
Math. 412 (Fulling) 17 November 2006

Test C – Solutions

Calculators may be used for simple arithmetic operations only!

Useful information:
Laplacian operator in polar coordinates:

∇2u =
∂2u

∂r2
+

1
r

∂u

∂r
+

1
r2

∂2u

∂θ2
.

Bessel’s equation:

∂2Z

∂z2
+

1
z

∂Z

∂z
+

(
1− n2

z2

)
Z = 0 has solutions Jn(z) and Yn(z) .

1. (60 pts.) Consider the eigenvalue problem

φ′′ = −λφ (0 < x < 1) ; φ′(0) = βφ(0) , φ(1) = 0 .

NOTE: You should be able to answer (c) and (d) even if you don’t have a clue about (a)
and (b).
(a) Assuming for now that the eigenvalues λ are all positive, find the eigenfunctions and

show how to find the eigenvalues approximately (by a graphical method) if β = 2 .
The easiest way is to write φ(x) = sin[ω(1 − x)] (where ω2 = λ ) to satisfy the second boundary
condition, and then to calculate from the other boundary condition that −ω cosω = β sinω . Another
way is to write φ(x) = A cos(ωx)+B sin(ωx) with A and B unknown. The two boundary conditions
give two homogeneous linear equations for A and B . Setting the determinant of the system equal
to 0 yields again −ω cosω = β sinω . Then you can solve for A and B up to a constant, getting
something equivalent to C sin[ω(1− x)] after a trig identity.

In either case, you then solve − ω

β
= tanω with β = 2 graphically as in Fig. 5.8.1 of Haberman.

(b) Show that the eigenvalues are indeed all positive if β > 0 . Describe how an eigenvalue
might be negative if β < 0 .

Approach 1: Observe that

λ

∫ 1

0

|φ(x)|2 dx ≡ λ〈φ, φ〉 = 〈φ, (−φ′′)〉 = −
∫ 1

0

φ(x)∗φ′′(x) dx

= −φ(1)∗φ′(1) + φ(0)∗φ′(0) +

∫ 1

0

|φ′(x)|2 dx = 0 + β|φ(0)|2 +

∫ 1

0

|φ′(x)|2 dx.

Divide by 〈φ, φ〉 (“Rayleigh quotient”) to see that λ is a sum of obviously positive quantities,
provided that β > 0 . If β < 0 we can’t draw that conclusion, but to see clearly whether there must
be a negative eigenvalue in that case, we need to resort to the second approach.
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Approach 2: Suppose that λ = −ρ2 . Then the solution of the ODE is φ(x) = sinh[ρ(1 − x)] ,
and a calculation analogous to the one in (a) leads to

tanh ρ = − ρ

β
.

This has a (nontrivial) solution if and only if −1 < β < 0 , as shown by drawing a graph like Fig.
5.8.3. (For negative β there are still infinitely many positive eigenvalues, as shown by Figs. 5.8.2
and 5.8.4.)

(c) Write out the orthogonality and completeness relations obeyed by the eigenfunctions.
Given the eigenfunctions φn(x) = sin[ωn(1−x)] from (a) (or just the notation φn !) you can define
orthonormal eigenfunctions

ψn(x) =
φn(x)

‖φn‖
, ‖φn‖2 ≡

∫ 1

0

|φn(x)|2 dx .

(The integral can be evaluated, but it is not the usual π/2 or L/2 of ordinary Fourier series.) Then
the orthogonality and completeness relations are∫ 1

0

ψn(x)∗ψm(x) dx = δmn ,

∞∑
n=1

ψn(x)ψn(y)∗ = δ(x− y) .

(In this case the complex conjugates are superfluous, since we chose the eigenfunctions real. If there
is a negative eigenvalue, you need to include a term for its eigenfunction in the completeness relation
(but I should have excluded that case in the problem statement).)

You can also write the equivalent relations in terms of the φn , including the necessary factors of
‖φn‖ .

(d) Use the (normalized) eigenfunctions and eigenvalues to solve the heat problem

∂u

∂t
=

∂2u

∂x2
(0 < x < 1 , t > 0) ,

∂u

∂x
(0, t) = βu(0, t) , u(1, t) = 0 , u(x, 0) = f(x) .

I’ll use the normalized functions ψn to keep the formulas simple. In the usual way you get (with

λn = ωn
2 , still assuming β > 0 )

u(x, t) =

∞∑
n=1

Cnψn(x)e−λnt .

Then

f(x) =

∞∑
n=1

Cnψn(x) ,

so

Cn = 〈ψn, f〉 =

∫ 1

0

ψn(x)∗f(x)dx .

If you use unnormalized eigenfunctions, you get
∫ 1

0
|φn(x)|2 dx in the denominator (without the

square root, since you have redefined Cn ).
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2. (40 pts.) Do ONE of the following ((A) OR (B)). (Sorry, no extra credit for doing both.
Clearly indicate which question you want graded.)

(A) Solve Laplace’s equation in a sector,

∇2u = 0
(
0 < r < 3 , 0 < θ <

π

3

)
,

∂u

∂θ
(r, 0) = 0 =

∂u

∂θ

(
r,

π

3

)
, u(3, θ) = g(θ) .

Writing u = RΘ yields

Θ′′ = −µ2Θ , R′′ + 1

r
R′ − µ2

r2
R = 0 .

From the homogeneous boundary conditions we get Θ(θ) = cos(3mθ) , µ = 3m , m = 0, 1, . . . .
( L = π/3 ⇒ mπ/L = 3m , 2/L = 6/π .) The two independent solutions of the R equation are

r±3m , and possibly ln r in the case m = 0 , but for regularity at r = 0 we choose the nonnegative
exponents (and no log). Thus

u(r, θ) =

∞∑
m=0

amr
3m cos(3mθ) .

Then

g(θ) =

∞∑
m=0

am33m cos(3mθ) .

So if m 6= 0 ,

am = 3−3m 6

π

∫ π/3

0

cos(3mθ)g(θ) dθ,

a0 =
3

π

∫ π/3

0

g(θ) dθ .

(B) Solve the wave equation in a disk,

∇2u =
∂2u

∂t2
(0 ≤ r < 3 , 0 ≤ θ < 2π , 0 < t <∞) ,

u(3, θ, t) = 0 , u(r, θ, 0) = f(r, θ) ,
∂u

∂t
(r, θ, 0) = 0 .

[This is a special case of the “drum problem” done in the class notes, pp. 106–107 and 112–115.]


