
Math. 302 (Fulling) 14 December 2004

Final Examination – Solutions

Calculators may be used for simple arithmetic operations only!

1. (12 pts.) For each of these “divide and conquer” recursions, either find an asymptotic
estimate on T (n) using the master theorem, or explain why the master theorem does not
apply.

(a) T (n) = 2T
(n

2

)
+ 50n .

Here a = b , so logb a = 1 . Since s = 50n ∈ Θ(n1) , we are in Case 2, with the result T ∈ Θ(n lg n) .

(b) T (n) = 4T
(n

2

)
+ n2 log n .

Here logb a = log2 4 = 2 . Cases 2 and 1 do not apply, because s = n2 log n grows faster than n2 .

But we are not in Case 3 either, because s does not grow as fast as n2+ε for any ε . Therefore, the
theorem does not apply.

2. (25 pts.)

(a) Give an “element proof” of the set-theoretic De Morgan law, A ∪B = A ∩ B .
(In other words, use the definitions of the set-theory relations and operations together
with the appropriate logical De Morgan law.)

x ∈ A ∪B ⇐⇒ ¬(x ∈ A ∪B)

⇐⇒ ¬[x ∈ A ∨ x ∈ B]

⇐⇒ ¬(x ∈ A) ∧ ¬(x ∈ B)

⇐⇒ x ∈ A ∧ x ∈ B

⇐⇒ x ∈ A ∩B.

(b) Prove by mathematical induction [and (a)] the generalized De Morgan law,

N⋃
n=1

An =
N⋂

n=1

An (N ≥ 2).

Base: Part (a) is the case N = 2 .
Induction: Assume the law is known for the case N − 1 .

N⋃
n=1

An =

N−1⋃
n=1

An ∩AN (by (a))

=

N−1⋂
n=1

An ∩AN (by inductive hypothesis)

=

N⋂
n=1

An .
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3. (13 pts.) Find a recursion relation (with initial conditions) for the number of (decimal)
digit strings of length n that do not contain a pair of consecutive zeros.

Clearly a0 = 1 and a1 = 10 , since there is not yet any possibility of repetition of digits. To get an
allowed string of length n we can either append something nonzero to an allowed string of length
n − 1 ( 9an−1 possibilities) or append a 0 to an allowed string that ends in a nonzero ( 9an−2
possibilities, since the nonzero digit could be added to any allowed string of length n− 2 ). Thus

an = 9an−1 + 9an−2 , a0 = 1, a1 = 10.

Check: Our formula gives a2 = 99 and a3 = 981 . These are correct: For n = 2 all 100 strings are
allowed except the double zero. For n = 3 there are 1000 strings, of which one is a triple zero and
2 · 9 = 18 have 00 either preceded or followed by a nonzero; that leaves 981 .

4. (30 pts.) [Leave answers in terms of factorials and powers.] Because Prof. Lucas will
be snowbound in Labrador for all of final exam week, each of the 20 students in his Math.
320 class will need to take the final with one of the other 3 sections of the course. The
students get to choose which class to go to.

(a) How many ways can the students make those choices (the students being distinguish-
able)?

320 . (Each student independently has 3 choices.)

(b) How many patterns of choice are possible if the students are regarded as indistiguish-
able? (An example of a pattern is: 10 students went to Prof. Smith’s exam, 6 to
Prof. Bernt’s, and 4 to Prof. Woodcock’s.)(

20 + (3− 1)

20

)
=

22!

2! 20!
. (Putting 20 indistinguishable things into 3 distinguishable boxes is the

same as separating the 20 things by 2 indistinguishable dividers.)

(c) What is the coefficient of x10y6z4 in (x + y + z)20 ?
20!

10! 6! 4!
(multinomial coefficient).

(d) Is there any connection between part (c) of this question and parts (a) and (b)?
(Explain.)

The answer to (b) is the same as the number of distinct monomial terms, (coefficient) × xaybzc , in

(x + y + z)20 . The sum of all the corresponding multinomial coefficients is 320 , the answer to (a);
this is a case of the trinomial generalization of the binomial theorem (Pascal’s pyramid). Putting it
the other way around, the answer to (c) is the number of instances of the example pattern in (b)
when names are reattached to the students.

5. (35 pts.) Solve these recursion relations, and give one of them its famous name.

(a) an = an−1 + an−2 . (Find the general solution.)

This is the Fibonacci recursion. Trying an = rn , we get the equation r2 − r − 1 = 0 . Its solutions
are

r =
1±√1 + 4

2
=

1±√5

2
.
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So the general solution of the recursion is

an = C1

(
1 +
√

5

2

)n

+ C2

(
1−√5

2

)n

.

Remark: With C1 = −C2 = 1√
5

we get the familiar Fibonacci numbers, 0 , 1 , 1 , 2 , 3 , 5 , . . . .

See Rosen, p. 416.

(b) an+2 − 9an = 5 · 2n, a0 = 1, a1 = 0 .
First find a solution of the homogeneous relation, an+2 − 9an = 0 , of the form ah

n = rn . We are

led to r2 − 9 = 0 , or r = ±3 . Thus ah
n = C13

n + C2(−3)n .
Now find a particular solution of the nonhomogeneous equation in the form ap

n = A · 2n . We
get A · 2n+2 − 9A · 2n = 5 · 2n , or (4 − 9)A = 5 , whence A = −1 . So the general solution of the
nonhomogeneous equation is

ah
n + ap

n = C13
n + C2(−3)n − 2n.

Finally, we need to match the initial data.

1 = C1 + C2 − 1,

0 = 3C1 − 3C2 − 2.

The solution is C1 = 4
3 , C2 = 2

3 . So

an =
4

3
3n +

2

3
(−3)n − 2n = 4 · 3n−1 − 2(−3)n−1 − 2n.

