Synopsis of Elementary Number Theory

This is a quick summary of Secs. 4.3–5 of Grimaldi's book. These concepts and facts are sometimes used later in the book.

- 1. An integer $p \in \mathbf{Z}^+ \cap \overline{\{1\}}$ is *prime* if no other positive integer (except p and 1) divides it. Otherwise, $p \in \mathbf{Z}^+ \cap \overline{\{1\}}$ is called *composite*. (Note that by this definition, 1 and 0 are neither prime nor composite.)
- 2. "The Fundamental Theorem of Arithmetic": Every $n \in \mathbf{Z}^+$ has a (unique) factorization into primes:

$$n = p_1^{s_1} p_2^{s_2} \cdots p_t^{s_t}.$$

Examples: $8 = 2^3$, $65536 = 2^{16}$, $30 = 2 \cdot 3 \cdot 5$, $12 = 2^23$, $180 = 2^23^25$, $105 = 3 \cdot 5 \cdot 7$, 37 = 37.

- 3. a|b means that a divides b (i.e., b=na for some $n \in \mathbf{Z}^+$).
- 4. The greatest common divisor, gcd(a, b), is the largest number that divides both a and b. Example: gcd(6, 9) = 3.
- 5. a and b are relatively prime (or coprime) if gcd(a, b) = 1. Example: $a = 65536 = 2^{16}$, $b = 105 = 3 \cdot 5 \cdot 7$ (each of which is definitely not prime by itself).
- 6. The least common multiple, lcm(a, b), is the smallest number that is divided by both a and b. (This is well known to fifth-graders as the "least common denominator" of fractions.) From the fundamental theorem (2) it is easy to see that

$$lcm(a,b) = \frac{ab}{\gcd(a,b)}.$$

Example: lcm(6, 9) = 18.

- 7. Division algorithm: Given $a \in \mathbf{Z}$ and $b \in \mathbf{Z}^+$, there exist (unique) integers q and r ("quotient and remainder") such that a = qb + r and $0 \le r < b$. In \mathbf{C} (and probably other programming languages), r = a%b and (if a and b have been declared as integer variables and are positive) q = a/b. Grimaldi uses " \mathbf{mod} " for "%". More generally, for a fixed b, if a_1 and a_2 correspond to the same r (in other words, $b|(a_1 a_2)$), then a_1 and a_2 are said to be congruent modulo b, or $a_1 \equiv a_2 \pmod{b}$ (see Grimaldi Sec. 14.3). Example: ; 36%7 = 1 = 29%7; $36 \equiv 29 \pmod{7}$ (but $36 \neq 29\%7$ and $36 \neq 29 \pmod{7}$, because 29 is not less than 7).
- 8. Euclidean algorithm: To find the greatest common divisor of two large numbers, apply the division algorithm recursively. See Grimaldi Theorem 4.7, or the opening pages of Knuth's *The Art of Computer Programming* (and many later sections of Vols. 1 and 2 of Knuth).

© S. A. Fulling 2002