Math. 412 (Fulling) 14 December 2015
Final Examination — Solutions
Calculators may be used for simple arithmetic operations only!

SOME POSSIBLY USEFUL INFORMATION

Laplacian operator in polar coordinates:

0%u 1 0u 1 0%u

2y =2, ==, -7
VU_8TQ+T(9T+T2892.

Laplacian operator in spherical coordinates (“physicists’ notation”):

9 1 90 (90u L0 (. ,ou), 1 9%
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Spherical harmonics satisfy
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Bessel’s equation:

027 107

2
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9.2 + ey + (1 — z_2> Z =0 has solutions Jp(z) and Yp(2).
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221273 5 )Z:O has solutions j;(z) and y;(z) .
z z 0z z

Legendre’s equation:

1 d (. ,dO© : .
nd 20 (sm@ @) +1(l+1)© =0 has a nice solution Pj(cosf).
Airy’s equation:
9%y . . .
5.2 Y= 0 has solutions Ai(z) and Bi(z).

Famous Green function integrals:
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1. (30 pts.) Classify each equation as
(i) elliptic, hyperbolic, or parabolic,
and
(ii) linear homogeneous, linear nonhomogeneous, or nonlinear.

2 2 2
(2) @—@Jr(@) +12 22 =0

o2 0x? ox
nonlinear, hyperbolic
9y 9%u 2
b) st s te @H —
(b) oz2  Oy?
linear nonhomogeneous, elliptic
du  Oou  9u

(c) E—'—@ aQ—l—a:u—O

linear homogeneous, parabolic

In any remaining problems that involve spherical coordinates, their range is al-
ways the whole sphere,

0<f<m, —m < ¢ <m (or equivalent).

I reiterate that the meanings of # and ¢ are reversed compared to Haberman’s
book.

2. (40 pts.) Solve the heat equation in a ball,

VQUZ% for 0<r<R, 0<t< o0,

U(R, 97 d)’ t) - O? u(r7 97 ¢7 O) = f(r7 97 d))'
(The spherical harmonic notation is strongly advised.)
After separating the time variable we have to solve V2u>\ = —Au) with homogeneous Dirichlet
condition on the sphere. The solutions are well known to be Y;"" (0, ¢)ji;(w;,7) , where j; is called
a spherical Bessel function (related to an ordinary Bessel function of order [+ % ), the wy,, are the

numbers for which j;(w;, R) =0, and A\, = wlzn . (Here In is a pair of indices, not their product.)
Then we can write the general solution

l

u(r, 0, ¢,t) Z Z chmnyz 0, 6)j1(winr)e” Mt

=0 m=—In=0
Finally
o) l o)
f(Ta 95 Cb) = Z Z Z Clmanlm(g) ¢)JZ (wlnr))
=0 m=—In=0
SO

JT_de [T d6 [ drr?sin6 jy(winr) Y™ (0, 6)* (.6, $)
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R .
Jo dilwinr)?r2dr
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3. (50 pts.)
(a) Solve by separation of variables or an equivalent transform technique:
9%u  9%u
@—f—a—yQ:O 0<zx<oo, 0<y<o0),
ou
5,09 =0 (0<y<oo),  u(@0)=f(z) (0<z<00)

We see that we will need a transform on the half-line of x . The boundary condition indicates a Fourier
cosine transform, since the cosines are the eigenfunctions that satisfy the Neumann condition. The
infinite interval in y calls for decaying exponentials. So the expected form of the solution is

u(z,y) = /O A(k) cos(kz)e ™ Y dk.

Thus o
f(a:):/ A(k) cos(kx) dk,

SO

0
2 o
A(k) = —/ f(x) cos(kx) dx.
T Jo
(b) Find the Green function that gives the solution to (a) in the form

o) = [ G, 2 ) f(2) e

(There are two methods. Do evaluate the integral if your method leads to one.)
Substituting the formula for A into the one for u, we get

% 4 oo e
u(zx,y) = z z) cos(kz)dz cos(kz)e "Y dk
e = [ 2 [ re eosthe) decostie

o) 9 oo e

= dz f(z) | — dk cos(kz) cos(kx)e Y
s |2 [ s conthe) o

So the object in the brackets is the Green function. Using cos(kz) = %(e’kz + e~ ) ete., you can
reduce this to integrals that can be evaluated by the second “famous Green function” formula. The
result will be the same as the one I shall now get by the image method.

