
Math. 312 17 November 2000

Test C – Solutions

1. (45 pts.) Solve the heat equation in a disk with insulated edge:

u = u(t, r, θ), t > 0, 0 ≤ r < 3, 0 ≤ θ < 2π,

∂u

∂t
= ∇2u =

∂2u

∂r2
+

1
r

∂u

∂r
+

1
r2

∂2u

∂θ2
,

∂u

∂r
(t, 3, θ) = 0,

u(0, r, θ) = f(r, θ).

(Be as explicit as you can about the eigenvalues and eigenfunctions that arise. Sketching
one of the eigenfunctions would be a good idea.)

In a word, we expect Bessel functions. But let’s go through the steps of variable separation to get
there.

Consider usep(t, r, θ) = T (t)R(r)Θ(τ). Then

T ′RΘ = TR′′θ +
1

r
TR′Θ +

1

r2
TRΘ′′.

Thus
T ′

T
= −ω2 =

R′′

R
+

1

r

R′

R
+

1

r2

Θ′′

Θ
.

(We should come back later and check that the separation constant is always negative, but for a heat

equation we expect most of the modes, at least, to decay in time.) Thus T (t) = e−ω2t.

Multiply the remaining equation by r2 to separate the variables, and introduce another separation
constant:

− Θ′′

Θ
= n2 = r2 R′′

R
+ r

R′

R
+ ω2r2.

The periodic boundary conditions on Θ ensure that n2 is really positive, and in fact that n is an

integer. We have Θ(θ) = eiνθ, ν = ±n.
Now we’re left with

R′′

R
+

1

r

R′

R
+

(
ω2 − n2

r2

)
= 0,

a form of Bessel’s equation. Let z = ωr and Z(z) = R(r). Then d/dr = ω d/dz, so

Z′′ + 1

z
Z′ +

(
1− n2

z2

)
Z = 0

(where the primes now indicate differentiation with respect to z). The solutions of this are Jn(z)
and Yn(z), but because our region includes the origin and the solution must be smooth there, only
J functions can appear. Thus R(r) = Jn(ωr). The boundary condition requires that R′(3) = 0.
Therefore, 3ω must be a zero of the derivative of Jn . So, define ynj to be the jth zero: J ′(ynj) = 0.

Then ωnj = 1
3ynj .
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Now, could ω2 possibly be negative or 0? Extra credit to anybody who realized the following:
For n 6= 0, the first zero of J ′n is smaller than the first zero of Jn , so our first eigenfunction has no
nodes and there is no way that there could be another eigenfunction with an even smaller eigenvalue.
(Alternative argument: The eigenfunction would have to be rn (for ω = 0) or the modified Bessel

function In(κr) (for ω2 = −κ2 < 0), and the derivatives of these functions have no zeros.) But for
n = 0 the first zero of the derivative (other than the one at the origin) comes after the first derivative
of J0 itself, so there probably is another eigenfunction with no nodes lurking somewhere. In fact,
the eigenvalue ω2 is 0, and the eigenfunction is the constant function 1 (leading to usep(t, r, θ) =
1× 1× 1 = 1, and hence to the term A00 in the next equation).

We are now ready to superpose the normal mode solutions usep ; this requires summing over n
and j.

u(t, r, θ) = A00 +

∞∑
ν=−∞

∞∑
j=1

Aνje
−ω2

njtJn(ωnjr)e
iνθ,

where n = |ν| and ωnj = 1
3ynj .

Finally we have to determine the coefficients from the initial data.

f(r, θ) = A00 +

∞∑
ν=−∞

∞∑
j=1

AνjJn(ωnjr)e
iνθ.

We can solve this either in one step, by taking inner products with the two-dimensional eigenfunctions

φνj = eiνθJn(ωnjr), or in two steps, doing an ordinary Fourier series calculation and then a Fourier-
Bessel series calculation. Thinking in the first way, one sees that

A00 =
1

9π

∫ 2π

0

dθ

∫ 3

0

r drf(r, θ)

(the 9π is the area of the disk, which is the square of the norm of the eigenfunction 1). Let’s get the
other constants the other way:

φn(r) ≡ 1

2π

∫ 2π

0

e−iνθf(r, θ) dθ =

∞∑
j=1

AνjJn(ωnjr),

and then

Aνj =

∫ 3

0
fν(r)Jn(ωnjr) r dr∫ 3

0
Jn(ωnjr)2 r dr

.

