
The Wave Equation

This introductory example will have three parts.*

1. I will show how a particular, simple partial differential equation (PDE) arises
in a physical problem.

2. We’ll look at its solutions, which happen to be unusually easy to find in this
case.

3. We’ll solve the equation again by separation of variables, the central theme of
this course, and see how Fourier series arise.

The wave equation in two variables (one space, one time) is

∂2u

∂t2
= c2 ∂2u

∂x2
,

where c is a constant, which turns out to be the speed of the waves described by
the equation.

Most textbooks derive the wave equation for a vibrating string (e.g., Haber-
man, Chap. 4). It arises in many other contexts — for example, light waves (the
electromagnetic field). For variety, I shall look at the case of sound waves (motion
in a gas).

Sound waves

Reference: Feynman Lectures in Physics, Vol. 1, Chap. 47.

We assume that the gas moves back and forth in one dimension only (the x
direction). If there is no sound, then each bit of gas is at rest at some place (x, y, z).
There is a uniform equilibrium density ρ0 (mass per unit volume) and pressure P0

(force per unit area). Now suppose the gas moves; all gas in the layer at x moves
the same distance, X(x), but gas in other layers move by different distances. More
precisely, at each time t the layer originally at x is displaced to x + X(x, t). There
it experiences a new density and pressure, called

ρ = ρ0 + ρ1(x, t), P = P0 + P1(x, t).

* Simultaneously, students should be reading about another introductory example, the
heat equation, in Chapters 1 and 2 of Haberman’s book. (See also Appendix A of these
notes.)
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Given this scenario, Newton’s laws imply a PDE governing the motion of the
gas. The input to the argument is three physical principles, which will be translated
into three equations that will imply the wave equation.

I. The motion of the gas changes the density. Take a slab of thickness ∆x
in the gas at rest. The total amount of gas in the slab (measured by mass) is

ρ0 × volume = ρ0 ∆x× area.

We can consider a patch with area equal to 1. In the moving gas at time t,
this same gas finds itself in a new volume (area times thickness)

(area× ) {[x + ∆x + X(x + ∆x, t)]− [x + X(x, t)]} ≡ ∆xnew .

(Cancel x.) Thus ρ0∆x = ρ∆xnew . If ∆x is small, we have

X(x + ∆x, t)−X(x, t) ≈ ∂X

∂x
·∆x;

ρ0∆x = ρ

(
∆x +

∂X

∂x
∆x

)
.

(Cancel ∆x.) So

ρ0 = (ρ0 + ρ1)
∂X

∂x
+ ρ0 + ρ1 .

Since ρ1 � ρ0 , we can replace ρ0 + ρ1 by ρ0 in its first occurrence — but not
the second, where the ρ0 is cancelled, leaving ρ1 as the most important term.
Therefore, we have arrived (essentially by geometry) at

ρ1 = −ρ0

∂X

∂x
. (I)

2



II. The change in density corresponds to a change in pressure. (If you
push on a gas, it pushes back, as we know from feeling balloons.) Therefore,
P = f(ρ), where f is some increasing function.

P0 + P1 = f(ρ0 + ρ1) ≈ f(ρ0) + ρ1f
′(ρ0)

since ρ1 is small. (Cancel P0 .) Now f ′(ρ0) is greater than 0; call it c2:

P1 = c2ρ1 . (II)

III. Pressure inequalities generate gas motion. The force on our slab (mea-
sured positive to the right) equals the pressure acting on the left side of the
slab minus the pressure acting on the right side (times the area, which we set
to 1). But this force is equal to mass times acceleration, or

(ρ0∆x)
∂2X

∂t2
.

ρ0∆x
∂2X

∂t2
= P (x, t)− P (x + ∆x, t) ≈ − ∂P

∂x
∆x.

(Cancel ∆x.) But ∂P0/∂x = 0. So

ρ0

∂2X

∂t2
= − ∂P1

∂x
. (III)

Now put the three equations together. Substituting (I) into (II) yields

P1 = −c2ρ0

∂X

∂x
.

Put that into (III):

ρ0

∂2X

∂t2
= +c2ρ0

∂2X

∂x2
.

Finally, cancel ρ0 :
∂2X

∂t2
= c2 ∂2X

∂x2
.

Remark: The thrust of this calculation has been to eliminate all variables but
one. We chose to keep X , but could have chosen P1 instead, getting

∂2P1

∂t2
= c2 ∂2P1

∂x2
.

