The Master Theorem on the Asymptotic Behavior of Recursions Arising from Divide-and-Conquer Algorithms

Let $a \ge 1$ and b > 1 be constants, let s(n) be a given function, and let f(n) be defined on **N** by the recursion relation

$$f(n) = af(n/b) + s(n)$$

(where n/b may be interpreted as either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$) together with suitable initial values. Then for large n:

- 1. If $s \in O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $f \in \Theta(n^{\log_b a})$.
- 2. If $s \in \Theta(n^{\log_b a})$, then $f \in \Theta(n^{\log_b a} \lg n)$.
- 3. If $s \in \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if

$$as(n/b) \le cs(n)$$
 for some constant $c < 1$

for all sufficiently large n, then $f \in \Theta(s)$.

Source: T. H. Cormen, C. E. Leiserson, and R. L Rivest, Introduction to Algorithms, McGraw-Hill, New York, 1990, Secs. 4.3–4.4; notation modified for consistency with that of R. P. Grimaldi, Discrete and Combinatorial Mathematics.