
Math. 311 (Fulling) 20 March 2002

Test B – Solutions

Name:

Calculators may be used for simple arithmetic operations only!

1. (24 pts.) Let L:P2 → P2 be the differential operator (Lp)(t) ≡ p′′(t) + 2 t p′(t) .
(a) Find the matrix that represents L with respect to the standard basis {t2, t, 1} for P2 .

Method 1: Calculate L(t2) = 4t2 + 2 , L(t) = 2t , L(1) = 0 . Then by the kth-column rule, the
matrix is

M =

(
4 0 0

0 2 0

2 0 0

)
.

Method 2: Calculate L(at2 + bt + c) = 4at2 + 2bt + 2a . So we must have

(
4a

2b

2a

)
= M

(
a

b

c

)
.

The conclusion is the same as before.

(b) Find the kernel of L . Is L injective?
Method 1: Find the kernel of M : M row-reduces to(

1 0 0

0 1 0

0 0 0

)
,

so the solutions of the homogeneous equation are a = 0 , b = 0 , c arbitrary. Translate back into
terms of polynomials: The kernel of L consists of the constant functions (the polynomial space P0 ).
This is a nontrivial subspace, so L is not injective.

Method 2: Following Method 2 for part (a), we see that p ∈ kerL means that 4a = 0 , 2b = 0 , and
2a = 0 . Again this means that a = b = 0 but c is unrestricted.

Method 3: Solve the differential equation p′′ + 2tp′ = 0 directly: Let q = p′ so that we can deal
with a first-order equation, q′ = −2tq . It is separable:

dq

q
= −2tdt ⇒ ln q = −t2 + c

⇒ q = Ce−t2

⇒ p = C

∫
e−t2 + D.

The terms with C 6= 0 are not polynomials and hence are irrelevant. The only polynomial solutions
are the constant functions.
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(c) Find the range of L . Is L surjective?
Method 1: The range is represented by the span of the columns of M , which is all vectors in R3 of
the form

A

(
2

0

1

)
+ B

(
0

1

0

)
.

In terms of polynomials, the range of L consists of all polynomials of the form C(2t2 + 1) + Bt .
This is not the entire space P2 , so L is not surjective.

Method 2: Suppose that At2 + Bt + C is in the range. Then by Method 2 for (a) we must have

A = 4a, B = 2b, C = 2a.

It is easy to see that this system can be solved for (a, b, c) precisely when A = 2C . The conclusion
is as before.

Method 3 (because an honors test should be challenging for the teacher, too): An integrating factor
for the first-order nonhomogeneous equation q′ + 2tq = f(t) is the reciprocal of a solution of the

corresponding homogeneous equation: µ(t) = e+t2 . Proceed:

µf = et2q′ + 2tet2q =
d

dt

(
et2q

)
,

q(t) = e−t2
∫ t

es2
f(s) ds.

We are interested only in the cases where f is a second-degree polynomial, and we need to find out
in which such cases q turns out to be a first-degree polynomial (so that its antiderivative, p , will
be in P2 ). If f(s) is proportional to s , the integral is elementary and turns out (for a particular

choice of the constant of integration) to be proportional to et2 ; thus q is a constant. This shows
that vectors of the form Bt are in the range. If f is a constant, it is notorious that the integral (“the
error function”) is not an elementary function; thus q can’t be a polynomial, and the constants C

are not in the range (and hence neither are vectors Bt+C with C 6= 0 ). It remains see whether t2 ,

or t2 plus some constant, is in the range. Let’s see what the substitution w = s2 ( ds = dw/2
√

w )
does to the integrals:∫

es2
s2 ds =

1

2

∫
eww1/2 dw,

∫
es2

ds =
1

2

∫
eww−1/2 dw.

Evaluate the second integral by parts, with u = ew , v = w1/2 :∫
es2

ds = eww1/2 −
∫

eww1/2 dw.

Thus ∫ t

es2
ds = et2 t− 2

∫ t

es2
s2 ds.

Since the integral on the left is not elementary, the one at the end can’t be elementary either. However,∫ t

es2
(2s2 + 1) ds = et2 t

is elementary, and the equation q′ + 2tq = 2t2 + 1 therefore has the solution q(t) = t . Thus the

original equation p′′ + 2tp′ = 2t2 + 1 has quadratic polynomial solutions p(t) = 1
2 t2 + constant !
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2. (20 pts.) Let M =


 1 2

3 0
6 1


 be the matrix of a linear function L:R2 → R3

(with respect to the natural bases).

(a) What is the rank of M ?
2 , because the columns are obviously independent.

(b) What is the nullity of M (dimension of the kernel of L )?
Method 1: (dimension of domain)− (dimension of range) = 2− 2 = 0 .

Method 2: M row-reduces to (
1 0

0 1

0 0

)

(the augmented matrix has another column of zeros at the end), so the only solution of the homoge-
neous equations is the zero vector. The kernel is {0} , which has dimension 0 .

(c) What matrix represents L when the basis
{
~b1 =

(
1
2

)
, ~b2 =

(
1
−1

)}
is used for

the domain?

Put the new basis vectors together a matrix U =

(
1 1

2 −1

)
. Clearly U maps coordinates with

respect to the ~b basis into natural coordinates, ready to be acted upon by M . Thus the desired
matrix is

MU =

(
5 −1

3 3

8 5

)
.