(Note that P1 is proportional to ∂X/∂x by (II) and (I).) Also, the same equation
is satisfied by the gas velocity, v(x, t) ≡ ∂X/∂t.
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D’Alembert’s solution

The wave equation,
∂2u

∂t2
= c2 ∂2u

∂x2
,

can be solved by a special trick. (The rest of this course is devoted to other PDEs
for which this trick does not work!)

Make a change of independent variables:

w ≡ x + ct, z ≡ x− ct.

The dependent variable u is now regarded as a function of w and z. To be more
precise one could write u(x, t) = ũ(w, z) (but I won’t). We are dealing with a
different function but the same physical quantity.

By the chain rule, acting upon any function we have

∂

∂t
=

∂w

∂t

∂

∂w
+

∂z

∂t

∂

∂z
= c

∂

∂w
− c

∂

∂z
,

∂

∂x
=

∂w

∂x

∂

∂w
+

∂z

∂x

∂

∂z
=

∂

∂w
+

∂

∂z
.

Therefore,

∂2u

∂t2
= c

(
∂

∂w
− ∂

∂z

) [
c

(
∂

∂w
− ∂

∂z

)
u

]

= c2

(
∂2u

∂w2
− 2

∂2u

∂w ∂z
+

∂2u

∂z2

)
.

Similarly,
∂2u

∂x2
=

∂2u

∂w2
+ 2

∂2u

∂w ∂z
+

∂2u

∂z2
.

Thus the wave equation is

0 =
1
4

(
∂2u

∂x2
− 1

c2

∂2u

∂t2

)
=

∂2u

∂w ∂z
.

This new equation is easily solved. We can write it in the form

∂

∂w

(
∂u

∂z

)
= 0.
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Then it just says that
∂u

∂z
is a constant, as far as w is concerned. That is,

∂u

∂z
= γ(z) (a function of z only).

Consequently,

u(w, z) =
∫ z

z0

γ(z̃) dz̃ + C(w),

where z0 is some arbitrary starting point for the indefinite integral. Note that the
constant of integration will in general depend on w. Now since γ was arbitrary, its
indefinite integral is an essentially arbitrary function too, and we can forget γ and
just call the first term B(z):

u(w, z) = B(z) + C(w).

(The form of the result is symmetrical in z and w, as it must be, since we could
equally well have worked with the equation in the form ∂

∂z

(
∂u
∂w

)
= 0.)

So, we have found the general solution of the wave equation to be

u(x, t) = B(x− ct) + C(x + ct),

where B and C are arbitrary functions. (Technically speaking, we should require
that the second derivatives B′′ and C′′ exist and are continuous, to make all our
calculus to this point legal. However, it turns out that the d’Alembert formula
remains meaningful and correct for choices of B and C that are much rougher than
that.)

Interpretation

What sort of function is B(x− ct)? It is easiest to visualize if B(z) has a peak
around some point z = z0 . Contemplate B(x− ct) as a function of x for a fixed t:
It will have a peak in the neighborhood of a point x0 satisfying x0 − ct = z0 , or

x0 = z0 + ct.

That is, the “bump” moves to the right with velocity c, keeping its shape exactly.
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(Note that in the second drawing we have to plot u on the same axis as t. Such
pictures should be thought of as something like a strip of movie film which we are
forced to look at without the help of a projector.)*

Similarly, the term C(x + ct) represents a wave pattern which moves rigidly
to the left at the wave velocity −c. If both terms are present, and the functions
are sharply peaked, we will see the two bumps collide and pass through each other.
If the functions are not sharply peaked, the decomposition into left-moving and
right-moving parts will not be so obvious to the eye.

Initial conditions

In a concrete problem we are interested not in the most general solution of the
PDE but in the particular solution that solves the problem! How much additional
information must we specify to fix a unique solution? The two arbitrary functions
in the general solution recalls the two arbitrary constants in the general solution of
a second-order ordinary differential equation (ODE), such as

d2u

dt2
+ 4u = 0; u(t) = B sin(2t) + A cos(2t).

In that case we know that the two constants can be related to two initial conditions
(IC):

u(0) = A,
du

dt
(0) = 2B.

Similarly, for the wave equation the two functions B(z) and C(w) can be related
to initial data measured at, say, t = 0. (However, things will not be so simple for
other second-order PDEs.)

Let’s assume for the moment that our wave equation applies for all values of x
and t:

−∞ < x <∞, −∞ < t <∞.

