Test C - Solutions

1. (45 pts.) Solve the heat equation in a disk with insulated edge:

$$
\begin{gathered}
u=u(t, r, \theta), \quad t>0, \quad 0 \leq r<3, \quad 0 \leq \theta<2 \pi \\
\frac{\partial u}{\partial t}=\nabla^{2} u=\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}} \\
\frac{\partial u}{\partial r}(t, 3, \theta)=0 \\
u(0, r, \theta)=f(r, \theta)
\end{gathered}
$$

(Be as explicit as you can about the eigenvalues and eigenfunctions that arise. Sketching one of the eigenfunctions would be a good idea.)
In a word, we expect Bessel functions. But let's go through the steps of variable separation to get there.

Consider $u_{\text {sep }}(t, r, \theta)=T(t) R(r) \Theta(\tau)$. Then

$$
T^{\prime} R \Theta=T R^{\prime \prime} \theta+\frac{1}{r} T R^{\prime} \Theta+\frac{1}{r^{2}} T R \Theta^{\prime \prime}
$$

Thus

$$
\frac{T^{\prime}}{T}=-\omega^{2}=\frac{R^{\prime \prime}}{R}+\frac{1}{r} \frac{R^{\prime}}{R}+\frac{1}{r^{2}} \frac{\Theta^{\prime \prime}}{\Theta}
$$

(We should come back later and check that the separation constant is always negative, but for a heat equation we expect most of the modes, at least, to decay in time.) Thus $T(t)=e^{-\omega^{2} t}$.

Multiply the remaining equation by r^{2} to separate the variables, and introduce another separation constant:

$$
-\frac{\Theta^{\prime \prime}}{\Theta}=n^{2}=r^{2} \frac{R^{\prime \prime}}{R}+r \frac{R^{\prime}}{R}+\omega^{2} r^{2}
$$

The periodic boundary conditions on Θ ensure that n^{2} is really positive, and in fact that n is an integer. We have $\Theta(\theta)=e^{i \nu \theta}, \nu= \pm n$.

Now we're left with

$$
\frac{R^{\prime \prime}}{R}+\frac{1}{r} \frac{R^{\prime}}{R}+\left(\omega^{2}-\frac{n^{2}}{r^{2}}\right)=0
$$

a form of Bessel's equation. Let $z=\omega r$ and $Z(z)=R(r)$. Then $d / d r=\omega d / d z$, so

$$
Z^{\prime \prime}+\frac{1}{z} Z^{\prime}+\left(1-\frac{n^{2}}{z^{2}}\right) Z=0
$$

(where the primes now indicate differentiation with respect to z). The solutions of this are $J_{n}(z)$ and $Y_{n}(z)$, but because our region includes the origin and the solution must be smooth there, only J functions can appear. Thus $R(r)=J_{n}(\omega r)$. The boundary condition requires that $R^{\prime}(3)=0$. Therefore, 3ω must be a zero of the derivative of J_{n}. So, define $y_{n j}$ to be the j th zero: $J^{\prime}\left(y_{n j}\right)=0$. Then $\omega_{n j}=\frac{1}{3} y_{n j}$.

Now, could ω^{2} possibly be negative or 0 ? Extra credit to anybody who realized the following: For $n \neq 0$, the first zero of J_{n}^{\prime} is smaller than the first zero of J_{n}, so our first eigenfunction has no nodes and there is no way that there could be another eigenfunction with an even smaller eigenvalue. (Alternative argument: The eigenfunction would have to be r^{n} (for $\omega=0$) or the modified Bessel function $I_{n}(\kappa r)$ (for $\omega^{2}=-\kappa^{2}<0$), and the derivatives of these functions have no zeros.) But for $n=0$ the first zero of the derivative (other than the one at the origin) comes after the first derivative of J_{0} itself, so there probably is another eigenfunction with no nodes lurking somewhere. In fact, the eigenvalue ω^{2} is 0 , and the eigenfunction is the constant function 1 (leading to $u_{\text {sep }}(t, r, \theta)=$ $1 \times 1 \times 1=1$, and hence to the term A_{00} in the next equation).

We are now ready to superpose the normal mode solutions $u_{\text {sep }}$; this requires summing over n and j.

$$
u(t, r, \theta)=A_{00}+\sum_{\nu=-\infty}^{\infty} \sum_{j=1}^{\infty} A_{\nu j} e^{-\omega_{n j}^{2} t} J_{n}\left(\omega_{n j} r\right) e^{i \nu \theta}
$$

where $n=|\nu|$ and $\omega_{n j}=\frac{1}{3} y_{n j}$.
Finally we have to determine the coefficients from the initial data.

$$
f(r, \theta)=A_{00}+\sum_{\nu=-\infty}^{\infty} \sum_{j=1}^{\infty} A_{\nu j} J_{n}\left(\omega_{n j} r\right) e^{i \nu \theta} .
$$

We can solve this either in one step, by taking inner products with the two-dimensional eigenfunctions $\phi_{\nu j}=e^{i \nu \theta} J_{n}\left(\omega_{n j} r\right)$, or in two steps, doing an ordinary Fourier series calculation and then a FourierBessel series calculation. Thinking in the first way, one sees that

$$
A_{00}=\frac{1}{9 \pi} \int_{0}^{2 \pi} d \theta \int_{0}^{3} r d r f(r, \theta)
$$

