de-
fined on two or more disjoint intervals, we could
choose a different antiderivative on each interval.

(example on next slide)
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Example: The domain of

f(x) =
1

x
√
x2 − 1

is (−∞,−1) ∪ (1,∞). According to pp. 280–
281, an antiderivative of this function is F (x) =
sec−1 x. Another antiderivative is (for instance)

F(x) =
{

sec−1 x− 4π if x < −1,
sec−1 x+ 20 if x > 1.
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Exercise 5.5.7

Find the most general antiderivative of

g(t) = (t3 + 2t2)/
√
t.

Exercise 5.5.27

Find f(x) if f ′(x) = 3 cosx+5 sinx and f(0) = 4.
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Converting roots to fractional powers and
multiplying out factors is usually a good strat-
egy:

∫

g(t) dt =

∫

(t5/2 + 2t3/2) dt

=
2

7
t7/2 +

4

5
t5/2 + C

=
√
t

(

2

7
t3 +

4

5
t2
)

+ C

(where the last step is nonmandatory).
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The other problem is an example of a differ-

ential equation. It exemplifies the general prin-
ciple that to get a unique answer, we need to
have as many initial conditions in the problem
as there are derivatives. The initial condition,
f(0) = 4, will determine the unknown constant
C.
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∫

f ′(x) dx =

∫

(3 cosx+ 5 sinx) dx

= 3 sinx− 5 cosx+ C.

Choose C so that

4 = f(0) = 3 sin 0− 5 cos 0 + C = C − 5.

f(x) = 3 sinx− 5 cosx+ 9.
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Exercise 5.7.77

Find the velocity and position of a particle if

a(t) = t2 i+ cos(2t) j,

v(0) = j, r(0) = i.

30



v(t) =

∫

a(t) dt =

∫

(t2 i+ cos(2t) j) dt

=
1

3
t3 i+

1

2
sin(2t) j+ v0 ,

where v0 is some constant vector. We can find
v0 now from the given initial velocity; or we can
wait until after the next step. I’ll do the latter,
since it shows better the general structure of the
solution of such a mechanics problem.
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r(t) =

∫

v(t) dt =

∫

(

1
3 t

3 i+ 1
2 sin(2t) j+ v0

)

dt

=
1

12
t4 i− 1

4
cos(2t) j+ v0t+ r0 .

Now we have

j = v(0) = 0+0+v0 , i = r(0) = 0− 1

4
j+ r0 .

So v0 = j and r0 = i+ 1
4 j.
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Points worth noting:

1. The initial data are not always given at 0.
(In the first example, we might have had
f(1) = 4 instead of f(0) = 4.)

2. The simplest or “most natural” antideriva-
tive is not always equal to 0 when the inde-
pendent variable is 0. (In both examples we
encountered cos 0 = 1. So the constants and
the initial data were not the same numbers.)
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