FINISHING UP THE DRUM PROBLEM

Recall that we were seeking normal modes ¢, (r,0) = R(r)O(0), where
() = e = eF"  with v an integer

and R(r) = Z,(wr) had to be a Bessel function satisfying appropriate boundary
conditions at the origin and the edge of the disk (r = rg). As we have seen, the
condition that R remain bounded as r — 0 implies that Z,, is (a multiple of)
Jpn, . The other condition is that R(rg) = 0. It follows that wrg must equal a zero
(root) of J,(z). Since J,, eventually becomes oscillatory, there are infinitely many
such values of z; let us call them z,1, 2,2, ... . They can be found by numerical
methods and are tabulated in many handbooks. They are the analogue for the
current problem of the numbers n7/L in simple Fourier problems and the roots
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of the equations such as tan z = —vz in convective Sturm—Liouville problems.

Wnpk = — . (1)

The presence of w,; scaling the radial coordinate “compresses” the nth Bessel
function so that k of the lobes of its graph fit inside the disk of radius ry. Putting
the radial and angular parts together, we have the eigenfunctions

V,.(r,0) = R(r)O(0) = Jy, (wnir) €™ (v =+n). (2)
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We could equally well use the real eigenfunctions in which e®? is replaced by
sinnf or cosn#; those functions are easier to visualize. In the drawing the lines
and curves indicate places where such a 1 equals 0, and the signs indicate how
the solution Re or Im+t bulges above or below the plane v = 0. Such patterns
may be seen in the surface of a cupful of coffee or other liquid when the container
is tapped lightly. (Compare the rectangle eigenfunctions in an earlier section.)

If we were solving a heat-conduction problem in the disk, the general solution
would be a linear combination of the separated solutions:

u(t,r,0) Z chk Y (r,0) e “nk t (3)

v=—o0 k=1

The coefficients need to be calculated from the initial data:
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g(r,80) =u(0,7,0)

= Z Z Cuk Yy (r,0)

V=00 k}:l

= i icyk In(WnkT) el

v=—0o0 k=1

By the standard Fourier series formula,

1 2 —0 -
7 i e g(r,0)do = ; Cuk In(WnkT).

We are left with a one-dimensional series in the eigenfunctions R, (r) =
In(wnikr) (n fixed). We recall that these functions came out of the equation
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with the boundary condition R(r¢) = 0, which looks like a Sturm—Liouville prob-
lem. Unfortunately, it does not quite satisfy the technical conditions of the
Sturm—Liouville theorem, because of the singular point in the ODE at r = 0.
Nevertheless, it turns out that the conclusions of the theorem are still valid in
this case: The eigenfunctions are complete (for each fixed n), and they are or-
thogonal with respect to the weight function r:

To
/ In(WniT) Ip(wpir) rdr =0 if i # j.
0

Thus if A(r) is an arbitrary function on [0, 7], it can be expanded as

oo

h(r) = Z ck Jn(WnkT),

k=1
and the coefficients are
foro In(Wnkr) h(r) rdr
" T (w2 T dr
Jo! In(wner)

Cr —
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Furthermore, the experts on Bessel functions assure us that the integral in the
denominator can be evaluated:

1
1
| a0 € = § T
0
(I leave the change of variable from ¢ to r as an exercise.)

Applying this theorem to our problem, we get
—1
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That is,

Cok = [m“o In+1(Wnk) _1/ / rdrdf,,.(r,0)* g(r,0)
r=0 J0=

e kH /0/9 rdrdf,,,(r,0)% g(r, 0).
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(In the last version I have identified the constant factor as the normalization
constant for the two-dimensional eigenfunction.) We now see that the mysterious
weight factor r has a natural geometrical interpretation: It makes the r and 6
integrations go together to make up the standard integration over the disc in
polar coordinates!

The formulas (1)—(4) give a complete solution of the heat-conduction prob-
lem.

But I thought we were solving the wave equation, to model the vibrations of
a drum? Yes, your absent-minded professor shifted to the heat equation in mid-
stream, then decided to stay there to keep the formulas simpler. What changes
are needed in the foregoing to finish the drum problem? The eigenvalues (1) and
eigenfunctions (2) are the same. However, for each eigenfunction there are now
two possible terms in the solution; the eigenfunction expansion (3) needs to be
replaced by



u(t,r,0) Z chk VY, (1,0) cos (wnit) + dyk ¥, (1, 0) sin (wpt).

v=—o0 k=1

[There is an important pitfall to avoid here, which is not confined to polar co-
ordinates. (It also arises, for instance, in the wave equation for vibrations in a
ring, using Fourier series.) Suppose that you chose to use the real eigenfunctions.
Then it would be a mistake to write in the summand something like

[an i cos(nB) + by sin(nd)][cpk cos (wprt) + dpk sin (wpit)].

This would result in equations for the unknown coefficients that are nonlinear,
hence hard to solve; also, the solution will not be unique, and may not even
exist for some initial data. Remember to write the general solution as a linear
combination of all possible (independent) elementary separated solutions:

Ay cos(nf) cos (wnit) + Bpk cos(nd) sin (wnit)
+ Chi sin(nf) cos (wpit) + Dy sin(n) sin (wqxt).
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In other words, multiply first, then superpose!]

To finish the problem, we need to set u and its time derivative equal to the
given initial data and solve for the ¢ and d coefficients. The same orthogonality
properties used in the treatment of the heat equation apply here, so (after twice
as much work) you will end up with formulas analogous to (4).

A HIGHER-DIMENSIONAL EXAMPLE

We shall consider the three-dimensional potential equation in a cylinder.
(See J. D. Jackson, Classical Electrodynamics, Chapter 3.)

