Green Functions: Matrices for Infinite-Dimensional Operators

I. PRELIMINARY REMARKS

The point of this lecture is to show how certain ideas and facts of finite-dimensional
linear algebra partly persist into function spaces (and partly don’t).

Typical vector spaces of functions are C™(0, 7). We have seen

(a) Differential operators: E.g.,

d’ 2 0
L:ﬁ—FS, L:C*(0,7) — C°(0,m).

Note: This notation means Ly = y” + 3y, not vy + 3.
(b) Integral operators: For a suitable function G,
Gy(z) = / Gla,)f(t)dt,  G:C°0,m) — CO(0, 7).
0
This lecture focuses on the following ...
Example: Let w be a positive real number, not an integer. Define

sin(wz <) sin(w(zs — m))

Gy(z,t) =

w sin(wm) ’

where z. = min(xz,t), ~ = max(x,t). (It turns out that G:C°(0,7) — C?(0,7) in this
case.)

Remark: G(z,t) is like a matrix for the operator G. But there is no function that
can act as a matrix for L (or for I:C° — C°). Unfortunately, the official terminology for
the function G(z,t) is: the integral kernel of the operator G.

II. THE MAIN CLAIM: (G IS THE INVERSE OF L

For w > 0 and not integer, define
L= @ —+ w”.

Since solutions of differential equations are not unique until initial or boundary data are
imposed, in order for L to have an inverse (and still be a linear operator) we need to
restrict its domain to build in enough homogeneous boundary data: Let

D= {yeC%y(0) =0=y(m)}
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and henceforth consider L with D as domain.

Proposition: G is the inverse of L:
Ly=f <= y=Gf.
Verification: We have to show that

y(z) = / " Gl ) f(t) db

satisfies the differential equation y” + w?y = f and the boundary conditions y(0) = 0 =
y(m). The definition of G,, gives

(&) /Om sin(wtg)ssiirrll((c:)gra; —)) F(t) di + /7T sin(wzl;)ssiirrll((:}u;t) —)) () dt,
from which it is easy to see that the boundary conditions are satisfied.
Differentiate to get
- ST e
¥ sin(wt) cos(w(z — 7)) ™ cos(wx) sin(w(t — 7))
+/0 sin(wm) /) dt+/m sin(w) f(#)dt,
and the first two terms cancel. Therefore,
o= AT g e iteo)
L ¥ sin(wt)sin(w(z — 7)) . ™ sin(wz) sin(w(t — 7))
/0 sin(w) f(#)dt /x sin(w) J(t)dt.

This time the second two terms are precisely —w?y(z). Combining the first two terms by
a trig identity, we get

sin(wzr — wz + wm)

V(o) wyla) = TR ()

= f(x).

This calculation has verified that LG = I on the domain C(0,7) (i.e., f < y & f)-

To show that GL = I on the domain C2(0, ) (i.e., y L f S, y) we need to appeal to the
uniqueness theorem for solutions of ordinary differential equations.
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III. UNIQUENESS — OR THE LACK THEREOF

First consider a square matrix M. If A € R, the notation M — X\ means the same thing
as M — M. The inverse (M — \)~! exists if (and only if) det(M — \) # 0. In that case

the nonhomogeneous linear equation (M — \)U = b has exactly one solution for each b:
7= (M—X\""0.

If det(M — X\) = 0 (which happens for a finite list of roots of the polynomial), then there
is a vector @ such that M@, = A7, (called an eigenvector). In that case (M — \)7 = b
has infinitely many solutions if it has any at all, because to any particular solution we
could add any multiple of 7j. Our big point is that much the same thing happens with
the operator L.

Proposition:

(a) If w is a nonzero integer, then y” + w?y = f has many solutions satisfying y(0) = 0 =
y(m) if it has any such solutions at all.

(b) If w is not a nonzero integer, then this boundary-value problem has at most one
solution. (Then our previous proposition shows that there is exactly one, and hence
GL=1.)

Proof:

(a) There is an eigenvector: yo(x) = sin(wx) satisfies y” + w?y = 0, y(0) = 0 = y(7).

(b) If y; and yo are solutions, then y = y; —yo must satisfy y” +w?y = 0, y(0) = 0 = y(7).
The only solutions of the ODE and the first boundary condition are y(x) = C'sin(wx),

but then the second boundary condition, C'sin(wm) = 0, can’t be satisfied unless
C = 0; so y; and y, are the same.

IV. EXISTENCE — OR THE LACK THEREOF

We still have a loose end to tie up in the case that w? is an eigenvalue.
Proposition: When w is a nonzero integer:

(a) If [, f(z)sin(wz)dz = 0, then a solution of the boundary-value problem exists (but
isn’t unique).

(b) If [ f(z) sin(wz) da # 0, then no solution exists (satisfying both boundary conditions
as well as the ODE).

Compare the situation with a symmetric matrix M. (Note: G, (t,z) = Gy (z,1),
which is the analog of the symmetry of (M — X\)71.) In general, ker(M — \) comprises
the vectors orthogonal (perpendicular) to all the rows of M — A. When M is symmetric,
that’s the same as the rows orthogonal to all the columns of M — A — i.e., orthogonal
to the range of M — A. In other words: If (M — \)@, = 0, and if (M — A\)¥ = b has any
solutions ¥/, then b is orthogonal to ¥y (and conversely). The condition in our proposition
states that f is “perpendicular” to the eigenvector sin(wz).
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Sketch of proof of proposition: Solve the ODE y” + w?y = f by variation of
parameters:

y(z) = B(z) sin(wz) + A(z) cos(wx).

You get solvable first-order differential equations for A and B. The solution involves two
arbitrary constants of integration, Ag and By, which ought to to be found by imposing the

boundary conditions y(0) = 0 = y(mr). That results in a 2 x 2 linear system to be solved
for A() and B() .

(a) If w is not a nonzero integer, the system is nonsingular (the solution is unique) and
you discover the formula for the Green function (which I pulled out of a hat earlier).

(b) If w is a nonzero integer, the algebraic system is singular (rank 1); it is inconsistent if

the orthogonality integral is not zero, and it has nonunique solutions if the integral is
Zero.



