
Math. 311 (Fulling) 19 April 2000

Test C – Solutions (corrected)

Calculators may be used for simple arithmetic operations only!

1. (30 pts.) Let ~F = (x− y)ı̂ + z̂ + (z − y)~k .
(a) Calculate ∇ · ~F .

∂(x− y)

∂x
+

∂z

∂y
+

∂(z − y)

∂z
= 1 + 0 + 1 = 2.

(b) Calculate ∇× ~F .∣∣∣∣∣
ı̂ ̂ k̂

∂x ∂y ∂z

(x− y) z (z − y)

∣∣∣∣∣ = ı̂(−1− 1) + ̂(0− 0) + k̂(0 + 1) = −2 ı̂ + k̂.

(c) Calculate
∫∫

R
~F · d~S when R is the portion of the plane z = 2− 5x that lies in the

quadrant z > 0 , x > 0 and between the planes y = 0 and y = 1 .
Note first that the equation of the surface can also be written as

x =
2− z

5
,

and that when x = 0 , z = 2 , and when z = 0 , x = 2
5 . Thus the integration will be from 0 to

2 in z or from 0 to 2
5 in x . Now let’s write the integral as∫∫

[Fx dy dz + Fy dz dx + Fz dx dy]

and ponder how best to integrate each term.
Method 1: Integrate each term over its own plane. The projection onto the x – z plane has zero

area, so the Fy term is zero. The others are∫ 1

0

dy

∫ 2

0

dz (x−y)+

∫ 1

0

dy

∫ 2/5

0

dx (z−y) =

∫ 1

0

dy

∫ 2

0

dz
(

2− z

5
− y

)
+

∫ 1

0

dy

∫ 2/5

0

dx (2−5x−y)

=

∫ 2

0

dz

[
2− z

5
y − y2

2

]1

0

+

∫ 1

0

dy

[
2x− 5x2

2
− yx

] 2
5

0

=

∫ 2

0

dz
[
2− z

5
− 1

2

]
+

∫ 1

0

dy
[
4

5
− 2

5
− 2y

5

]

=

[
− z

10
− z2

10

]2

0

+

[
2y

5
− y2

5

]1

0

= −1

5
− 2

5
+

2

5
− 1

5
= − 2

5
.

Method 2: Integrate everything over x and y . We have dz = −5 dx + 0 dy . Therefore, the
integral is∫∫

D

[
(x− y) dy (−5 dx) + Fy (dx)2 + (z − y) dx dy

]
=

∫ 1

0

dy

∫ 2/5

0

dx [+5(x− y) + (2− 5x− y)]

=

∫ 1

0

dy

∫ 2/5

0

dx [5x− 5y + 2− 5x− y] =

∫ 1

0

dy

∫ 2/5

0

dx [−6y + 2]

=

∫ 2/5

0

dx
[
−3y2 + 2y

]1

0
=

2

5
(−3 + 2) = − 2

5
.
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(d) Calculate
∫∫

S
~F · d~S when S is the sphere (x− 1)2 + y2 + (z + 2)2 = 25 .

By Gauss’s theorem, this is the integral of ∇·~F over the ball whose boundary is S . Since ∇·~F = 2 ,
this is just twice the volume of the ball. Since the radius is 5 , this is

2 · 4π

3
· 53 =

8π

3
· 125 =

1000π

3
.

2. (10 pts.) Find the volume of the parallelepiped generated by the edges

~v1 = (1, 2, 1), ~v2 = (2, 0, 2), ~v3 = (1, 2, 3).∣∣∣∣∣
1 2 1

2 0 2

1 2 3

∣∣∣∣∣ = −2

∣∣∣∣ 2 2

1 3

∣∣∣∣− 2

∣∣∣∣ 1 1

2 2

∣∣∣∣ = −2(6− 2)− 0 = −8.

So the volume is +8 .

3. (30 pts.) Define curvilinear coordinates (u, t) by

{
x = eu cosh t,

y = eu sinh t.

(a) Find the formulas for the tangent vectors to the coordinate curves (at a generic point
(u, t) ).

