
Math. 412 13 December 2004

Final Examination – Solutions

Some possibly useful information

Parseval equation for the Fourier series on (−π, π):

If f(x) =
∞∑

n=−∞
cneinx, then

∫ π

−π
|f(x)|2 dx = 2π

∞∑
n=−∞

|cn|2.

Laplacian operator in polar coordinates:

∇2u =
∂2u

∂r2
+

1
r

∂u

∂r
+

1
r2

∂2u

∂θ2
.

Laplacian operator in spherical coordinates (“physicists’ notation”):

∇2u =
1
r2

∂

∂r

(
r2 ∂u

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1
r2 sin2 θ

∂2u

∂φ2
.

Spherical harmonics satisfy[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2

]
Y m
l (θ, φ) = −l(l + 1)Y m

l (θ, φ).

Bessel’s equation:

∂2Z

∂z2
+

1
z

∂Z

∂z
+

(
1− n2

z2

)
Z = 0 has solutions Jn(z) and Yn(z).

∂2Z

∂z2
+

2
z

∂Z

∂z
+
(

1− n(n + 1)
z2

)
Z = 0 has solutions jn(z) and yn(z).

Legendre’s equation:

1
sin θ

d

dθ

(
sin θ

dΘ
dθ

)
+ l(l + 1)Θ = 0 has a nice solution Pl(cos θ).

Famous Green function integrals:

1
2π

∫ ∞
−∞

eikx e−k2t dk =
1√
4πt

e−x2/4t,
1
2π

∫ ∞
−∞

eikx e−|k|y dk =
1
π

y

x2 + y2
.
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1. (40 pts.) Classify each equation as
(i) linear homogeneous, linear nonhomogeneous, or nonlinear,

and
(ii) elliptic, hyperbolic, or parabolic.

(a)
∂2u

∂x2
+

∂2u

∂y2
= e−(x2+y2)u3.

Nonlinear (because of the u3); elliptic.

(b)
∂u

∂t
=

∂2u

∂x2
+

e−t

x2 + 1
.

Linear nonhomogeneous; parabolic. (It is a heat equation with a source.)

(c)
∂2u

∂x2
− 2

∂2u

∂x ∂y
+

∂2u

∂y2
+

∂u

∂x
+

∂u

∂y
= 0.

Linear homogeneous; parabolic. Why is it parabolic? If we write the second-order terms as a∂x
2 +

b∂x∂y + c∂y
2, then the discriminant b2 − 4ac = (−2)2 − 4 · 1 = 0. Another way to say it is that

these leading terms are built out of a quadratic form with matrix

(
A B

B C

)
=

(
1 −1

−1 1

)
, which is

obviously singular, so one of its eigenvalues is 0. Therefore, after diagonalization the second derivative
with respect to one of the variables will not appear. (Indeed, if you define t = x + y and s = x − y,
a calculation shows that the equation transforms to

4
∂2u

∂s2
+ 2

∂u

∂t
= 0,

so it is a heat equation in disguise.)

(d)
1
c2

∂2u

∂t2
=

∂2u

∂x2
.

Linear homogeneous; hyperbolic (wave equation).

2. (40 pts.) Solve Laplace’s equation in a ball,

∇2u = 0 for 0 ≤ r < R,
∂u

∂r
(R, θ, φ) = f(θ, φ).

(As usual, you may jump right to the answer if you know it.)
I will write the solution in terms of spherical harmonics. See Haberman, Sec. 7.10.6, for solution
of a very similar problem (with different boundary condition) in terms of trig functions, Legendre
functions, and θ ↔ φ.

After greater or lesser ado, you arrive at the general solution of Laplace’s equation inside a ball,

u(r, θ, φ) =

∞∑
l=0

l∑
m=−l

ClmrlY m
l (θ, φ).
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Thus

∂u

∂r
(R, θ, φ) =

∞∑
l=0

l∑
m=−l

Clm lRl−1Y m
l (θ, φ).

By definition, the spherical harmonics are orthonormal (on the unit sphere, so there’s no extra factor

R2), so

Clm =
1

lRl−1

∫ 2π

0

dφ

∫ π

0

sin θ dθ Y m
l (θ, φ)∗f(θ, φ).

