
Lecture for Week 14 (Secs. 6.3–4)

Definite Integrals

and the Fundamental Theorem
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Integral calculus — the second half of the
subject, after differential calculus — has two as-
pects:

1. “Undoing” differentiation. This is the prob-
lem of finding antiderivatives, which we’ve
already discussed.

2. The study of “adding things up” or “accu-
mulating” something. This is very closely
related to the area topic of last week.
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The fundamental theorem of calculus shows
that these two things are essentially the same.

To reveal the basic idea, consider a speed-

distance problem: We know that if an object
moves at a constant speed for a certain period of
time, then the total distance traveled is

distance = speed× time.

Suppose instead that the speed is a varying func-
tion of time. If we consider a very short time in-
terval, [ti−1, ti], then the speed is approximately
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constant (at least if f is continuous) and hence
we can approximate the distance by

distance = speed in that interval× (ti − ti−1).

As the speed we may choose the maximum
speed in the short interval, or the minimum, or
anything in between — say f(wi) for some wi ∈
[ti−1, ti]. The choice won’t make any difference in
the end.

(There should be a picture here, but I don’t
have time to draw it now.)
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So the total distance traveled between t = a

and t = b is approximately

n
∑

i=1

f(wi)∆ti , where ∆ti − ti−1 .

As we let n → ∞, the approximation should
become exact.

In effect, we have concluded that:
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(A) The distance traveled between times a and
b is the area under the graph of the speed
function between the vertical lines t = a and
t = b (if area is defined in appropriate units,

and if the speed is always nonnegative).

On the other hand,

(B) The distance function is an antiderivative of
the speed function.
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Conclusion: Areas and antiderivatives are
very closely related. In some sense, they are the
same thing!

Before continuing we need a more precise
definition of the definite integral as a limit of a
sum,

∫ b

a

f(x) dx = lim
‖P‖→0

n
∑

i=1

f(x∗
i )∆xi .

That occupies the first half of Sec. 6.3, and it
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involves all the issues about varying the sizes
∆xi of the strips, etc., that I discussed last week
about area.

One important difference between areas and
generic definite integrals: The integrand function
is allowed to be negative in some (or all) places).
Areas must always be positive (or zero), but inte-
grals can be negative. In general,

∫ b

a

f(x) dx = A+ −A− ,
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where A+ is the area below the graph and above
the x axis, and A− is the area above the graph
and below the x axis. (In Fig. 3 on p. 379, A+ is
yellow and A− is blue.)

Note also that the “dummy variable” in an
integral can be any letter that doesn’t cause confu-
sion:

∫ 6

2

x
3
dx =

∫ 6

2

t
3
dt.

Also, this thing is not a function of the variable of
integration, it is just a number.
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Here is an example where a bad choice of let-
ter would cause confusion:

x
2
− x

∫ x2

2

t
3
dt (∗)

must not be written as

x
2 − x

∫ x2

2

x
3
dx.

(The integral in (∗) is a function of x, though not
of t.)
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Algebraic properties of integrals

1.

∫ b

a

[f(x) + g(x)] dx

=

∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

2.

∫ b

a

cf(x) dx = c

∫ b

a

f(x) dx

for a constant c.
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3.

∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx.

4.

∫ b

a

dx means

∫ b

a

1 dx

and equals b− a.

Remarks: Formula (4) is just the area of a
rectangle. The others are also rather obvious for
areas. Recall that making (3) obvious was one of
the reasons for allowing strips of varying widths
∆xi .
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5.

∫ a

b

f(x) dx means −

∫ b

a

f(x) dx

if b > a.

It follows that in (3), c does not need to lie
between a and b.

Perhaps more important (from the point of
view of avoiding mistakes) is an identity that is
not in the list:
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∫

f(x)g(x) dx =

∫

f(x) dx×

∫

g(x) dx

FALSE!

The integral of a product is not the product of
the integrals, just as (and because) the derivative
of a product is not the product of the derivatives.
Roughly speaking, every derivative formula turns
around to give an integral formula. The integral
formula corresponding to the product rule for
derivatives is integration by parts (Sec. 8.1).
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Order properties of the integral

1. If f(x) ≥ g(x) for all x in [a, b], then

∫ b

a

f(x) dx ≥

∫ b

a

g(x) dx.

(Here we assume a < b, of course.) In partic-
ular, if f is nonnegative, then

∫ b

a

f(x) dx ≥ 0 also.
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2. If f is continuous and f(x) ≥ 0, then
∫ b

a

f(x) dx (with a < b) is strictly greater

than 0 unless f(x) = 0 for all x in [a, b].

3.

∣

∣

∣

∣

∣

∫ b

a

f(x) dx

∣

∣

∣

∣

∣

≤

∫ b

a

|f((x)| dx.
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4. Mean value theorem for integrals: If
f is continuous, then there is a z in (a, b)

such that
∫ b

a
f(x) dx = f(z) (b− a).

5. If m ≤ f(x) ≤ M in [a, b], then

m (b− a) ≤

∫ b

a

f(x) dx ≤ M (b− a).
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Now back to the “fundamental theorem”.
Roughly speaking, it says that differentiation
“undoes” integration, and vice versa. They are
inverse operations (almost), like squaring and
taking the square root, except that they operate
on functions instead of numbers.