(the 9π is the area of the disk, which is the square of the norm of the eigenfunction 1). Let's get the other constants the other way:

$$
\phi_{n}(r) \equiv \frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i \nu \theta} f(r, \theta) d \theta=\sum_{j=1}^{\infty} A_{\nu j} J_{n}\left(\omega_{n j} r\right),
$$

and then

$$
A_{\nu j}=\frac{\int_{0}^{3} f_{\nu}(r) J_{n}\left(\omega_{n j} r\right) r d r}{\int_{0}^{3} J_{n}\left(\omega_{n j} r\right)^{2} r d r}
$$

Whew!
2. (45 pts.) Let's study the wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}
$$

on the interval $0<x<1$ with the boundary conditions

$$
u(t, 0)=0, \quad \frac{\partial u}{\partial x}(t, 1)+\beta u(t, 1)=0
$$

where β is a positive constant.
(a) Separate variables, find the eigenfunctions, and indicate graphically how to find the eigenvalues. Give an approximate formula for the large eigenvalues.
Let $u_{\text {sep }}(t, x)=T(t) X(x)$. Then

$$
\frac{T^{\prime \prime}}{T}=-\omega^{2}=\frac{X^{\prime \prime}}{X}
$$

and X must satisfy $X^{\prime}(1)+\beta X(1)=0$ and $X(0)=0$. Thus $X(x)=\sin (\omega x)$ and $\omega \cos \omega+\beta \sin \omega=0$. The eigenvalue equation is most conveniently written

$$
\tan \omega=-\frac{\omega}{\beta},
$$

which can be graphed exactly as in the class notes. For large n the nth solution is slightly greater than $\left(n-\frac{1}{2}\right) \pi$. The positivity of β is the condition that excludes negative and zero solutions of ω^{2}.
(b) Solve the wave equation with initial data

$$
u(0, x)=f(x), \quad \frac{\partial u}{\partial t}(0, x)=g(x)
$$

Superpose the normal-mode solutions found above, noting that there are two solutions to the time equation:

$$
u(t, x)=\sum_{n=1}^{\infty}\left[a_{n} \sin \left(\omega_{n} x\right) \cos \left(\omega_{n} t\right)+b_{n} \sin \left(\omega_{n} x\right) \sin \left(\omega_{n} t\right)\right] .
$$

Then

$$
f(x)=\sum_{n=1}^{\infty} a_{n} \sin \left(\omega_{n} x\right), \quad g(x)=\sum_{n=1}^{\infty} b_{n} \omega_{n} \sin \left(\omega_{n} x\right) .
$$

Therefore,

$$
a_{n}=\frac{\int_{0}^{1} f(x) \sin \left(\omega_{n} x\right) d x}{\int_{0}^{1} \sin \left(\omega_{n} x\right)^{2} d x}, \quad b_{n}=\frac{\int_{0}^{1} g(x) \sin \left(\omega_{n} x\right) d x}{\omega_{n} \int_{0}^{1} \sin \left(\omega_{n} x\right)^{2} d x} .
$$

3. (10 pts.) Answer ONE of these. (Extra credit for both.) Relatively brief and qualitative answers are expected, not complete calculations.
(A) What would happen in Question 1 if the disk were replaced by an annulus (ring) with inner boundary $r=1$? Suppose that that edge is held at a constant temperature, $u(t, 1, \theta)=T$.
First of all, if $T \neq 0$ we need to subtract off a steady-state solution. It is easy to see that $v(t, r, \theta)=T$ is that solution, since it satisfies the heat equation and the other boundary condition.

Let $w=u-v$. Then w satisfies the same problem except that $u(t, 1, \theta)=0$ and $u(0, r, \theta)=$ $f(r, \theta)-T \equiv g(r, \theta)$. Now we could separate variables in the same way as before, but this time the radial function $R(r)=Z(\omega r)$ would have to satisfy $R(1)=0$ as well as $R^{\prime}(3)=0$. Since the origin is no longer in the region, there is no reason why Y_{n} can't appear. So $Z(z)=\alpha_{n}(\omega) J_{n}(z)+\beta_{n}(\omega) Y_{n}(z)$,
and the equations $Z^{\prime}(3 \omega)=0$ and $Z(\omega)=0$ determine both the ratio of α to β and the values of ω that can occur.
(B) What would happen in Question 2 if the constant β were negative? Useful information: The hyperbolic tangent function has a graph like this, with slope 1 at the origin and asymptote 1 at $+\infty$:

First, in the graphical solution the graph of $-\frac{\omega}{\beta}$ now slopes up instead of down, so the nth solution is slightly less than $\left(n+\frac{1}{2}\right) \pi$. (Actually, if $\beta<1$ this straight line also intersects the first branch of the tangent function, so there is a zeroth solution somewhere less than $\frac{\pi}{2}$.)

Second, it is now possible to have a negative solution for ω^{2}. In that case, setting $\kappa^{2}=-\omega^{2}$, we have $X(x)=\sinh (\kappa x)$ and

$$
\tanh \kappa=\frac{\kappa}{\beta} .
$$

If $\beta>1$, this equation has one solution, as you can see by adding the diagonal straight line to the graph above. (The accompanying function of t will also be a sinh or cosh, so this mode is an instability in the system - probably making this problem physically implausible!) If $\beta<1$ the negative eigenvalue does not exist, being replaced by the extra positive eigenvalue mentioned previously. If $\beta=1$, zero is an eigenvalue with eigenfunction $X(x)=x$.

