Math. 311 (Fulling) 23 Apl‘ﬂ 2004

Test C — Solutions

Name:

Calculators may be used for simple arithmetic operations only!

1. (20 pts.) Let 7 = (1,1,1,1), @ =(1,—1,2,—1).
(a) Find an orthonormal basis, {1, 4} , for the two-dimensional subspace of R? spanned
by ] and vy .

71> =1+141+1=4, so a normalized vector is

1
U1 = = —(1,1,1,1).
ul 2(’ 9 7)

Now (u1,72) = %(1 —1+2-1)= % , so the part of ¥ parallel to ¥ is
- NN 1
'1)2” =u1 <U1, 'UQ> = Z(l’ 1,1, 1)7
and hence the perpendicular part is
- L 1
Vo| = V2 — ’U2H = (1, —1,2, —1) - (— —y —) = 1(3, —5,7, —5)

Next we have
108

16
(Actually, I could have dropped the factor i , since it cancels out at the next step.) Therefore, the
normalized vector orthogonal to @ is

~ 1
T2 || = 5(9+ 25+ 49 +25) =

. Vg | 1 1
g = —2= = 3,—5,7,—5) = ——(3,—5,7, —5).
|F2.1 | \/108( ) 6\/§( )

(b) Give a formula for P, the orthogonal projection operator onto that subspace. (That
is, for any ¥ in R?, P(7) is the part of ¢ “parallel” to the plane span{q,vo}.)
This is just the next step in a Gram—Schmidt construction:

P(¥) =9 = @1 (@1, V) + G2(b2, V),

where @; and 42 were found in (a).

2

2. (30 pts.) In the (z,y) plane define new coordinates (u,v) by z = % , Y= uz
(a) Find the tangent vectors to the coordinate curves (as functions of u and v).

o _ (3 o (o
au_%’ ov \1/°

Note: Since these vectors are not orthogonal, there is no point in normalizing them to unit length.
The same remark applies to the vectors in (b).

+v.
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(b) Find the normal vectors to the coordinate “surfaces” (which are actually curves in this
two-dimensional case), as functions of v and v .

From (a), the Jacobian of the coordinate transformation and its inverse (by the 2 x 2 Cramer’s rule)

are
B 0 1 (1 0o\ (2 o0
=30 em 1) -(AY)

The standard normal vectors are the rows of J !:

VIS

Vu = (2,0), Vo= (-u,l).

(c) Evaluate [[ v2 dx dy over the region bounded by the curves v =0, u =2, v =1,
and u=1.
From J found in (b), we have detJ = % . So the integral is

2 o 1 o3
//v2detJdudv:/ du/ “0ldy == —
1 o 2 2 3

(d) Sketch the curves v =0 and u = 2, the region in (c), and the two sets of basis vectors
in (a) and (b) evaluated (and drawn) at the point (u,v) = (2,0). Clearly label the
vectors as Vu, % , etc.

1

1
, 6

The Cartesian coordinates of the point are

Yy
(x,y):(l,l) —lv =0
The w = constant curves are vertical lines; the oF i
v = constant curves are parabolas, y = 2 4v. Yo v 2{;
& Vu
o _ (3 oF _ (0 o >
ou \1)’ ov \1)° \ ,
x
Vu = (2,0), Vo= (-2,1). —u=2
T

Remark: Vu is orthogonal to % and Vv

is orthogonal to % , although the elements of

each basis are not orthogonal to each other.

3. (28 pts.) Find a quadrature rule (approximate integration formula) of the form

/0 T H) et ~ arf(0) + asf(1) + azf(10)

by requiring that the rule gives the exact answer for all f in P9 (the quadratic poly-
nomials). Use Cramer’s rule to solve for the coefficients, showing intermediate
steps. Useful information: fOOO the~tdt =nl.
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Requiring that the rule gives the right answer on the standard basis for P2 yields three equations,

o0
a1 +as + agz/ e tadt =1,
OOO
a2 + 10as = / te tdt = 1,
0
oo
as + 100az = / t2etat = 2.
0

The determinant of the system is

11 1
1 1
A=1]0 1 10 :’1 1000':90.
0 1 100
Therefore,
Pt 1 [l1 10 1 10 1
ar=ggt 1 100=55411 100l 7|2 100] ]2
2 1 100
1 9 1
= —(90—-80—1) = — = —
90( ) 90 10’
. (1)1110 1’1 10 80 8
2:— = — :—:—’
2 1
o 2 100] 9 00| 90 9
. 1 (1) 1 1 1'1 1 1
3= — = — e —
90|, | o 90f1 2[ 90

Thus, finally,
> g, 1 8 1

x - Yy
@ @)
number. (Note that B, =0.)

4. (22 pts.) Let B(z,y,2) =

1
1

|

7, where n is an arbitrary, fixed
n

(a) Calculate [f SE . dS when S is the piece of cylindrical surface defined in standard

cylindrical coordinates by

r=2, 0<0<m, 0<z<3.

(The result will be a function of n.)
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FEasy way: Note that B = rgini + Tginﬁ is perpendicular to the surface. The unit normal vector is
=21+ %). Thus
22 + y2 1

Bi=-5 T = an 1

which is constant on the cylinder. So we merely need to multiply by the area of S':

I

Hard way: Since x = 2cosf, y=2sinf, z = z, we have

//é-dgz//[Bmdydz-i-Bydzd:z:-l-Bzdmdy]
S

:// [2(;(;89(20089d9)dz+ 221:9dz(—2sin9)d9}

:4%1// [cos® 0db dz + sin® 0 df dz]

g 3
1 3
= 4"1—1/0\ d9/0 dz = 477471 .

(b) For what value(s) of n does there exist a vector potential A(x,y, z) such that B =V x A
(everywhere except possibly on the axis, x =y =0)?

We need
= 0 T 0 Y
= .B= — [ ——— i L A—
0=V Oz ((w2+y2)”)+8y ((w2+y2)”)

- 1 . 2na® N 1 oy
- (.’172 +y2)n (.732 +y2)n+1 (.732 +y2)n (.’172 +y2)n+1
222 + 292 — 2n(x? 4 4?)
(.’,132 +y2)n+1
2(1 —n)
(x2 + y2)n :

we
L

-d X 61 =

~ 92n—1 qn—1 -

(This calculation would be easier if we knew the formula for the divergence operator in cylindrical
coordinates, but we haven’t studied that.) So the needed condition is

n=1.

(This means that B = . On the axis, é, n, and V- B are all undefined. Since # points

outward, it is geometrically obvious that V - B should be regarded as infinite on the axis, much as
the divergence of the electric field of a point charge is infinite at the origin. In this case we have
“magnetic monopole charge” concentrated along the whole axis.)