(Units check: Clmrl = pure number ×R(r/R)l [f ], so [u] = [length] [∂u/∂r], as it should be.)
If l = 0 this formula has a problem; but that is just our old friend the solvability condition for

the Neumann problem. For a solution to exist, one must have

∫ 2π

0

dφ

∫ π

0

sin θ dθ Y 0
0 (θ, φ)∗f(θ, φ) =

1√
4π

∫ 2π

0

dφ

∫ π

0

sin θ dθ f(θ, φ) = 0.

The solution is then nonunique, since any constant (Y 0
0 term) could be added without spoiling the

boundary condition.

3. (40 pts.) By the method of your choice, solve the Laplace equation in a quadrant,

∂2u

∂x2
+

∂2u

∂y2
= 0 for 0 < x < ∞, 0 < y < ∞,

with boundary conditions

∂u

∂x
(0, y) = 0, u(x, 0) = f(x).

(Require the solution to be bounded.)
Method 1: The Green function for Laplace’s equation in the upper half plane is

G0(x, z, y) =
1

π

y

(x− z)2 + y2

(see “Famous Green function integrals” on first page of test). By the method of images, the Green
function for the quadrant with Neumann boundary condition is

G(x, z, y) = G0(x, z, y) + G0(x,−z, y),

and so the solution of our problem is

u(x, y) =

∫ ∞

0

G(x, z, y)f(z)dz.

Variant of Method 1: The solution is the restriction to the quadrant of the solution in the whole
upper half plane with boundary data equal to the even extension of f . Use G0 to solve that problem.
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Method 2: Separate variables as u = X(x)Y (y).

− X ′′

X
=

Y ′′

Y
= λ.

We must have X ′(0) = 0, which (together with boundedness) dictates λ = k2 > 0, X(x) = cos(kx),

Y (y) = e−ky. Superposing,

u(x, y) =

∫ ∞

0

A(k) cos(kx)e−ky dk.

Then

f(x) =

∫ ∞

0

A(k) cos(kx) dk, A(k) =
2

π

∫ ∞

0

f(x) cos(kx) dx.

(Substituting A into u and evaluating the Famous Green function integral, you can reduce this answer
to the result of Method 1, but that was not required.)

Variant of Method 2: From the homogeneous boundary condition, recognize immediately that
a Fourier cosine transform with respect to x is called for. Transform both the differential equation
and the nonhomogeneous boundary condition, solve for the cosine transform of u, and invert the
transform.

4. (40 pts.) (You don’t have to finish (a) to do the later parts!)

(a) I claim that the (“full”) Fourier series of f(x) = x2 on the interval (−π, π) is

f(x) =
∞∑

n=−∞
cneinx with c0 =

π2

3
, cn =

2(−1)n

n2
for n 6= 0.

Write the coefficient formula, calculate c0 , and describe in words how you would
calculate cn if you had time.

The coefficient formula is

cn =
1

2π

∫ π

−π

e−inxx2 dx.

Thus

c0 =
1

2π

x3

3

∣∣∣∣
π

−π

=
2π3

2π · 3 .

The other coefficients require more work than we have time for:
Method 1: The indefinite integral must have the form

∫
e−inxx2 dx = e−inx(Ax2 + Bx + C).

Differentiate, get equations to solve for A, B, and C. (It turns out that only B contributes to the
definite integral.)

Method 2: Integrate by parts twice.
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(b) Discuss the convergence of the series and sketch the limit function over the interval
−2π < x < 4π.

The series converges to the periodic extension of f to the whole real line. The extension is continuous
as well as piecewise smooth, so the convergence is uniform. Except for the range of the variable, the
graph should look like the scalloped curve on p. 20 of the notes (in the paragraph headed “Caution”).

(c) Use (a) to evaluate
∞∑

n=1

1
n4

.

To get n−4 from this series, we must be using Parseval’s equation (see top of first page of test).

1

2π

∫ π

−π

|f(x)|2 dx =
1

10π
x5
∣∣∣π
−π

=
π4

5
.

