
Harsh facts of life

This PDE is not typical, even among linear ones.

1. For most linear PDEs, the waves (if indeed the solutions are wavelike at all)
don’t move without changing shape. They spread out. This includes higher-
dimensional wave equations, and also the two-dimensional Klein–Gordon

equation,
∂2u

∂t2
=

∂2u

∂x2
−m2u,

which arises in relativistic quantum theory. (In homework, however, you
are likely to encounter a partial extension of d’Alembert’s solution to three
dimensions.)

2. For most linear PDEs, it isn’t possible to write down a simple general solution
constructed from a few arbitrary functions.
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3. For many linear PDEs, giving initial data on an open curve or surface like
t = 0 is not the most appropriate way to determine a solution uniquely. For
example, Laplace’s equation

∂2u

∂x2
+

∂2u

∂y2
= 0

is the simplest of a class of PDEs called elliptic (whereas the wave equation is
hyperbolic). For Laplace’s equation the natural type of boundary is a closed
curve, such as a circle, and only one data function can be required there.

Separation of variables in the wave equation

Let’s again consider the wave equation on a finite interval with Dirichlet
conditions (the vibrating string scenario):

∂2u

∂t2
= c2

∂2u

∂x2
, (PDE)
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where 0 < x < L (but t is arbitrary),

u(0, t) = 0 = u(L, t), (BC)

u(x, 0) = f(x),
∂u

∂t
(x, 0) = g(x). (IC)

During this first exposure to the method of variable separation, you should
watch it as a “magic demonstration”. The reasons for each step and the overall
strategy will be philosophized upon at length on future occasions.

We try the substitution

u(x, t) = X(x)T (t)

and see what happens. We have

∂2u

∂t2
= XT ′′,

∂2u

∂x2
= X ′′T,
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and hence XT ′′ = c2X ′′T from the PDE. Let’s divide this equation by c2XT :

T ′′

c2T
=

X ′′

X
.

This must hold for all t, and for all x in the interval. But the left side is a function
of t only, and the right side is a function of x only. Therefore, the only way the
equation can be true everywhere is that both sides are constant! We call the
constant −K:

T ′′

c2T
= −K =

X ′′

X
.

Now the BC imply that

X(0)T (t) = 0 = X(L)T (t) for all t.

So, either T (t) is identically zero, or

X(0) = 0 = X(L). (∗)
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The former possibility would make the whole solution zero — an uninteresting,
trivial case — so we ignore it. Therefore, we turn our attention to the ordinary
differential equation satisfied by X,

X ′′ +KX = 0, (†)
and solve it with the boundary conditions (∗).

Case 1: K = 0. Then X(x) = Ax + B for some constants. (∗) implies
B = 0 = AL+B, hence A = 0 = B. This solution is also trivial.

Case 2: 0 > K ≡ −ρ2. Then

X(x) = Aeρx +Be−ρx

= C cosh(ρx) +D sinh(ρx).

The hyperbolic notation is the easier to work with in this situation. Setting x = 0
in (∗), we see that C = 0. Then setting x = L, we get

0 = D sinh(ρL) ⇒ D = 0.
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Once again we have run into the trivial solution. (The same thing happens if K
is complex, but I won’t show the details.)

Case 3: 0 < K ≡ λ2. This is our last hope. The solution is

X(x) = A cos(λx) +B sin(λx).

The boundary condition at x = 0 gives A = X(0) = 0. The boundary condition
at x = 0 gives

B sin(λL) = X(L) = 0.

We see that we can get a nontrivial solution if λL is a place where the sine
function equals zero. Well, sin z = 0 if and only if z = 0, π, 2π, . . . , or −π, −2π,
. . . . That is, λL = nπ where n is an integer other than 0 (because we already
excluded λ = 0 as Case 1). Furthermore, we can assume n is positive, because the
negative ns give the same functions as the positive ones, up to sign. Similarly, we
can take B = 1, because multiplying a solution by a constant gives nothing new
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enough to be interesting. (For linear algebra students: We are interested only in
solutions that are linearly independent of solutions we have already listed.)

