Math. 412 (Fulling) 29 September 2005
Test A — Solutions
Calculators may be used for simple arithmetic operations only!

1. (15 pts.) Classify each equation as linear homogeneous, linear nonhomogeneous, or non-

linear.
9%y ou 2
(a) 02 + (%) = 3 cos(2z)
nonlinear
9%y 0%
b) —&——54+16u=0
b Bz ~gpz T 16u
linear homogeneous
0%y 0%u

linear nonhomogeneous

2. (35 pts.) Let f(x)=a for —n <z <.

(a) Find the (“full”) Fourier series for f (with [—m, 7| as the basic interval).

(e ]
flx) = Z cne'™™,
n=-—oo
If n#0,
1 s
Cnp = — e " xdx
2T -
11 l —inz | /7T —inx }
=— —|e T — e dx
2T —in —r o
_ Q;-n (ﬂ_efinﬂ' + et _ 0)
1 (="
= — 9 = .
5 m cos(nr) -
If n=0,
1 s
o= — zdx = 0.
2 -
Thus

This can also be written
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(b) Over the interval [—10,10], sketch the function to which the series converges.
f
/

=37 2T -7 ™ s 3T

/

(c) Sketch a typical partial sum of the series (say the one with |n| < 8). The sketch is
not expected to be precise, just qualitative.

3
2

(d) Does the series converge
(i) uniformly?
No. The periodic extension is discontinuous at * = N7 (N odd).

(ii) pointwise?
Yes. The periodic extension is piecewise smooth.

(iii) in the mean?
Yes. The function is bounded and therefore obviously square-integrable over the finite interval.
Alternatively, since |cn\2 x n~ 2, the Parseval sum converges.

3. (40 pts.) Consider the wave equation on an interval,

O%u _ 0% 0<z< <t < o)
—_— = —5 X s —o0 (0.9)
ot 9x? ’ ’

with boundary conditions
u(0,t) =0 = u(m,t)

and initial conditions

u(z,0) = f(z),
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(a) Describe in words and sketches (and possibly a few equations) what the solution is

2
like, assuming that f(x) is a sharply peaked function such as f(z) = e—10(z—1)%

The pulse will split into two halves, which move to left and right without changing shape. When a
pulse hits an end of the interval, it reflects upside down. (For sketches see the similar problem in the
Test A Solutions for Fall 2000. In that case the boundary condition was different, so the pulses did
not invert upon reflection.) The d’Alembert formula for the solution is

u(z,t) = %[f(a: —t) + f(z +t)],
where f is the odd periodic extension of the original f.

(b) Now assume instead that f(z) =sinz — % sin(3z) (which is not very sharply peaked).
Find a formula for u(z,t) as a finite Fourier series. (There are several ways to do this,
some quicker than others. Think before you launch a massive calculation.)

Method 1: Since f is already odd and 27 -periodic, we can use the d’Alembert formula immediately:
u(z,t) = %[sin(aj —t) +sin(x +t)] — %[sin(B(w —t)) +sin(3(z + 1))].
Now use trig identities to rearrange this into the Fourier form,
u(z,t) = sinzcost — % sin(3z) cos(3t).

Method 2: Each term in f has the form appropriate to a normal mode for the wave equation
on [0,7] with Dirichlet boundary conditions, sin(nz)[acos(nt)v + bsin(nt)]. Since the initial time
derivative is zero, the cosine terms don’t appear. Thus

u(z,t) = sinzcost — % sin(3z) cos(3t).

Method 3: Go through the whole process of separation of variables. (But I hope you didn’t.)

4. (35 pts.) Solve Laplace’s equation in a square,

o

@+ay2=0, O<z<L, O<y<lL,

with the boundary conditions

ou ou
U(O,y):T, u(Lvy):ov 8_y(x70):07 8_y(x7L) :f(.fE)

Note that f(z) is an arbitrary function and 7" is a (nonzero) constant.

There are two nonhomogeneous conditions (affecting different variables), so we should construct the
solution as a sum of two terms.

Best method: Since T does not depend on y, we can find a solution of the PDE and the
xz-boundary conditions that is independent of y . (This is like a steady-state solution, although y is
not a time coordinate.) We have

V'(x)=0, V(0)=T, V(L)=0,
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hence
V(z)=Az+B, B=T, AL+ B=0,
S0 T
V(z) = 7 (L —x).
Now let w =wu — V' . It must satisfy
?w 9w

ow ow
32 T =0 w0y =0, wly =0 Fo@0)=0 Z(zL)=/f().

(We don’t need to subtract V from f, because f is the y derivative in this problem.) Standard
separation of variables, wsep(x,y) = X (z)Y (y), leads to

X"(z)+k*X(z) =0, X(0)=0=X(L), Y'(y)—kY(y)=0, Y'(0)=0.

As usual,
k - kn

Xn(x) = sin(knx).

We can take Yy (y) = cosh(kny) .
Superposing, we get the general solution

u(z, t) = Z by sin(knz) cosh(kny).

n=0

This is required to satisfy the remaining boundary condition,

flx) = Z brkn sin(kpx) sinh(kny).

n=1
Therefore,
9 L
bnkn sinh(kny) = 7 / f(x)sin(knx) dz
0

determines by, . Finally, u(z,t) =V (z) + w(z,t) .
Alternative method: Write u(x,t) = v(z,t) + w(x,t), where
9*v 0% v ov

@ + 8—y2 = 0, U(O,y) = T, v(L,y) = 0, ay (JJ, 0) = O, 8—y(l‘, L) = 0,

and w satisfies the complementary equations, which turn out to be the same as in the other method.
Separation of variables in the v problem yields

X"(@) = K°X(x) =0, X(L)=0, Y'(y)+kY(y) =0, Y'(0)=0=Y'(L).
Thus
sinh[kn(L — )] ifn #0,

L—=x if n=0.

k=kn= T Yn(y) = cos(kny), Xn(z)x {
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The superposition is

It must satisfy

Thus if n#0

For n =0 we have

SO

oo
v(z,y) = ao(L Z an cos(kny) sinh[ky (L —

oo
T =aoL+ Z an cos(kny) sinh(kynL).

n=1
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