Cylindrical coordinates are defined by
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z
x =rcosf, 0

y =rsiné, r

z=2z.
The Laplacian operator is

0? 0? 0?
2 __
V= Ox? + 0y? + 022

02 190 1 0?2 0?

ot T rar T g o2

The problem to solve is: V2u = 0 inside the cylinder, with Dirichlet data
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given on all three parts of the cylinder’s surface:

u(ro,0,2) = f(0,2) @

U(T,Q,O) = gl(ra 8)7 f
U(T,@,L) = 92(7", 0)

—_—

91 D

As usual, the first step is to split this into two problems:

U= Uy + Uz,
where
u1(rg,0,2) =0 with nonhomogeneous data on the end faces,
uz(r,0,0) =0 = uq(r,0,L) with nonhomogeneous data on the curved surface.
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In either of these subproblems we can separate variables this way:
u=R(r)©(0)Z(z).
After several routine steps (exercise) we get

2z d2e
W—aﬂzzo, W—i—uz@:O,

2R 1d 2
T R+(w2—“—>R:0

dr? r dr r?2

except that it is not yet clear whether the quantities here named w? and p? are
really positive. (If we find out they aren’t, we’ll change notation.) Note that the

radial equation is a Bessel equation.

Problem 1: In the w; problem the homogeneous boundary condition is
R(ro) = 0. The equations determining © and R are identical to these we solved
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in the drum problem. So, we have y = +n, an integer, and then wyr = znk /70,
where z,; is the kth zero of J,,. The new element is the Z equation, whose
solutions are exponentials. As in some previous problems, the most convenient
basis for these solutions consists of certain hyperbolic functions. Cutting a long
story short, we arrive at the general solution

(r,0,2) g E In(WnkT) [Ank cosnf sinh w,kz + By sinnd sinh w2
n=0 k=1

+ Ch cosnbf sinh wyi (L — 2) + Dy sinnf sinhw,, (L — 2)].

(I chose real eigenfunctions for variety, and to reinforce an earlier warning about
how to write correct linear combinations of normal modes.) Then, for example,
we have

g1(r,0) = uy(r,6,0)

= Z Z In(Wnit) [Crk cos(nd) sinh (wy,p L) + Dy sin(nf) sinh (w,xL)],
n=0 k=1
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and therefore

foro rdr fozw db J,,(wnir) cos(nb) gi(r,0)
7 sinh (wpx L) foro In(Wnir)? rdr '

an: -

The solutions for Cy, and D,;, and the solutions for A, and B, in terms of
g2, are similar (and by now routine).

It is interesting to vary this problem by taking the radius ry to infinity
— in other words, solving Laplace’s equation in the whole plane, described in
polar coordinates. Then the series of Bessel functions goes over into an integral
transform, analogous to the Fourier transform. The initial-data formulas above
become

g1(r,0) = Z /000 dw J,, (wr) [Cy(w) cos(nB) sinh (wL) + D, (w) sin(nf) sinh (wL)] ,I
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Cn(w) = %/OOO rdr/o 7Td9 Jn(wr) cos(nB) g1(r, 0).

(This is not supposed to be obvious; proving it is beyond the scope of this course.)

To clarify the crux of these Bessel expansions, let’s strip away the angular
complications and summarize them as one-dimensional eigenfunction expansions.
Consider an arbitrary function f(r).

1. Fourier—Bessel series: If the domain of fis0 < r < ¢, and w,x = 2nk /70,
then (for a fixed n)

f(r) = ZAk Jn(wnkr)v
k=1

where

foro In(Wnrr) f(r)rdr
Jo° In(wner)?rdr

Ap =
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This is a generalization of the Fourier sine series, where the ordinary differ-
ential equation involved is a variable-coeffient equation (Bessel’s) instead of
X" = —w2X.

2. Hankel transform: If the domain of f is 0 < r < oo, then (for a fixed n)

f(r) = / " A@) T (wr) w d,

/ f(r) Jn(wr) rdr.

This is a generalization of the Fourier sine transform.

where

Problem 2: In the us problem the homogeneous boundary conditions are
Z(0) =0 = Z(L). This goes with the ODE Z” —w?Z = 0. We see that w? must
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be negative this time, so we should change the notation accordingly:

W= 12 <.

We can write the solutions as

Z(z) = Acos(vz) + Bsin(vz), v = % :

From the 6 equation (whose boundary conditions are unchanged) we still have
1 = n. Therefore, the radial equation is

2 1 2
@—I-—d—R—l—(—l/z—'u—)R:

r2  r dr
with p and v related to integers n and m as just decribed.
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The solutions of this equation are modified Bessel functions, which are reg-
ular Bessel functions evaluated at imaginary argument. Letting ( = ivr puts the
equation into standard form:

d?’R 1dR n?

Thus R as a function of ( is a standard Bessel function, so R as a function of r is a
modified Bessel function. In the standard notation for modified Bessel functions
introduced earlier, R must be a linear combination of I,,(vr) and K, (vr), where
I is the one that is nice at 0 and K is the one that is nice at infinity. In our
problem, zero is the relevant boundary, so R(r) = I,,(vr) and

= =~ . mmz ,
us(r, 0, z) = Z Z sin — [Asn cos(n) + By, sin(nb)] I, (

m=1n=0

mm“)
L
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Apply the nonhomogeneous boundary condition:

f(0,2) =us(rg, 0, z)

- i i sin m;rz (A cos(n) + By, sin(nf)] I, <m;7“0> ;
m=1 n=0

and the coefficients are found by two steps of ordinary Fourier series inversion. In
this case the Bessel functions are not used as elements of a basis of eigenfunctions
to expand data; rather, they play the same auxiliary role as the sinh(wL) in some

of our Cartesian potential problems and the e_‘”zt{ .—o = 1 in heat problems.
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