
Polar Coordinates and Bessel Functions

Polar coordinates

The polar coordinates (r, θ) in R2 are defined by

x = r cos θ,

y = r sin θ.

The usual reason for rewriting a PDE problem in polar coodinates (or another
curvilinear coordinate system) is to make the boundary conditions simpler, so
that the method of separation of variables can be applied. For example, the
vanishing of u(x, y) on a circle is easier to apply when expressed as

u(4, θ) = 0
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than when stated

u(x, y) = 0 whenever x2 + y2 = 16.

In fact, the latter can’t be satisfied by a nontrivial function of the formX(x)Y (y),
as needed by the separation method.

Indeed, a disc of radius r0 is, in polar coordinates, the region

• disc: 0 ≤ r < r0 , 0 ≤ θ < 2π.

It is the most obvious of the types of regions that “look like rectangles” when
expressed in polar coordinates. Others are

• exterior of disc: 0 < r0 < r < ∞, 0 ≤ θ < 2π;

• annulus: 0 < r1 < r < r2 , 0 ≤ θ < 2π;
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• sector: 0 ≤ r < r0 , Θ1 ≤ θ < Θ2 ;

and three others that have no convenient names (although “partially eaten piece
of pie” might do for one of them).

In any such case one will want to rewrite the whole problem in polar co-
ordinates to exploit the geometry. This is likely to make the PDE itself more
complicated, however. At least once in your life, you should go through the
calculation — using the product rule and multivariable chain rule repeatedly,
starting from formulas such as

∂

∂x
=

∂r

∂x

∂

∂r
+

∂θ

∂x

∂

∂θ

— that shows that the two-dimensional Laplacian operator

∇2 ≡
∂2

∂x2
+

∂2

∂y2
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is equal to

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
.

It is worth noting that the r-derivative terms

∂2u

∂r2
+

1

r

∂u

∂r

can also be written as a single term,

1

r

∂

∂r

(

r
∂u

∂r

)

.
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Separation of variables in the polar potential equation

Let us, therefore, study Laplace’s equation

0 = ∇2u =
1

r

∂

∂r

(

r
∂u

∂r

)

+
1

r2
∂2u

∂θ2
.

We try separation of variables:

u(r, θ) = R(r)Θ(θ).

We get
1

r
(rR′)′Θ+

1

r2
RΘ′′ = 0

(where the primes are unambiguous, because each function depends on only one
variable). Observe that we can separate the r and θ dependence into different
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terms by dividing by RΘ/r2:

r(rR′)′

R
+

Θ′′

Θ
= 0.

We can therefore introduce an unknown constant (eigenvalue) and split the equa-
tion into two ordinary DEs:

Θ′′

Θ
= K,

r(rR′)′

R
= −K.

The first of these is our old friend whose solutions are the trig functions; we put
it aside to deal with later.

More interesting is the radial equation,

(rR′)′ +
K

r
R = 0
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or

R′′ +
1

r
R′ +

K

r2
R = 0.

It is of the general Sturm–Liouville type. Consulting the theorems and definitions
concerning those, we see that we will have a regular Sturm–Liouvile problem
provided that the boundaries of our region are

r = r1 and r = r2 with r1 > 0 and r2 < ∞

— that is, for the half-eaten piece of pie and the annulus (ring). For the more
common situations of the disc, disc exterior, and sector, the SL problem is sin-

gular.

However, a little learning is a dangerous thing. Although the analysis I
have just given you is correct, and will be valuable soon when we complicate the
equation by adding another term, it turns out to be unnecessary in the present
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case. Let’s make the change of variables

z ≡ ln r (hence r = ez),

so that
d

dr
=

dz

dr

d

dz
=

1

r

d

dz
.

Then

rR′ =
R

z
, (rR′)′ =

1

r

d2R

dz2
,

so the equation becomes
d2R

dz2
+KR = 0.

It is our old friend after all!