∂~r

∂u
=

(
eu cosh t

eu sinh t

)
,

∂~r

∂t
=

(
eu sinh t

eu cosh t

)
.

For future use, let us put these together (as columns) into the Jacobian matrix,

J =

(
eu cosh t eu sinh t

eu sinh t eu cosh t

)
.

(b) Find the formulas for the normal vectors to the coordinate “surfaces” (which are ac-
tually curves in this two-dimensional case).

These are the rows of J−1 . So we start with

det J =

∣∣∣∣ eu cosh t eu sinh t

eu sinh t eu cosh t

∣∣∣∣ = e2u(cosh2 t− sinh2 t) = e2u.

Therefore, by Cramer’s rule,

J−1 = e−2u

∣∣∣∣ eu cosh t −eu sinh t

−eu sinh t eu cosh t

∣∣∣∣ .

Thus
∇u =

(
e−u cosh t,−e−u sinh t

)
, ∇t =

(
−e−u sinh t, e−u cosh t

)
.

It is easy to check that these have the reciprocal orthonormality properties that they ought to have:〈
∂~r

∂u
,∇u

〉
= 1,

〈
∂~r

∂u
,∇t

〉
= 0,

〈
∂~r

∂t
,∇u

〉
= 0,

〈
∂~r

∂t
,∇t

〉
= 1.
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(c) Calculate
∫∫

D xy2 dx dy when D is the region bounded by the curves u = 0 , u = 2 ,
t = 0 , t = 1 . ∫ 2

0

du

∫ 1

0

dt xy2J =

∫ 2

0

du

∫ 1

0

dt e5u cosh t sinh2 t

=
1

5
e5u

∣∣2
0

1

3
sinh3 t

∣∣1
0

=
1

15
(e10 − 1) sinh3 1.

4. (15 pts.) Tell whether each of these formulas defines an inner product on the space C(0, 5)
(the real-valued continuous functions of t , where 0 < t < 5 ). If not, briefly explain why
not.

(a) 〈f, g〉 =
∫ 5

0
f(t)2g(t)2 dt

NO — not bilinear.

(b) 〈f, g〉 =
∫ 5

0

f(t)g(t)
1 + t2

dt

YES.

(c) 〈f, g〉 =
∫ π/2

0
f(t)g(t) dt

NO — not positive definite: If f(t) = 0 for t < π
2 (but f is not zero everywhere in the interval

from π
2 to 5 ), then 〈f, f〉 = 0 although f is not the zero vector!

5. (15 pts.) Find an orthonormal basis for R3 whose first element is û1 = 1√
6
(1, 1, 2) .

Note that û1 has norm one, so we can put it into the basis unchanged. We continue by the
Gram–Schmidt procedure. Choose any vector linearly independent of û1 to be ~v2 ; for example,
~v2 = (1, 0, 0) . Its projection onto û1 is

~v‖ = (û1 · ~v2)û1 =
1

6
(1 + 0 + 0)(1, 1, 2) =

1

6
(1, 1, 2).

So the perpendicular part is

~v⊥ = (1, 0, 0)− 1

6
(1, 1, 2) =

1

6
(5,−1,−2).

Since
√

25 + 1 + 4 =
√

30 , the normalized vector in this direction is

û2 =
1√
30

(5,−1,−2).

Now we need to find a unit vector perpendicular to the two we’ve found so far.
Method 1: û3 ≡ û1 × û2 =

1√
6 · 30

∣∣∣∣∣
ı̂ ̂ k̂

1 1 2

5 −1 −2

∣∣∣∣∣ =
1

6
√

5
(0 ı̂ + 12 ̂− 6 k̂) =

1√
5
(0, 2,−1).
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Method 2: Let ~v3 = (0, 1, 0) . Its projection onto the plane of the first two vectors is

~v‖ = (û1 · ~v3)û1 + (û2 · ~v3)û2 =
1

6
(1, 1, 2) +

−1

30
(5,−1,−2).

So
~v⊥ =

(
− 1

6 + 5
30 , 1− 1

6 − 1
30 ,− 2

6 − 2
30

)
=

(
0, 4

5 ,− 2
5

)
,

which normalizes to the same û3 as before.


