Scattering and the Delta Potential
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where V(x) = 0 for |z| > a.
V

Separation of variables leads to

NED'¢

o [V(z) = AlX

= —-AX for |z| > a.

Suppose (for the moment) that X is positive, and set A = w? with w > 0.
There are constants such that two independent solutions satisfy

T 4 R,e” T if x < —a,
X, (x) = { . .
T,e"” if x > a;
T e we if z < —a,
X_u(x) = . . _
e " + R_ e if x > a.

Example: Suppose V(z) = ad(x). Integrate

dz—X = [ad(z) — N\]X :

dx?

you get
X'(04) — X'(0-) =aX(0),  X(04)=X(0).

Let’s apply this to X, . We get
1+R, =1T,, iw(l — R,) =1iwT, + aT,, .
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Solving this system we get

. B 21w
Y 2w+ a’ Y 2w+t a

X _,, can be treated similarly.
Now let’s put together the general solution. Let —oco < k£ < oo and
|k| = w. We expect

u(x,t) = /_OO C(k)Xk(z)e”“t dk + /_OO D(k) X (z)e™? dk.

(Note that the sign of k£ and the sign of the +w in the exponent are indepen-
dent.) T’ll concentrate on the first term and call it just w. (In an application
where we know the solutions are real-valued, the second term must be the
complex conjugate of the first. the decomposition of the solution into sines
and cosines of wt is then determined by the phases of the complex numbers
C'(k).) Notice that for = > a,

u(x,t) :/ C(W)Tweiw(x—t) dw—l—/ C(—W)[e_iw(x+t)—l—R_weiw(x_t)]dw.
0 0

And for x < —a,

u(z, t) :/ C(w)[eiw(x—t)+Rwe—iw(m+t) dw—l—/ C(_w)T_we—iw(x-H) de.
0 0

I claim that for each sign of k = +w, each of these solution consists
of three (out of four possible) beams. The C(w) terms describe a beam
coming in from the left with amplitude unity, which is partially reflected
back to the left and partially transmitted into the region to the right of the
potential hill:
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To see that, recall that in the regions |x| > a our PDE reduces to the
ordinary wave equation, so the solution must have a form

u(z,t) = B(x —t) + C(x + t)

in each of those regions. In fact, we can see terms of these types in the
solutions we’ve constructed. For sufficiently smooth functions C, the terms
will be localized “bumps”, which are inverse Fourier transforms. Still con-
sidering a solution with C'(—w) = 0, think of running the clock back to
large negative t; the R and T bumps will eventually back into the regions
where their terms don’t apply, so they will disappear. There is only an
initial bump far to the left of the potential. As time moves forward, this
incident wave packet moves toward the potential at the origin; hits it; and
scatters into two outgoing packets.

t <0

t>0
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Similarly, a solution with only C'(—w) nonzero consists of a bump in-
cident from the right, which scatters into two outgoing packets.
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Thus these basic solutions are the right ones for posing a realistic initial-
value problem where a localized disturbance propagates and scatters in
both directions where the physics tells it to go, with definite reflection
and transmission amplitudes. A bit of thought shows that C(k) can be
computed from initial data exactly like a Fourier transform:

Ck) = % /_ T Xp(2) f(2)dr,  ete.

If you accept that the eigenfunctions must be complete, the only uncer-
tainty is whether their normalization is correct, and that can be checked
by demanding that you get the right answer back in the early-time region,
where the integrals reduce to Fourier transforms (for sufficiently localized
wave pulses).

Returning to the delta example, note that

2 2
o 4w
Rol*=——, |Llf =15,
4w? + a? 4w? + o2
so |R,|? + |T,,|> = 1. This equation expresses the conservation of the

energy or flux in the wave (in quantum mechanics, the probability). It can
be proved in the general case, using the constancy of the Wronskian of X,
and X[ .

Remark: Eigenfunctions with A < 0 can occur; they are localized
“bound states”. If A = —x? with x > 0, then

X(z) = {

Ae™ if x < —a,
Be ™% if x > a.

In the delta case, we find
A = B, —k(A+ B) = aA,

hence
o

R=——=.
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So there are no bound states if « is positive, and exactly one bound state
if v is negative. The bound state must be included (in addition to the gen-
eralized Fourier transform) in expanding a generic data function in eigen-
functions; it corresponds to solutions that grow or decay exponentially in
time but are localized in space.