Let us record its (basis) solutions for the various classes of K:

8



1. K = −λ2 < 0 : R = e±λz = r±λ.

2. K = 0 : R = 1 and R = z = ln r.

3. K = µ2 > 0 : R = e±iµz = r±iµ;

that is, R = cos(µ ln r) and R = sin(µ ln r).

Boundary conditions in polar coordinates

We consider two examples and make brief remarks on a third.

I. Interior of a disc of radius r0

Three boundary conditions, of different natures, arise here.
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First, since the coordinate θ goes “all the way around”, u(r, θ) must be pe-
riodic in θ with period 2π. Therefore, the solutions of the angular equation,
Θ′′ = KΘ, will be the terms of a full Fourier series at the standard scale:

u(r, θ) =
∞
∑

n=−∞

cn e
inθ Rn(r).

(Of course, we could use sines and cosines instead.) Moreover, K = −n2.

Second, at the rim of the disc a well-posed potential problem requires a
standard nonhomogeneous Dirichlet, Neumann, or Robin condition, such as

u(r0, θ) = f(θ).

This will be applied to the whole series, not each term Rn , and will eventually
determine the coefficients cn .
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Third, to complete the specification of Rn we need to say how the solution
behaves as r → 0. We know that u(r, θ) reexpressed as a function of x and y
must be a solution at the center of the disc. This implies that Rn(r) must stay
bounded as r approaches 0. Looking back at our list of possible radial solutions,
we see that the allowable ones are R0(r) = 1 and Rn(r) = r|n| for n 6= 0.

So, finally, the solution is

u(r, θ) =
∞
∑

n=−∞

cn e
inθ r|n|,

where cn must be determined by (in the Dirichlet case)

f(θ) =
∞
∑

n=−∞

cn e
inθ r

|n|
0 ;
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that is,

cn =
1

r
|n|
0

1

2π

∫ π

−π

e−inθf(θ) dθ.

II. A partially eaten piece of pie

Consider the truncated sector, or polar rectangle, bounded by the four curves

r = r1 , r = r2 , θ = θ1 , θ = θ2 ,

where 0 < r1 and r2 < ∞. In this case, all four boundaries are of the “regular”
type. Let’s suppose that nonhomogeneous data are given on all four sides —
something like

u(r1, θ) = f1(θ), u(r2, θ) = f2(θ),

∂u

∂θ
(r, θ1) = f3(r),

∂u

∂θ
(r, θ2) = f4(r).
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As in the Cartesian rectangle case, before separating variables we must split this
into two problems, one with homogeneous θ boundary conditions and one with
homogeneous r boundary conditions. Let us say u = v + w, where v and w
individually solve the potential equation, v satisfies

v(r1, θ) = 0, v(r2, θ) = 0,
∂v

∂θ
(r, θ1) = f3(r),

∂v

∂θ
(r, θ2) = f4(r),

and w satisfies

w(r1, θ) = f1(θ), w(r2, θ) = f2(θ),
∂w

∂θ
(r, θ1) = 0,

∂w

∂θ
(r, θ2) = 0.

In solving for v, it is the homogeneous conditions on R that must determine
the allowed eigenvalues K. Thus here, for the first time, we really treat the radial
equation as a Sturm–Liouville problem. In order for R to vanish at both r1 and
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r2 , we must have K > 0, the third case in our list of radial solutions. That is,
for each normal mode we have an eigenvalue Kµ = µ2 and an eigenfunction

Rµ(r) = Aµ cos(µ ln r) +Bµ sin(µ ln r)

(or, alternatively, Rµ = Cµ,+r
iµ + Cµ,−r

−iµ). The two equations

R(r1) = 0 = R(r2)

(1) determine a discrete list of allowable values of µ, and (2) determine the ratio
of Aµ to Bµ (or Cµ,+ to Cµ,−). This leaves an overall constant factor in Rµ

undetermined, as is always the case in finding normal modes. I postpone the
details of this calculation for a moment; the principle is the same as in the very
first separation-of-variables problem we did, where the eigenvalues turned out to
be (nπ/L)2 and the eigenfunctions sin(nπx/L) times an arbitrary constant.

