
D’Alembert Solution on a Metric Tree Graph
(three infinite strings tied together at a point)
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On each string there is a coordinate x ranging from 0 to +∞. The dependent variable on
string j is uj .

PDE:
∂2uj

∂t2
=

∂2uj

∂x2
.

IC: uj(x, 0) = fj(x) and
∂uj

∂t
(x, 0) = gj(x) ≡ G′

j(x) for x > 0.

BC1: uj(0, t) is the same for all j (continuity).

BC2:
3∑

j=1

∂uj

∂x
(0, t) = 0.

Suppose that fj = 0 = gj for j 6= 1. What do you expect to happen to the pulse?

We know that on each string the solution must have the form

uj(x, t) = Bj(x− t) + Cj(x + t) (1)

where
Bj(x) = 1

2
[fj(x)−Gj(x)], Cj(x) = 1

2
[fj(x) + Gj(x)]. (2)

This construction completely handles the PDE and IC. Formally applying the boundary
conditions, we get

B1(−t) + C1(t) = B2(−t) + C2(t) = B3(−t) + C3(t) (3)

and
B′

1(−t) + C′
1(t) + B′

2(−t) + C′
2(t) + B′

3(−t) + C′
3(t) = 0.

The last equation can be integrated as

−B1(−t) + C1(t)−B2(−t) + C2(t)−B3(−t) + C3(t) = 1
2A, (4)

where A is an unknown constant that we expect to cancel out of the final solution.
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Equations (3) and (4) should be written out in terms of fj and Gj . As in the standard
problem on the half-line, these quantities are not, a priori, defined for negative arguments,
and we adopt the philosophy that (3) and (4) should be used to define them there. Each
of those equations yields two equations, one for positive t and an independent one for
negative t. Writing the unknowns on the left and the knowns on the right, we then come
up with

f1(−x)−G1(−x)− f2(−x) + G2(−x) = −f1(x)−G1(x) + f2(x) + G2(x) (for t = +x),

f1(−x) + G1(−x)− f2(−x)−G2(−x) = −f1(x) + G1(x) + f2(x)−G2(x) (for t = −x),

and two identical equations with subscript 2 replaced by 3, and similarly

−f1(−x)−f2(−x)−f3(−x)+G1(−x)+G2(−x)+G3(−x) = A−f1(x)−· · ·−G1(x)−· · · ,

f1(−x) + f2(−x) + f3(−x) + G1(−x) + G2(−x) + G3(−x) = A + f1(x) + · · · −G1(x)− · · · .
These are six equations in six unknowns.

However, the f and G problems can be quickly separated. Adding and subtracting
each pair of equations, we get

f1(−x)− f2(−x) = −f1(x) + f2(x), (5)

f1(−x)− f3(−x) = −f1(x) + f3(x), (6)

f1(−x) + f2(−x) + f3(−x) = f1(x) + f2(x) + f3(x) (6)

and
G1(−x)−G2(−x) = G1(x)−G2(x),

G1(−x)−G3(−x) = G1(x)−G3(x),

G1(−x) + G2(−x) + G3(−x) = A−G1(x)−G2(x)−G3(x).

Now add (5), (6), and (7) and divide by 3 to get

f1(−x) = −1
3
f1(x) + 2

3
[f2(x) + f3(x)]. (8)

We can almost declare victory now! By symmetry it is obvious that

f2(−x) = −1
3
f2(x) + 2

3
[f1(x) + f3(x)], (9)

f3(−x) = −1
3
f3(x) + 2

3
[f1(x) + f2(x)].

Similarly, from the G system we get

G1(−x) = 1
3A + 1

3G1(x)− 2
3 [G2(x) + G3(x)], (10)

G2(−x) = 1
3A + 1

3G2(x)− 2
3 [G1(x) + G3(x)], (11)

and so on for G3 .
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Remember that we want to use these formulas in (1) and (2), which combine as

uj(x, t) = 1
2 [fj(x− t)−Gj(x− t)] + 1

2 [fj(x + t) + Gj(x + t)]. (12)

We can see that the As will indeed cancel, and we choose Gj so that Gj(0) = 0.
Let us write the full final answer only for the case that

fj(x) = 0 = gj(x) for j 6= 1 (and x > 0).

Also, we consider only t > 0. Then x + t > 0, so the second half of (12) never requires the
reflected functions (8)–(11); in particular, it is 0 in u2 and u3 in our case. (These terms
describe the original incoming waves, which have not yet been affected by the boundary
conditions.) For the outgoing terms of (12), let’s look first at u2 . From (9) and (11) we
get

u2(x, t) =
{

0 if x− t > 0,
1
3
[f1(t− x) + G1(t− x)] if x− t < 0.

Of course, u3 will be the same. So a certain fraction of the incident pulse in the first string
passes through into each of the other two strings. As for u1 , for x− t > 0 (“early times”)
it is just given by (12) with the original unreflected functions. For x− t < 0 (“late times”)
we get from (12), (8), and (10)

u1(x, t) = −1
6 [f1(t− x) + G1(t− x)] + 1

2 [f1(x + t) + G1(x + t)].

That is, a part of the incident pulse is reflected back into the first string with a change of
sign.

Notice that, if we omit the overall factors 1
2 , the amplitude of each of the transmitted

waves is 2
3 and that of the reflected wave is −1

3 , relative to the amplitude 1 of the incident
wave. If there had been N strings instead of three, these numbers would have been 2

N
and 1 − 2

N . The energy in a wave is proportional to the square of the amplitude, and
conservation of energy is shown by the fact that the squares of the outgoing amplitudes
add up to that of the incoming one:

4
9

+
4
9

+
1
9

= 1,

or, in the general case,

(N − 1)
4

N2
+

(
1− 2

N

)2

= 1. (13)

Perhaps surprisingly, the more strings there are, the less energy gets through: As N →∞
the first term in (13) goes to 0 and the second term goes to 1.
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