In summary, we have found the solutions

X(x) = Xn(x) ≡ sin
nπx

L
,

√
K = λn ≡ nπ

L
, n = 1, 2, . . . .

The Xs and λs are called eigenfunctions and eigenvalues for the boundary value
problem consisting of the ODE (†) and the BC (∗).

We still need to look at the equation for T :

T ′′ + c2λ2T = 0.

This, of course, has the general solution

T (t) = C cos(cλt) +D sin(cλt).
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So, finally, we have found the separated solution

un(x, t) = sin
nπx

L

(

C cos
cnπt

L
+D sin

cnπt

L

)

for each positive integer n. (Actually, this is better thought of as two independent
separated solutions, each with its arbitrary coefficient, C or D.)

Matching initial data

So far we have looked only at (PDE) and (BC). What initial conditions does
un satisfy?

f(x) = u(x, 0) = X(x)T (0) = C sin(λx),

g(x) =
∂u

∂t
(x, 0) = X(x)T ′(0) = cλD sin(λx).
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Using trig identities, it is easy to check the consistency with D’Alembert’s solu-
tion:

u(x, t) = sin(λx)[C cos(cλt+D sin(cλt)]

= C
2
[sinλ(x− ct) + sinλ(x+ ct)] + D

2
[cosλ(x− ct)− cosλ(x+ ct)]

= 1
2
[f(x+ ct) + f(x− ct)] + 1

2
[G(x+ ct)−G(x− ct)]

where

G(z) =
1

c

∫ z

g(x) dx = −D cos(λx) + constant.

The traveling nature of the x − ct and x + ct parts of the solution is barely
noticeable, because they are spread out and superposed. The result is a standing
vibration. It is a called a normal mode of the system described by (PDE) and
(BC).

But what if the initial wave profiles f(x) and g(x) aren’t proportional to one
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of the eigenfunctions, sin nπx
L

? The crucial observation is that both (PDE) and
(BC) are homogeneous linear equations. That is,

(1) the sum of two solutions is a solution;

(2) a solution times a constant is a solution.

Therefore, any linear combination of the normal modes is a solution. Thus we
know how to construct a solution with initial data

f(x) =
N
∑

n=1

Cn sin
nπx

L
, g(x) =

N
∑

n=1

cnπ

L
Dn sin

nπx

L
.

This is still only a limited class of functions (all looking rather wiggly). But what
about infinite sums?

f(x) =
∞
∑

n=1

Cn sin
nπx

L
, etc.
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Fact: Almost any function can be written as such a series of sines! That is
what the next few weeks of the course is about. It will allow us to get a solution
for any well-behaved f and g as initial data.

Remark: For discussion of these matters of principle, without loss of gener-
ality we can take L = π, so that

Xn(x) = sin(nx), λn = n.

We can always recover the general case by a change of variables, x = πx̃/L.

Before we leave the wave equation, let’s take stock of how we solved it. I
cannot emphasize too strongly that separation of variables always proceeds in
two steps:

1. Hunt for separated solutions (normal modes). The assumption that the solu-
tion is separated (usep = X(x)T (t)) is only for this intermediate calculation;
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most solutions of the PDE are not of that form. During this step we use
only the homogeneous conditions of the problem — those that state that
something is always equal to zero (in this case, (PDE) and (BC)).

2. Superpose the separated solutions (form a linear combination or an infinite
series of them) and solve for the coefficients to match the data of the problem.
In our example, “data” means the (IC). More generally, data equations are
nonhomogeneous linear conditions: They have “nonzero right-hand sides”;
adding solutions together yields a new solution corresponding to different

data, the sum of the old data.

Trying to impose the initial conditions on an individual separated solution, rather
than on a sum of them, leads to disaster! We will return again and again to the
distinction between these two steps and the importance of not introducing a
nonhomogeneous equation prematurely. Today is not the time for a clear and
careful definition of “nonhomogeneous”, etc., but for some people a warning on

12



this point in the context of this particular example may be more effective than
the theoretical discussions to come later.
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