The two functions involved are related as
are the two readings on a car’s speedometer-
odometer panel. The odometer reading is the
integral of the speedometer reading. The speedo-
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meter reading is the derivative of the odometer
reading. That is the essence of calculus!

The theorem has two parts, one for each or-
der of the operations. And I state each part in
two versions, depending on which function (the
integral or the derivative) takes center stage.

In stating the theorem, we assume for simplic-
ity that f (the derivative) is continuous.
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Fundamental Theorem, Part 1:

d

dx

∫ x

a

f(t) dt = f(x).

That is,

G(x) ≡

∫ x

a

f(x) dt

is an antiderivative of f .
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Exercise

Evaluate
d

dx

∫ x

10

2u du,

d

dy

∫ y

3

1

t
dt,

d

dv

∫ v2

10

2u du.
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For the first two, just apply the theorem:

d

dx

∫ x

10

2u du = 2x,

d

dy

∫ y

3

1

t
dt =

1

y
.

We know these facts without necessarily
knowing what the integrals themselves are. You
may know that the first one is

∫ x

10

2u du = x
2
− 100,
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either (the hard way) in analogy to Exercise 6.3.16
or (the easy way) peeking ahead to Part 2 of the
theorem. The second integral requires a logarithm
function (see Sec. 6.6).

For the third one, use the chain rule:

d

dv

∫ v2

10

2u du = 2v2 × 2v = 4v3.

(Make sure you understand this. The integral is
a function of v2 and therefore of v.)
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Fundamental Theorem, Part 2:

∫ b

a

H ′(x) dx = H(b)−H(a).

That is,

∫ b

a

f(x) dx = H(b)−H(a),

where H is any antiderivative of f .
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Now we can fill in the remarks I made on
the previous example:

Exercise

Find
∫ x

10

2u du,

∫ y

3

1

t
dt.
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Since
d

dx
x2 = 2x,

∫ x

10

2u du = u2
∣

∣

u=x
− u2

∣

∣

u=10

≡ u2
∣

∣

x

10

= x2 − 100.

Certainly much easier than “Use Theorem 5” on
p. 387!
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From Sec. 4.4 or 5.7, we know that an an-
tiderivative of 1

y
is ln y. (This is under the as-

sumption that y > 0 in the interval concerned. If
it’s negative, we should write ln |y|.) So

∫ y

3

1

t
dt = ln t|y3

= ln y − ln 3.

(Since 3 is positive, so is y. The formula does
not apply to negative y, because the logarithm is
discontinuous at t = 0.)
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Why did I say that integration and differ-
entiation are “almost” inverse operations? Look
back at slide 23. It says that, if we think of H
as a function of b, then differentiating it and
then integrating it almost gives back H(b), but
not quite: There is a “constant of integration”,
−H(a), stuck on at the end. This complication
is inevitable, because a given function has many
antiderivatives, differing by constants.
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In fact, Part 2 is easy to prove, if you know
Part 1 and the theorem that two antiderivatives
(on an interval) differ only by a constant. Be-
cause (Part 1)

d

db

∫ b

a

f(x) dx = f(b),

it must be that

∫ b

a

f(x) dx ≡ G(b)
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is an antiderivative of f(b); the only question is
which one. If H is any antiderivative (see Part
2), then

∫ b

a

f(x) dx = H(b) + C

(Theorem 2, p. 345). To find C, apply the ini-

tial condition that

∫ a

a

f(x) dx = 0.
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It tells us that 0 = H(a) + C. So

∫ b

a

f(x) dx = H(b)−H(a).
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Proving Part 1 is harder, and you should
read the details in the book. The basic idea is
the same as in the earlier argument that the dis-
tance traveled is the area under the graph of the
speed function, but run in reverse: we will pick
the sum apart instead of building it up.
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By definition of a derivative,

d

dx

∫ x

a

f(t) dt = lim
h→0

1

h

[

∫ x+h

a

f(t) dt−

∫ x

a

f(t) dt

]

= lim
h→0

1

h

∫ x+h

x

f(t) dt

≈ lim
h→0

1

h
× (area of “last strip”)

= height of “last strip”

= f(x).
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Practical aspects of the fundamental theorem

Integrals (defined by Riemann sums) are
equal to antiderivatives according to the theo-
rem. So,

1. If you are trying to “integrate” (in either
sense) a function analytically (i.e., in terms
of exact formulas), the antiderivative is al-
most always easier to evaluate than the limit
of Riemann sums. So you use Part 2:
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∫ b

a

f(t) dt = H(b)−H(a)
(

H ′(t) = f(t)
)

.

To find the left side (which might arise in
an application as an area, for example) you
calculate the right side.

Any antiderivative H will do for this purpose,
so it is permissible to leave out the “ + C” in this
context.
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2. If you are integrating numerically, sums are
usually easier than antiderivatives. So the
computer programs for such work use some
refinement of the definition

∫ x

a

f(t) dt = lim
‖P‖→0

∑

i

f(t∗i )∆ti .

To find the left side (which might arise in an
application as a distance traveled at speed
f , for example) you compute one of the
sums on the right side with a small ‖P‖ and
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trust that that is a good approximation to
the answer.
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