
Math. 412 (Fulling) 19 November 2004

Test C – Solutions

Calculators may be used for simple arithmetic operations only!

1. (55 pts.)

(a) Solve Laplace’s equation, ∂2u
∂x2 + ∂2u

∂y2 = 0 , in a square, 0 < x < π and 0 < y < π ,

with the boundary conditions

u(0, y) = 0 , u(π, y) = f(y) , u(x, 0) = 0 ,
∂u

∂y
(x, π) + 2u(x, π) = 0 .

In the process you will discover a sequence of eigenfunctions and eigenvalues, which you
should name {φn(y)} and {ωn

2} . Describe the ωn qualitatively but don’t expect
to find their exact numerical values. (Also, don’t bother to evaluate the normalization
integral.)

Look for separated solutions X(x)Y (y) (postponing the nonhomogeneous BC).

X ′′

X
= −Y ′′

Y
= ω2.

Assuming for the moment that ω2 > 0 , the two problems are

X′′ = ω2X, X(0) = 0 — hence X(x) = sinh(ωx) ,

Y ′′ = −ω2Y, Y (0) = 0, Y ′(π) + 2Y (π) = 0 .

From this we get

Y (y) = sin(ωy), −1

2
ω = tan(πω) .

Graphing the two sides of the eigenvalue equation (for positive ω ), we see that there are intersections

on each branch of the tangent function except the first. That is, there are eigenvalues ωn
2 , n =

1, 2, . . . , with ωn slightly greater than (n + 1
2 )π . Let’s write Yn(y) = sin(ωny) and φn(y) for the

normalized eigenfunctions, Yn(y)/‖Yn‖ . (Here

‖Yn‖2 =

∫ π

0

Yn(y)2 dy ,

and you were not expected to evaluate this integral.)
The general theorem about Sturm–Liouville problems (with +2 in the Robin boundary condition

at the top end of the interval) guarantees that negative and zero eigenvalues don’t occur. This can
also be shown directly.

We can now write the solution of the original problem as

u(x, y) =

∞∑
n=1

cnφn(y) sinh(ωnx)
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and impose the boundary data

f(y) =

∞∑
n=1

cnφn(y) sinh(ωnπ) .

Since the basis functions are normalized, we can calculate immediately

cn =

∫ π

0
φn(y)f(y) dy

sinh(ωnπ)
.

Alternatively, in terms of the Yn you have

u(x, y) =

∞∑
n=1

CnYn(y) sinh(ωnx)

and

Cn =

∫ π

0
Yn(y)f(y) dy

‖Yn‖2 sinh(ωnπ)
.

(b) Express the solution in terms of a Green function, so that

u(x, y) =
∫ π

0
G(x, y, z)f(z) dz,

with a formula for G in terms of the eigenfunctions φn .
Write the cn integral with the variable of integration called z instead of y , then insert into the
formula for u . You arrive at

G(x, y, z) =

∞∑
n=1

sinh(ωnx)

sinh(ωnπ)
φn(y)φn(z) .

If you use Y instead of φ , you need to divide by ‖Yn‖2 .

(c) What are the orthogonality and completeness relations satisfied by the eigenfunctions?
(You can answer (c) on abstract grounds even if you have trouble with (a).)∫ π

0

φn(y)φm(y) dy = δnm ,

∞∑
n=1

φn(y)φn(z) = δ(y − z) .

(Since the eigenfunctions are real, no complex conjugations are necessary, but it doesn’t hurt to put
them in.) In terms of Y ,

∫ π

0

Yn(y)Ym(y) dy = δnm‖Yn‖2 ,

∞∑
n=1

Yn(y)Yn(z)

‖Yn‖2 = δ(y − z) .

A check: Set x = π in the Green function formula:

δ(y − z) = G(π, y, z) =

∞∑
n=1

φn(y)φn(z) .
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2. (45 pts.) Solve the wave equation for a circular (but warped) drum of radius 5 (i.e.,
0 ≤ r < 5 and 0 ≤ θ < 2π ) with boundary data

u(5, θ, t) = sin θ

and initial data
u(r, θ, 0) = f(r, θ) ,

∂u

∂t
(r, θ, 0) = 0 .

The equation is
∂2u

∂t2
=

∂2u

∂r2
+

1
r

∂u

∂r
+

1
r2

∂2u

∂θ2
.

You may skip routine steps if you’re sure you know the form of the answer. Hint: First
find a steady-state solution.

Since there are two nonhomogeneous boundary conditions, involving boundaries of different types,
we need to split the problem. The lack of t dependence in the first BC suggests solving first the
steady-state problem,

∂2v

∂r2
+

1

r

∂v

∂r
+

1

r2

∂2v

∂θ2
= 0 , v(5, θ, t) = sin θ .

The solutions of Laplace’s equation inside a disk are known to be superpositions of the modes

rn sin(nθ) and rn cos(nθ) (or rne±inθ ). In the present case we see that we need only one term,

not a whole Fourier series (two terms if the e±inθ modes are used):

v(r, θ) =
r

5
sin θ .

Now let w = u− v . It must satisfy

∂2w

∂t2
=

∂2w

∂r2
+

1

r

∂w

∂r
+

1

r2

∂2w

∂θ2
,

w(5, θ, t) = 0, w(r, θ, 0) = h(r, θ) ≡ f(r, θ)− v(r, θ) ,
∂w

∂t
(r, θ, 0) = 0 .

This time the normal modes will be Jn(ωr)e±inθ . The boundary condition becomes Jn(5ω) = 0 ,

which requires that ω = 1
5znj , znj being the jth zero of the Bessel function Jn . The time

dependence is cos(ωt) since ∂u
∂t must vanish at t = 0 . All together, then,

w(r, θ, t) =

∞∑
ν=−∞

∞∑
j=1

cνje
iνθJ|ν|(z|ν|j/5) cos(z|ν|jt/5) .

Finally,

h(r, θ) =

∞∑
ν=−∞

∞∑
j=1

cνje
iνθJ|ν|(z|ν|j/5) ,

whence

cνj =

∫ 2π

0

∫ 5

0
e−iνθJ|ν|(z|ν|j/5)h(r, θ) r dr dθ

2π
∫ 5

0
J|ν|(z|ν|j/5)2 r dr

.