We consider initial data at t = 0:

u(x, 0) = f(x),
∂u

∂t
(x, 0) = g(x).

The d’Alembert solution implies

f(x) = B(x) + C(x), g(x) = −cB′(x) + cC′(x).

* In advanced physics, especially relativistic physics, it is standard to plot t on the
vertical axis and x on the horizontal, even though for particle motion t is the independent
variable and x the dependent one.
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The second condition implies

−B(x) + C(x) =
∫

g(x)
c

dx = G(x) + A,

where G is any antiderivative of g/c, and A is an unknown constant of integration.
Solve these equations for B and C:

B(x) = 1
2 [f(x)−G(x)− A], C(x) = 1

2 [f(x) + G(x) + A].

We note that A cancels out of the total solution, B(x − ct) + C(x + ct). (Being
constant, it qualifies as both left-moving and right-moving; so to this extent, the
decomposition of the solution into left and right parts is ambiguous.) So we can set
A = 0 without losing any solutions. Now our expression for the solution in terms
of the initial data is

u(x, t) = 1
2 [f(x + ct) + f(x− ct)] + 1

2 [G(x + ct)−G(x− ct)].

This is the first form of d’Alembert’s fundamental formula. To get the second
form, use the fundamental theorem of calculus to rewrite the G term as an integral
over g:

u(x, t) = 1
2
[f(x + ct) + f(x− ct)] + 1

2c

∫ x+ct

x−ct

g(w) dw.

This formula demonstrates that the value of u at a point (x, t) depends only on
the part of the initial data representing “stuff” that has had time to reach x while
traveling at speed c — that is, the data f(w, 0) and g(w, 0) on the interval of
dependence

x− ct < w < x + ct (for t > 0).

Conversely, any interval on the initial data “surface” (the line t = 0, in the two-
dimensional case) has an expanding region of influence in space-time, beyond which
its initial data are irrelevant. In other words, “signals” or “information” are carried
by the waves with a finite maximum speed. These properties continue to hold for
other wave equations (for example, in higher-dimensional space), even though in
those cases the simple d’Alembert formula for the solution is lost and the waves no
longer keep exactly the same shape as they travel.
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Boundary conditions

In realistic problems one is usually concerned with only part of space (e.g, sound
waves in a room). What happens to the waves at the edge of the region affects what
happens inside. We need to specify this boundary behavior, in addition to initial
data, to get a unique solution. To return to our physical example, if the sound waves
are occurring in a closed pipe (of length L), then the gas should be motionless at
the ends:

X(0, t) = 0 = X(L, t).

Mathematically, these are called Dirichlet boundary conditions (BC). In contrast,
if the pipe is open at one end, then to a good approximation the pressure at that
point will be equal to the outside pressure, P0 . By our previous remark, this implies
that the derivative of X vanishes at that end; for instance,

∂X

∂x
(0, t) = 0

instead of one of the previous equations. This is called a Neumann boundary con-
dition.

When a wave hits a boundary, it reflects, or “bounces off”. Let’s see this
mathematically. Consider the interval 0 < x <∞ and the Dirichlet condition

u(0, t) = 0.

Of course, we will have initial data, f and g, defined for x ∈ (0,∞).

We know that
u(x, t) = B(x− ct) + C(x + ct) (1)

and
B(w) = 1

2
[f(w)−G(w)], C(w) = 1

2
[f(w) + G(w)], (2)

where f and cG′ ≡ g are the initial data. However, if we try to calculate u from
(1) for t > x/c, we find that (1) directs us to evaluate B(w) for negative w; this is
not defined in our present problem! To see what is happening, start at (x, t) and
trace a right-moving ray backwards in time: It will run into the wall (the positive
t-axis), not the initial-data surface (the positive x-axis).

Salvation is at hand through the boundary condition, which gives us the addi-
tional information

B(−ct) = −C(ct). (3)

For t > 0 this condition determines B(negative argument) in terms of C(positive
argument). For t < 0 it determines C(negative argument) in terms of B(positive
argument). Thus B and C are uniquely determined for all arguments by (2) and
(3) together.