To finish the solution for v we need to solve the equation

Θ′′ = +µ2Θ.
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Thus the angular dependence of this solution is exponential, not trigonometric.
We can write

v(r, θ) =
∑

µ

cµ Rµ(r)
(

Cµe
µθ +Dµe

−µθ
)

.

The constants C andD are to be determined by imposing the remaining boundary
conditions,

∂v

∂θ
(r, θ1) = f3(r),

∂v

∂θ
(r, θ2) = f4(r).

In general this will be a coupled pair of Sturm–Liouville expansions in the or-
thogonal eigenfunctions Rµ(r).

That’s v; now we need to find w. That problem is like this one, except that
the roles of r and θ are interchanged. The result will be a Fourier cosine series in θ
with radial factors that depend exponentially on ln r; that is, linear combinations
of rn and r−n. I hope that by now I can leave the details to your imagination.
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Unfinished business: Let us consider the details of finding the eigenvalues µ
and eigenfunctions Rµ . The two relevant algebraic equations are

0 = Rµ(r1) = Cµ,+r
iµ
1 + Cµ,−r

−iµ
1

and
0 = Rµ(r2) = Cµ,+r

iµ
2 + Cµ,−r

−iµ
2 .

A nontrivial solution will exist if and only if the determinant vanishes:

0 =

∣

∣

∣

∣

riµ1 r−iµ
1

riµ2 r−iµ
2

∣

∣

∣

∣

=

(

r1
r2

)iµ

−

(

r1
r2

)−iµ

.

This is proportional to
sin

(

µ ln(r1/r2)
)

,

so it vanishes precisely when µ is an integer multiple of the constant π/ ln(r1/r2).
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Returning to one of the linear algebraic equations, we find

Cµ,+

Cµ,−
= −r−2iµ

1 = −e−2iµ ln r1 .

(Using the other equation would give Cµ,+/Cµ,− = −e−2iµ ln r2 , but these two
equations are equivalent because of the eigenvalue condition, which may be rewrit-
ten as µ ln r1−µ ln r2 = Nπ.) The neatest (albeit not the most obvious) normal-
ization convention is to choose Cµ,− = −riµ1 ; then Cµ,+ = r−iµ

1 , and

Rµ(r) ≡ Cµ,+r
iµ + Cµ,−r

−iµ

=

(

r

r1

)iµ

−

(

r

r1

)−iµ

= 2i sin
(

µ ln(r/r1)
)

.

Thus the Sturm–Liouville expansion involved in this problem is simply an
ordinary Fourier sine series, though expressed in very awkward notation because
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of the context in which it arose. (In our usual notation, we have L ≡ ln(r1/r2),
µ = nπ/L, x = z − ln r1 , Cµ,+ = bn/2i.) We would have encountered the same
complications in Cartesian coordinates if we had considered examples where none
of the boundaries lay on the coordinate axes (but the boundaries were parallel to
the axes).

III. A sector (the pie intact)

Consider the region

0 ≤ r < r2 , Θ1 ≤ θ < Θ2 ,

with nonhomogeneous data on the straight sides. (This is the limiting case of
the v problem above as r1 → 0.) The endpoint r = 0 is singular, so we are
not guaranteed that a standard Sturm–Liouville expansion will apply. Indeed,
in terms of the variable z = ln r, where the radial equation becomes trivial, the
endpoint is at z = −∞. This problem is therefore a precise polar analogue of
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the infinite rectangular slot problem, and the solution will be a Fourier sine or
cosine transform in a variable ζ ≡ −z + C that vanishes when r = r2 . (That is,
C = ln r2 .)
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