(Equivalently, construct this matrix by the kth-column rule, calculating M~b1 and M~b2 to be its
columns.)

3. (16 pts.) It is well known that the two sets of functions

{f1 = 1, f2 = cos t, f3 = cos2 t} and {g1 = 1, g2 = cos t, g3 = cos(2t)}

span the same vector space, U , because cos(2t) = 2 cos2 t− 1 .

(a) If rj and sj are defined by y(t) =
∑3

j=1 rjfj =
∑3

j=1 sjgj , find the matrix N
such that 

 r1
r2
r3


 = N


 s1

s2
s3


 .

Method 1: We have g1 = f1 , g2 = f2 , g3 = −f1 + 2f3 . Thus the matrix

K =

(
1 0 0

0 1 0

−1 0 2

)



311B-S02 Page 4

maps the f basis vectors to the g basis vectors. By a general principle, the transpose of K maps
the g coefficients into the f coefficients, which is precisely what we want:

N =

(
1 0 −1

0 1 0

0 0 2

)
.

Method 2:
∑3

j=1 sjgj = s1 + s2 cos t + s3(2 cos2−1) = (s1 − s3)1 + s2 cos t + 2s3 cos2 t , so

r1 = s1 − s3 , r2 = s2 , r3 = 2s3 .

From this we read off the same N as in Method 1.

(b) If Q is the matrix of a linear function L:U → U with respect to the basis {fj} , what
matrix represents L with respect to the basis {gj} ? (Numerical calculations are not
called for — just a formula in terms of N and Q .)

N−1QN .

4. (Essay — 20 pts.) Consider the two problems

x− y = 1 ,

2x− 2y = 2 ;

}
(1)

d2y

dt2
= sin(2t), y(0) = 0, y(π) = 0. (2)

Discuss the analogy between these problems, and what the principles of linear algebra tell
us about their solutions. Vocabulary hints: linear, homogeneous, affine, subspace, kernel,
range, superposition, . . .

This question did not work out as well as planned, because the two problems are not actually as
“analogous” as I intended them to be. In (2) I should have either left off the boundary conditions,

or replaced the differential equation by d2y
dt2

+ y = sin(2t) ; in either case the related homogeneous

problem would then have nontrivial solutions, as (1) does.

I gave up to 5 points extra credit for actually solving the problems instead of just discussing them in
generalities. Here is a good student response:

• both problems are linear & nonhomogeneous
– Since they are both linear, we can use principles of superposition to determine their

solutions. FOR PROBLEM 1, the kernel of the associated matrix is nontrivial ([the
matrix is not] injective) so the associated homogeneous problem has a solution, ~xh . We
would then find the solutions to the nonhomogeneous problem and add these together to
get the entire solution (superposition principle 2).

– SIMILARLY FOR PROBLEM 2, the kernel for the homogeneous problem is nontrivial,
and we would find that to yield yh . If there is more than one solution to the homoge-
neous problem we can add these up to get the entire homogeneous solution (superposition
principle 1). AND AGAIN we would find the particular solution[] of the type α sin(2t) ,
which we call yp . The entire solution for y(t) can be found by summing yh & yp

(SUPERPOSITION PRINCIPLE 2). There is enough info, however (in the boundary
conditions), so that the yh = 0 & yp is unique.

[ • The solutions are:]
(1) x = y + 1

(2) y(t) = − 1
4 sin(2t)
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5. (20 pts.) The 2× 2 matrices form a vector space, V .
(a) What is the dimension of V ?

4 , the number of elements (parameters) in such a matrix. (The four matrices containing one 1 and
three zeros form a natural basis for this space.)

(b) Here is a set of vectors from V :

{(
1 0
0 1

)
,

(
1 0
0 −1

)
,

(
0 1
1 0

)}
.

Decide whether this set is linearly independent; if it isn’t, find an independent set with
the same span.

It is independent. (A proof was not demanded, but you could imagine the matrices as rows

(
1 0 0 1

1 0 0 −1

0 1 1 0

)

and reduce; or just notice that

a

(
1 0

0 1

)
+ b

(
1 0

0 −1

)
+ c

(
0 1

1 0

)

can’t be zero unless all the coefficients are zero.)

(c) Show that the antisymmetric 2 × 2 matrices form a subspace of V , and find its
dimension.

Method 1: A matrix

(
a b

c d

)
is antisymmetric if it equals −

(
a c

b d

)
; this requires a = 0 = d

and c = −b . Thus the antisymmetric matrices are the multiples of the matrix

(
0 1

−1 0

)
. This is

obviously a subspace (being a span), and its dimension is 1 .

Method 2: The condition of antisymmetry is M t = −M . Taking the transpose is a linear operation,
so this is a homogeneous linear equation and its solutions form a subspace. To find the dimension
we need to solve the equation, which is just repeating the first part of Method 1; there is only one
independent parameter ( b ) in the solution, so the dimension is 1 .

(d) (extra credit) Make a remark relating the three parts of this problem. Hint: Think
about the symmetric matrices.

The span of the three matrices in (b) is the subspace of all 2 × 2 symmetric matrices, which thus
has dimension 3 . From an old homework problem we know that every square matrix is the sum
of a symmetric and an antisymmetric part, and that the only matrix that is both symmetric and
antisymmetric is 0 . Thus the whole space is the direct sum of the symmetric and antisymmetric
subspaces; its dimension is the sum of their dimensions, 4 = 3 + 1 .