8



In fact, there is a convenient way to represent the solution u(x, t) in terms of
the initial data, f and g. Let us define f(x) and g(x) for negative x by requiring
(2) to hold for negative values of w as well as positive. If we let y ≡ ct, (2) and (3)
give (for all y)

f(−y)−G(−y) = −f(y)−G(y). (4)

We would like to solve this for f(−y) and G(−y), assuming y positive. But for that
we need an independent equation (to get two equations in two unknowns). This is
provided by (4) with negative y; write y = −x and interchange the roles of right
and left sides:

f(−x) + G(−x) = −f(x) + G(x). (5)

Rewrite (4) with y = +x and solve (4) and (5): For x > 0,

f(−x) = −f(x), G(−x) = G(x). (6)

What we have done here is to define extensions of f and g from their original
domain, x > 0, to the whole real line. The conditions (6) define the odd extension
of f and the even extension of G. (It’s easy to see that g = cG′ is then odd, like f .)
We can now solve the wave equation in all of R2 (−∞ < x <∞, −∞ < t <∞) with
these odd functions f and g as initial data. The solution is given by d’Alembert’s
formula,

u(x, t) = 1
2 [f(x + ct) + f(x− ct)] + 1

2 [G(x + ct)−G(x− ct)],

and it is easy to see that the boundary condition, u(0, t) = 0, is satisfied, because
of the parity (evenness and oddness) of the data functions. Only the part of the
solution in the region x > 0 is physical; the other region is fictitious. In the latter
region we have a “ghost” wave which is an inverted mirror image of the physical
solution.
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←−
u
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The calculation for Neumann conditions goes in very much the same way, lead-
ing to even extensions of f and g. The result is that the pulse reflects without turn-
ing upside down. Approximations to the “ideal” Dirichlet and Neumann boundary
conditions are provided by a standard high-school physics experiment with SlinkyTM

springs. A small, light spring and a large, heavy one are attached end to end. When
a wave traveling along the light spring hits the junction, the heavy spring remains
almost motionless and the pulse reflects inverted. When the wave is in the heavy
spring, the light spring serves merely to stabilize the apparatus; it carries off very
little energy and barely constrains the motion of the end of the heavy spring. The
pulse, therefore, reflects without inverting.
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Two boundary conditions

Suppose that the spatial domain is 0 < x < L with a Dirichlet condition at
each end. The condition u(0, t) = 0 can be treated by constructing odd and even
extensions as before. The condition u(L, t) = 0 implies, for all t,

0 = B(L− ct) + C(L + ct)
= 1

2 [f(L− ct)−G(L− ct)] + 1
2 [f(L + ct) + G(L + ct)].

(7)

Treating this equation as we did (4), we find an extension of f and G beyond the
right end of the interval:

f(L + ct) = −f(L− ct) = +f(−L + ct),
G(L + ct) = G(L− ct) = G(−L + ct).

(In more detail: Treat f(L+ct) and G(L+ct) with t > 0 as the unknowns. Replacing
t by −t in (7) gives two independent equations to be solved for them.) Finally, set
ct = s + L:

f(s + 2L) = f(s), G(s + 2L) = G(s) (8)
for all s. That is, the properly extended f and G (or g) are periodic with period 2L.

Here is another way to derive (8): Let’s go back to the old problem with just one
boundary, and suppose that it sits at x = L instead of x = 0. The basic geometrical
conclusion can’t depend on where we put the zero of the coordinate system: It must
still be true that the extended data function is the odd (i.e., inverted) reflection of
the original data through the boundary. That is, the value of the function at the
point at a distance s to the left of L is minus its value at the point at distance s to
the right of L. If the coordinate of the first point is x, then (in the case L > 0) s
equals L − x, and therefore the coordinate of the second point is L + s = 2L − x.
(This conclusion is worth remembering for future use: The reflection of the point
x through a boundary at L is located at 2L − x.) Therefore, the extended data
function satisfies

f(x) = −f(2L− x).
In the problem with two boundaries, it also satisfies f(x) = −f(−x), and thus
f(2L− x) = f(x), which is equivalent to the first half of (8) (and the second half
can be proved in the same way).

The d’Alembert formula with these periodic initial data functions now gives a
solution to the wave equation that satisfies the desired boundary and initial condi-
tions. If the original initial data describe a single “bump”, then the extended initial
data describe an infinite sequence of image bumps, of alternating sign, as if space
were filled with infinitely many parallel mirrors reflecting each other’s images. Part
of each bump travels off in each direction at speed c. What this really means is
that the two wave pulses from the original, physical bump will suffer many reflec-
tions from the two boundaries. When a “ghost” bump penetrates into the physical
region, it represents the result of one of these reflection events.
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