∞∑
n=−∞

|cn|2 =
π4

9
+ 2

∞∑
n=1

4

n4
.

Equate these and solve for the desired sum:

∞∑
n=1

1

n4
=

1

8

(
π4

5
− π4

9

)
=

π4

90
.

(d) Evaluate (a) at a particular value of x to show that
∞∑

n=1

(−1)n

n2
= − π2

12
.

Try x = 0:

0 =

∞∑
n=−∞

cn = c0 + 2

∞∑
n=1

cn =
π2

3
+ 4

∞∑
n=1

(−1)n

n2
.

Solve for the desired sum: ∞∑
n=1

(−1)n

n2
= − π2

12
.

5. (40 pts.) Let V (r) be a continuous function (independent of θ) and consider the eigenvalue
problem in polar coordinates

−∇2u + V (r)u = λu for 1 < r < 2, 0 < θ ≤ 2π,

periodic boundary conditions in θ,

u(1, θ) = 0 = u(2, θ).

(a) Solve the equation by separation of variables, discovering a new class of special func-
tions of r (which you may name after yourself). Say what you can on the basis of
general principles about those functions and about the eigenvalues λ.
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Try a separated solution u = R(r)Θ(θ). We have

−R′′Θ− 1

r
R′Θ− 1

r2
RΘ′′ + V RΘ = λRΘ.

Rearranging,

− Θ′′

Θ
= n2 = r2 R′′

R
+ r

R′

R
+ (λ− V )r2,

where we know that n is an integer because of the periodic boundary conditions. (We can write the

angular part of the solutions either as einθ with −∞ < n < ∞ or as sin(nθ) (1 ≤ n < ∞) and cos(nθ)
(0 ≤ n < ∞). Since the emphasis in this problem is on the radial functions, I’ll say no more about
the angular ones.)

Rearranging once more, we get

R′′ + 1

r
R′ +

(
λ− V (r)− n2

r2

)
R = 0,

subject to the boundary conditions R(1) = 0 = R(2). This is a classic regular Sturm–Liouville
problem. There will be infinitely many eigenvalues λn (λ1 < λ2 < · · ·), all real, and the corresponding
eigenfunctions Rn(r) will be orthogonal with respect to the integration element r dr. Rn has n − 1
nodes inside the interval. The eigenfunctions form a complete set (a basis for the Hilbert space

L2(1, 2) with respect to “convergence in the mean”).

(b) State a condition on V (r) that will guarantee that all the eigenvalues are positive.
V (r) ≥ 0 for all r ∈ (1, 2) will do. V (r) ≥ −n2/r2 is even better (less restrictive). Proof (“Rayleigh
quotient”): Assuming that you have a solution, multiply the equation by R and integrate:

λ

∫ 2

1

R(r)2 r dr = −
∫ 2

1

r dr

[
R′′ + 1

r
R′ −

(
V (r) +

n2

r2

)
R

]
R(r).

Integrate by parts in the first term on the right:

λ

∫ 2

1

R(r)2 r dr = +

∫ 2

1

r dr

[
R′(r)2 +

(
V (r) +

n2

r2

)
R(r)2

]
.

(The endpoint terms vanished because of the boundary conditions, and the R′R terms cancelled.) It
is clear that all the terms are positive with the possible exception of the one containing V (r) (and

the n2 term if n = 0). If V is nonnegative (or even if it’s occasionally negative but so small that it
doesn’t outweigh the other terms), then λ will be positive.

(c) Be more specific about what happens in the case that V (r) = 0 for all r.
To simplify notation I assume n ≥ 0. R(r) is some linear combination of the Bessel functions Jn(ωr)

and Yn(ωr), where ω =
√

λ. The allowed values of ω are those that allow some such combination to
vanish at both r = 1 and r = 2. They are the solutions of∣∣∣∣ Jn(ω) Yn(ω)

Jn(2ω) Yn(2ω)

∣∣∣∣ = 0.

Then R(r) = AJn(ωr) + BYn(ωr) where

A

B
= − Yn(ω)

Jn(ω)
= − Y2n(ω)

J2n(ω)
.

(It might happen that Jn(ω) = 0 = J2n(ω), in which case B = 0.)