Alternative method: Remember that the second “famous Green function integral”, with x re-
placed by x — z, is the Green function for the similar problem with f(z) given on the entire real
line. For the half-line with the homogeneous Neumann condition at the end, the Green function is
obtained by adding the effect of an image source at —z instead of z:

1 Yy Yy
G .
R (s A PR E R
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4. (40 pts.) Solve Laplace’s equation in the region between two concentric spheres:
VZu=0 for 1<r<3,

%(17 0,¢) =0, u(3,0,0) = f(6) (independent of ¢ ).
(Note that ¢ is the azimuthal angle, not the polar one.)

Again we have spherical harmonics, but this time the radial solution involves rb and r— (D
Bessel functions. Which linear combination satisfies the homogeneous boundary condition?

, not

R(r) = Ar' + Br— D),

0=R(1)=I1A-(+1)B

Of course we can only determine the ratio at this point, so take A=1, B = H—Ll .

0o l

u(r,0,6) =Y > CpY"(0,0) |r' + L

[+1
=0 m=—1

But because there is no ¢ dependence, only m = 0 contributes:

l _
u(r,0,¢) = ZCZYI o) [ —l+1r (+1)

(This could also be written in terms of P;(cos#) , but the spherical harmonic notation automatically
takes care of the normalization factor.) Then

7(0) = Zcm 0.9) |3 + 53]

l+1

(The spherical harmonic here is actually independent of ¢ and is some multiple of Pj(cos6). Also,
it is real.) So

2m [ dO sin0Y,(0,9)f(0)
- 3l + Ly 3-(+D)
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5. (40 pts.) Using Fourier series, solve this modified wave equation on a circle (with periodic
boundary conditions):

d%u 92
o2 ttu=zmg (I<t<oo, —m<az<m)
ou
u(z, 1) = f(x), a(% 1) =g(z).

(If you don’t know the solutions for the time dependence, give them convenient names
and proceed.)

Since this one involves a nonstandard operator, it is prudent to go through the whole separation of
variables from the beginning. Let usep = X (z)T(t). Then XT" +tXT = X"T, so

T+t X" \
T X 7
The spatial (angular!) equation is X’ ' = —AX, and because of the periodicity we must have

A =n? (for integer n ) and .
Xp=¢e"" (n=0,%1,42,...)

or, alternatively,
Xn =sin(nz) (n=1,2,...) or cos(nz) (n=0,1,...).

I will use the exponential form because it calls for less typing.

The time equation is T + tT = —n?T . It is second-order, linear, homogeneous, so it has a
two-dimensional vector space of solutions. In other words, any solution is a linear combination of
two basis solutions. Furthermore, the equation is nonsingular, so each solution can be characterized
by its initial data at ¢ = 1. (In this problem the initial time was chosen to be 1 instead of 0 just
to keep the coefficient ¢ from changing sign in the region of interest, but that turns out not to be
very important.) Let’s introduce the notation p and ¢ for the solutions with the data

p(l) =1, p/(l) =0, Q(l) =0, q/(l) =1

2

These functions also depend on A = n“ , so they should carry a subscript n ; but p, and p_, are

the same thing, and the same for ¢ .
Now we write the general solution. For each A there are four independent solutions, each of
which needs a yet-to-be-determined coefficient:

o0

u(z,t) = Z [Anpn(t)emm + Bngn (t)emm].

n=—oo

(If you use the trigonometric basis, you must literally write four terms:

u(z,t) = Z [anpn (t) cos(nx) + bngn (t) cos(nx) + cnpn(t) sin(nzx) + dngn(t) sin(naz)] .

n=0
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Recall that writing the most general solutions of the X equation and the T equation and multiplying
them does not give the correct (linear) construction.)
Determine the coefficients by imposing the initial conditions:

oo o0
F@)y= )" Ane™, gl@)= Y Bpe™
n=-—oo n=-—oo
Therefore,
1 (" Y S
Ap = o e " f(z) du, By = — e ""g(z) dx.
L - 2 J_ .

Finally, can we say anything about what a, and b, are? Try introducing a new variable
7 = —(t +n?). This transforms the T equation to T — 7T = 0 (where the primes now indicate
derivatives with respect to 7 — but the second derivative is the same for either variable). This
is Airy’s equation. So we know that pp(t) and g¢n(t) are certain linear combinations of the Airy
fuctions Ai(—t — n?) and Bi(—t — n?). To find the coefficients in these linear combinations we
would need to use a table or a computer program to find the values of the Airy functions and their
derivatives at all the points z = —(n2 +1).