6. (14 pts.)

(a) Rewrite in good English:

∀x ∈ R ∀y ∈ R
[(

(x < 0) ∧ (y < 0)
) → xy > 0

]
.

The product of two negative real numbers is always positive. (or other words to the same effect)

(b) Rewrite in logical notation: [Interpret as a general statement about numbers.]

A negative real number does not have a square root that is a real number.

∀x ∈ R[x < 0 → ¬∃y ∈ R (x = y2)].

7. (20 pts.) Let F be this set of functions:{
en + lnn , 2n + lnn ,

√
n2 + 1 ,

e2n + 1
en , e2n ,

n2 + 1
log n

}

Let R be the equivalence relation defined on F by

(f, g) ∈ R ⇐⇒ f ∈ Θ(g) .

(a) What is the partition of F induced by R ? [Answer should be a list of subsets
(“equivalence classes” or “cells”) of F .]

Note that the third function is in Θ(n) and the fourth one is in Θ(en) . The leading behavior of the
other functions is more obvious, and two of them overlap with these two. So we have 4 cells:{

en + lnn ,
e2n + 1

en

}
,

{
2n + ln n ,

√
n2 + 1

}
,

{
e2n

}
,

{
n2 + 1

log n

}
.
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(b) Take one representative from each cell of this partition and order these representatives
from the slowest to the fastest (in terms of growth at infinity).

2n + lnn ≺ n2 + 1

log n
≺ en + lnn ≺ e2n.

Remark: If the question read “Take a maximally simple representative from each Θ class . . . ”, the
answer would be

n ≺ n2

log n
≺ en ≺ e2n.

8. (15 pts.) Suppose that dn+3 = dn+1 + dn for n ≥ 0 and that d0 = 1 , d1 = 0 , d2 = 1 .
Show that ∞∑

n=0

dnxn =
1

1− x2 − x3
.

(Then stop! You are not expected to solve the recursion.)

Define f(x) =

∞∑
n=0

dnxn . Multiply the recursion by xn+3 and sum:

∞∑
n=0

dn+3xn+3 =

∞∑
n=0

dn+1xn+3 +

∞∑
n=0

dnxn+3.

(If you multiply just by xn , it still works out but the algebra is slightly messier.) Shift indices:

∞∑
n=3

dnxn =

∞∑
n=1

dnxn+2 +

∞∑
n=0

dnxn+3.

That is,

f(x)− d0 − d1x− d2x2 = x2[f(x)− d0] + x3f(x).

Use the given initial values and solve for f(x) :

f(x)(1− x2 − x3) = (1 + x2)− x2 = 1,

so

f(x) =
1

1− x2 − x3
.

9. (16 pts.) Consider these propositions:
p : Grizzly bears have been seen in the area.
q : Hiking on the trail is safe.
r : Berries are ripe along the trail.

(a) Express in logical notation:
(i) If berries are ripe along the trail, hiking is safe if and only if grizzly bears have not

been seen in the area.
r → (q ←→ ¬p).
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(ii) It is not safe to hike on the trail, but grizzly bears have not been seen in the area
and the berries along the trail are ripe.

¬q ∧ ¬p ∧ r.

(b) Determine (by a truth table or a shortcut argument) whether propositions (i) and (ii)
can be true simultaneously.

Method 1: If r is false, then (ii) is false. If r is true, then according to (i), q and p have opposite
truth values, which contradicts (ii). Therefore, (i) and (ii) are incompatible.

Method 2: Set up a truth table for (i) ∧ (ii). You will get “F” under the “ ∧ ” for all eight lines.
(If you use “ ⇐⇒ ” instead of “ ∧ ” there will be a “T” line, but it corresponds to a case (namely,
q ∧ p ∧ r ) where both sides are false, so the correct conclusion still is that the two sides are not true
simultaneously.)

Method 3: Only one of the 8 cases is allowed by (ii), and it makes (i) false.

10. (20 pts.) Do ONE of these [(A) or (B); note that each has mandatory parts (a), (b), etc.]
This time you may earn extra credit by doing both.

(A)
(a) List all the nonnegative integers less than 35 that are congruent to 0 modulo 5 ,

and determine their residues modulo 7 . (Example: [10]5 = 0 and then [10]7 = 3 .)
Here is the list of residues:

[0]7 = 0, [5]7 = 5, [10]7 = 3, [15]7 = 1, [20]7 = 6. [25]7 = 4, [30]7 = 2.

(b) Use the Chinese remainder theorem (and (a)) to determine 28× 13 + 11 modulo
35 . (Don’t write down any number larger than 34 , and don’t write down any
number larger than 6 until the last step!) Notation: Represent each n by its
residue pair ([n]5, [n]7) .

Translate into residues and do the arithmetic, immediately throwing away multiples of 5 or 7 :

(3, 0) · (3, 6) + (1, 4) = (4, 0) + (1, 4) = (0, 4).

From the list in (a), the number is 25 .
Check: 28 · 13 + 11 = 375 = 10 · 35 + 25 .

(B) A relation R is represented by the matrix

M =




1 1 0 1
0 1 0 1
1 1 1 1
1 0 1 0


 .

Determine (with some indication of your reasoning) whether R is
(a) reflexive.

No. (There is a 0 on the diagonal.)
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(b) symmetric.
No. (For example, M12 = 1 but M21 = 0 .)

(c) transitive.
No. With some work, you find that the Boolean square of M is the 4× 4 matrix consisting entirely
of ones. Therefore, M2 ≤ M is false; the transitivity test fails. (For example, (2, 1) /∈ R , but

(2, 1) ∈ R2 because (2, 4) ∈ R and (4, 1) ∈ R .)


