
Math. 412 (Fulling) 22 October 2004

Test B – Solutions

Calculators may be used for simple arithmetic operations only!

Possibly useful integrals:

1
2π

∫ ∞

−∞
eikx e−k2t dk =

1√
4πt

e−x2/4t ,
1
2π

∫ ∞

−∞
eikx e−|k|y dk =

1
π

y

x2 + y2
.

1. (35 pts.) Solve
∂u

∂t
=

∂2u

∂x2
(0 < x <∞, 0 < t <∞),

u(0, t) = T (a positive constant), u(x, 0) = f(x).

(Require the solution to be bounded as x→ +∞ .) Extra credit can be obtained by

(A) simplifying the solution to a form involving a Green function;

(B) making a wise comment upon the most natural condition (mathematically) to impose
on f as x→ +∞ .

There are two nonhomogeneous boundary conditions, so we expect to split the solution into a sum
of two solutions of the PDE. The time-dependent boundary function is a constant, which suggests
looking for a steady-state solution as the first step. Such a solution must satisfy

d2v

dx2
= 0, v(0) = T.

Therefore, v(x) = Ax+B ; the boundary condition forces B = T , and boundedness requires A = 0 .
Now the other part of the solution, w = u− v , satisfies

∂w

∂t
=

∂2w

∂x2
, w(0, t) = 0, w(x, 0) = f(x)− T ≡ g(x).

The data on the infinite interval (0,∞) dictates a Fourier transform of some kind, and the boundary
condition at x = 0 tells us that this should be a sine transform. In other words, the separated
solutions will be of the form sin(kx)T (t) , and then the PDE says sin(kx)T ′(t) = −k2 sin(kx)T (t) ,

hence T (t) = e−k2t . (Of course, this T is not the same one as in the temperature boundary
condition.) So we write the solution as

w(x, t) =

∫ ∞

0

B(k) sin(kx)e−k2t dk.

Then

g(x) =

∫ ∞

0

B(k) sin(kx)dk,
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so

B(k) =
2

π

∫ ∞

0

g(y) sin(ky) dy.

In summary,

u(x, t) =

∫ ∞

0

B(k) sin(kx)e−k2t dk + T

where

B(k) =
2

π

∫ ∞

0

(
f(y)− T

)
sin(ky) dy.

(A): The Green function will be relevant only to the w part of the solution:

w(x, t) =

∫ ∞

0

G(x, y, t)g(y) dy.

Substituting the B formula into the previous w formula, we get

G(x, y, t) =
2

π

∫ ∞

0

sin(kx) sin(ky)e−k2t dk.

No need to stop there:

G(x, y, t) =
2

π

1

(2i)2

∫ ∞

0

[
eikx+iky − eikx−iky − e−ikx+iky + e−ikx−iky

]
e−k2t dk

= − 1

2π

∫ ∞

−∞

[
eik(x+y)−k2t − eik(x−y)−k2t

]
dk

=
1√
4πt

[
e−(x−y)2/4t − e−(x+y)2/4t

]
.

This Green function for the Dirichlet heat problem on the half line is also obtained instantly by the
method of images from the standard Green function for the heat problem on the whole line.

(B): To have a nice Fourier sine transform B , we would expect g to be in a nice function class,

such as L2 (square-integrable). Thus if f approaches a limit at all, it should approach T (not 0 ).
This conclusion may seem surprising, since physically one might be more comfortable with f → 0 . It
is an indication that this idealized problem is slightly singular; how long would it take for an infinitely
long bar to come to thermal equilibrium with a heat source at one end? (Closer examination shows
that if f(x) → 0 as x → ∞ , then B(k) has a singularity proportional to 1/k at the origin (like
the Fourier transform of the Heaviside step function). This is something we could live with in the
formula for the inverse sine transform. Also, the Green-function formula for w still converges, even
if g(y) → T 6= 0 .)
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2. (30 pts.)

(a) Construct a Green function to solve the ODE problem

d2y

dx2
+ 4y = f(x), y(0) = 0,

dy

dx
(L) = 0.

(That is, find G so that y(x) =
∫ L

0
G(x, z)f(z) dz .)

The Green function should satisfy

∂2G

∂x2
+ 4G = δ(x− z), G(0, z) = 0,

∂G

∂x
(L, z) = 0.

Therefore,

G(x, z) =

{
A sin(2x) for x < z,

B cos[2(x− L)] for x > z.

(We have already built the boundary conditions into the solution, so we have only two remaining
constants to find, instead of four.) Now require that the solution be continuous,

G(z, z) = A sin(2z) = B cos[2(z − L)],

and that it satisfy the proper jump condition,

1 =
∂G

∂x

∣∣∣
x=z+ε

− ∂G

∂x

∣∣∣
x=z−ε

= −2B sin[2(z − L)]− 2A cos(2z).

Rewrite the system neatly:
A sin(2z)−B cos[2(z − L)] = 0,

A cos(2z) + B sin[2(z − L)] = − 1
2 .

Such a system is most easily solved by Cramer’s rule. The basic determinant is

∆ =

∣∣∣∣ sin(2z) − cos[2(z − L)]

cos(2z) sin[2(z − L)]

∣∣∣∣ = sin(2z) sin[2(z − L)] + cos(2z) cos[2(z − L)] = cos(2L).

Then

A =
1

∆

∣∣∣∣ 0 − cos[2(z − L)]

− 1
2 sin[2(z − L)]

∣∣∣∣ = − cos[2(z − L)]

2 cos(2L)
,

B =
1

∆

∣∣∣∣ sin(2z) 0

cos(2z) − 1
2

∣∣∣∣ = − sin(2z)

2 cos(2L)
.

So, finally,

G(x, z) =

{− sin(2x) cos[2(z−L)]
2 cos(2L)

for x < z,

− cos[2(x−L)] sin(2z)
2 cos(2L)

for x > z.
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(b) For what values of L is this problem impossible? Explain why those values are special.
The algebraic system has no solution when ∆ = 0 , which occurs if 2L =

(
n + 1

2

)
π (in other

words, L is an odd multiple of π/4 ). These are the lengths for which the homogeneous differential
equation has nontrivial solutions, so that the solution of the nonhomogeneous equation is not unique
(and may not even exist for some f s). That is, for such L the two endpoint solutions, sin(2x)
and cos[2(x − L)] , are equal up to a constant factor, so that sin(2x) is an eigenfunction of the
homogeneous problem ( X′′ = λX , X(0) = 0 , X′(L) = 0 ) with eigenvalue λ = −4 .

3. (35 pts.) Solve
∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
(0 < x < K, 0 < y < L),

u(0, y, t) = 0 = u(K, y, t),
∂u

∂y
(x, 0, t) = 0 =

∂u

∂y
(x, L, t),

u(x, y, 0) = f(x, y).

Feel free to skip routine steps if you are sure you know the answer.
This is very similar to a problem worked out in the class notes.


