Math. 412 (Fulling) 16 November 2007

Test C — Solutions
Calculators may be used for simple arithmetic operations only!

Useful information:
Laplacian operator in polar coordinates:
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Bessel’s equation:
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=t ) Z =0 has solutions Jp(z) and Yp(z).

1. (50 pts.) Solving the heat or wave equation in an annulus (ring-shaped region) would lead
to an eigenvalue problem

V20 = —w2® (ri<r<rg, 0<60<2m),
®(ry,0) =0=2(r2,0),
periodic boundary conditions in 6.

In turn, this problem has solutions of the form
P (r,0) = Ryj(r) sin(nb) , Up(r,0) = Ry, ;(r) cos(nd) .

(a) Find the allowed eigenfunctions Ry, ; as explicitly as you can.
Substituting the given form of ® or V¥ into the equation, we get

d*R 1dR n?

dr? =~ r dr 12

Letting z = wr scales out w to reduce this to Bessel’s equation. Therefore,

R(r) = aJp(wr) + bYn (wr) .

R+w?’R=0.

The boundary conditions require that

0 = R(r1) = aJn(wry) + bYy (wr1),
0 = R(r2) = aJn(wr2) + bYn(wre) .

These equations have a nontrivial solution for ¢ and b if and only if the determinant vanishes:

| Jn (wr1)  Yn(wry)

0= In(wra)  Yn(wra)

= Jn(wr1)Yn(wre) — Yo (wry)JJn(wrs) .

This equation (which can’t be solved by exact methods) determines the allowed eigenfrequencies
wnpj . Then either of the boundary conditions can be solved to yield the ratio of a to b in each
corresponding eigenfunction. (Alternatively, start by using one of the equations to fix a/b, then use
the other one to determine the allowed eigenvalues.)
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(b) For a fixed n (but varying j ) what orthogonality and completeness relations do you
expect the functions Ry, ;(r) to obey?

The problem

d’R 1dR n? o
il -~ R R=0 R(r{)=0=R
dr2 ' r dr  r2 T ’ (r1) (r2),

is a regular Sturm—Liouville problem, so the eigenfunctions form a complete, orthogonal set. (We
should check that we have not missed any modes. A standard integration-by-parts argument shows
that w? must indeed be positive. Alternatively, the lowest eigenfunction in our list clearly has no
nodes inside the interval — since otherwise we could scale that zero to an endpoint to create a mode
with a lower positive eigenvalue — so it is indeed the lowest eigenfunction of all, by the Sturm theory.)
The differential equation can be rewritten in the explicit SL form

d / dR n? 9
o) - =,

which shows that the weight function is 7. Therefore, the orthogonality relation is

T2
/ Ry (r)Rpg(r)rdr=0 nunless j=%k.

r1

(The Bessel functions for different n are not orthogonal; that burden is carried by the trig functions
in ® and W¥.) To get orthonormal basis functions we need to divide R,,; by

o
1B = /'meﬂrm.
r1

Therefore, the completeness relation is

> m

(The r in the denominator could also be written r’ or v/rr’. One way to check that that factor is
correct is to multiply the completeness relation by rR,;(r)/||R.k|| and integrate over r, using the
orthonormality relation to get R, (r)/||Rnk| back again.)

5 Ru(r) R (0) = 2 5 1)
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(¢) Show how to expand an arbitrary function f(r,6) (defined on the annulus) as a series
in the functions @,,; and ¥,;. (Now n and j both vary.)

Since the R,,;(r)/|[Rp;j|| are orthonormal and complete, and so are the trig functions when multiplied

by 1//m, we can expand
oo o0
= Z Z[anjq)nj + bnj\lfnj]
n=0j=1
with

1 27 T2
P S do rdr sin(n@) Ry (r) f(r,0)
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and the analogous formula for b,; . No, that isn’t quite right: n = 0 creates its usual problems.

The modes ®p; don’t exist, and the Wy; have an extra % in their coefficient formula.
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2. (50 pts.) Consider Laplace’s equation in the region

0<r<ry, 0<0<g.

(a) Solve the problem with the boundary conditions

u(r,0) =0
and either
(regular) u <r, g) =0, u(ry,0) = g(6)
or
(honors) u (7’, g) = f(r), u(ry,0) =0.

Regular: This is a rather standard problem, so I'll just state the result. (But see also the first steps
of the honors solution and switch the signs.) In 6 we have a Fourier sine series with L = % , so

(o e]
u(r,0) = Z bnr>™ sin(2n6)
n=1

with
4 /2
by = rf2n — / sin(2n#)g(0) do .
0

s

Honors: We must expect oscillatory-type solutions in the radial direction and exponential-type
solutions in the angular direction, so the sign of the separation constant must be the opposite of that
in the previous case:

1 1" /
R R
Z k=2
o "R "R
From the Dirichlet condition on the bottom edge we see that ©(f) o sinh(k#) . The radial solutions
are linear combinations of r** and r~% | which we can also write ¢** and e " with v =1Inr.

The combination vanishing at 71 is R(r) = sin[k(u—wu1)], u1 =Inry. So a convenient new variable
is v=wu; —u. As r — 0, v approaches +oo (hence the strange sign in its definition). Therefore,
the appropriate eigenfunction expansion is a Fourier sine transform.

u(r,0)2/0 B(k) sinh(k0) sin(kv) dv ,

B(k) sinh(rk/2) — % /0 sin(kv) £ (r) dv

v

To finish up we divide by the sinh and either write the r in f(r) as r=rie” ", or write

> " dr
/ sin(kv)--- dv as / sinfk(lnry —Inr)]--- —.
0 0 r
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(b) (essay) Explain how the results in (a) would be useful in solving the wave equation in
that region with time-independent nonhomogeneous boundary conditions.

The solution of the wave equation will be a sum of a solution with the corresponding homogeneous
boundary conditions and a steady-state solution that satisfies Laplace’s equation with the given
nonhomogeneous boundary data. If the data are all Dirichlet, the steady-state solution will be a sum
of three terms, the two we just found plus something similar to the honors solution to handle the
data on the edge 6 = 0. The steady-state solution must be subtracted from the initial data for the
wave equation before solving the homogenized wave problem.