Whew!

2. (45 pts.) Let’s study the wave equation

∂2u

∂t2
=

∂2u

∂x2

on the interval 0 < x < 1 with the boundary conditions

u(t, 0) = 0,
∂u

∂x
(t, 1) + βu(t, 1) = 0,



312C-F00 Page 3

where β is a positive constant.
(a) Separate variables, find the eigenfunctions, and indicate graphically how to find the

eigenvalues. Give an approximate formula for the large eigenvalues.
Let usep(t, x) = T (t)X(x). Then

T ′′

T
= −ω2 =

X′′

X
,

and X must satisfy X ′(1)+βX(1) = 0 and X(0) = 0. Thus X(x) = sin(ωx) and ω cosω+β sin ω = 0.
The eigenvalue equation is most conveniently written

tan ω = − ω

β
,

which can be graphed exactly as in the class notes. For large n the nth solution is slightly greater
than (n− 1

2 )π. The positivity of β is the condition that excludes negative and zero solutions of ω2.

(b) Solve the wave equation with initial data

u(0, x) = f(x),
∂u

∂t
(0, x) = g(x).

Superpose the normal-mode solutions found above, noting that there are two solutions to the time
equation:

u(t, x) =

∞∑
n=1

[
an sin(ωnx) cos(ωnt) + bn sin(ωnx) sin(ωnt)

]
.

Then

f(x) =

∞∑
n=1

an sin(ωnx), g(x) =

∞∑
n=1

bnωn sin(ωnx).

Therefore,

an =

∫ 1

0
f(x) sin(ωnx) dx∫ 1

0
sin(ωnx)2 dx

, bn =

∫ 1

0
g(x) sin(ωnx) dx

ωn

∫ 1

0
sin(ωnx)2 dx

.

3. (10 pts.) Answer ONE of these. (Extra credit for both.) Relatively brief and qualitative
answers are expected, not complete calculations.

(A) What would happen in Question 1 if the disk were replaced by an annulus (ring) with
inner boundary r = 1? Suppose that that edge is held at a constant temperature,
u(t, 1, θ) = T .

First of all, if T 6= 0 we need to subtract off a steady-state solution. It is easy to see that v(t, r, θ) = T
is that solution, since it satisfies the heat equation and the other boundary condition.

Let w = u − v. Then w satisfies the same problem except that u(t, 1, θ) = 0 and u(0, r, θ) =
f(r, θ)− T ≡ g(r, θ). Now we could separate variables in the same way as before, but this time the
radial function R(r) = Z(ωr) would have to satisfy R(1) = 0 as well as R′(3) = 0. Since the origin is
no longer in the region, there is no reason why Yn can’t appear. So Z(z) = αn(ω)Jn(z)+βn(ω)Yn(z),
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and the equations Z′(3ω) = 0 and Z(ω) = 0 determine both the ratio of α to β and the values of ω
that can occur.

(B) What would happen in Question 2 if the constant β were negative? Useful information:
The hyperbolic tangent function has a graph like this, with slope 1 at the origin and
asymptote 1 at +∞:

z

tanh z

..................................................................................................................
.............................

...................
...............

..............
.............
............
...........
...........
...........
............
............
............
..............
...............

..................
...........................

.....................................................................................
................................

First, in the graphical solution the graph of − ω
β now slopes up instead of down, so the nth solution

is slightly less than (n + 1
2 )π. (Actually, if β < 1 this straight line also intersects the first branch of

the tangent function, so there is a zeroth solution somewhere less than π
2 .)

Second, it is now possible to have a negative solution for ω2. In that case, setting κ2 = −ω2, we
have X(x) = sinh(κx) and

tanhκ =
κ

β
.

If β > 1, this equation has one solution, as you can see by adding the diagonal straight line to
the graph above. (The accompanying function of t will also be a sinh or cosh, so this mode is
an instability in the system — probably making this problem physically implausible!) If β < 1
the negative eigenvalue does not exist, being replaced by the extra positive eigenvalue mentioned
previously. If β = 1, zero is an eigenvalue with eigenfunction X(x) = x.


